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The processes in coupled oscillators and their control under bistability conditions are considered.
The possibility of stabilizing spatially homogeneous states is demonstrated 999
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1. The processes in spatially distributéahultidimen-  scribes the temporal dynamics of a nonlinear dissipative os-
siona) oscillatory systems are often simulated by oscillatorscillator and the structure of its bifurcation sequences in the
coupled to one another in a chain or an array. Such erregion of the existence of subharmonic oscillations and their
sembles have also been used successfully as models of dsrolution to chaos, as well as reflects such nonlinear phe-
tributed media. A chain of identical dissipative oscillatorsnomena as hysteresis, bistability, and multistabliftyThe
closed in a ring, in which the oscillators are subjected tdform of a steady multistable oscillatory state is specified by
cophasal excitation by a periodic external force, can be usethe initial conditions.
to analyze the possibility of controlling chaos. The elements At certain values of the parameters the system of equa-
of the chain are nonlinear, capable of undergoing regular antions (1) and (2) goes over to a regime of developed spa-
chaotic oscillations, and bistable. The last property meansiotemporal chao$!® The attractors corresponding to such
that two different forms of steady motions can take place astates contain a set of saddle periodic orbits, which can be
fixed values of the parameters. Bistability is typical of non-stabilized by a controlling disturbance acting on the param-
autonomous oscillatory systems at nonlinear resonanceters of the system.
where hysteresis is observed when the parameters are varied. 3. Spatially homogeneous states of the chain were stabi-
The coupling between the elements of the chain is symmetritized for two typical cases: for values of the parameters cor-
and local(the elements interact only with neighbras well  responding to an absence of hysteresis and the associated
as diffusive (dissipative. The problem of controlling spa- bistability in the elements of the chain and for the presence
tiotemporal chaos is considered in its classical form, i.e.pf bistability in a single element. In accordance with the
stabilization of motions in an unstable limit cycle embeddedcontrol procedure usetthe controlling disturbance is im-
in a chaotic attractor by small changes in a controllingposed on the parametérof each of the coupled oscillators.
parametef > The possibility of stabilizing spatially homoge- Thus, the parametek depends both on the moment in time
neous states of an ensemble of bistable elements using and on the number of the elemeantand can be written in the
element-by-element regulation proceduaad the effective- form
ness of this approach in the presence of noise are demon- ~
strated. A=ART=Aot+AL, ©)

2. The following discrete model was investigated underwherer is the constant component ad is the variable

:I:]e.cond_l?c;n thfit the rt]elemltlants in the chain are identical angomponent. Each of the elements in the chain is successively
€Il excitation 1S cophasat: subjected to the control procedure as its dynamic varigBle

X™, = (1= 2K) F(X™) +K[F(X™ D + f(x™ ], (1)  comes into the vicirl?ty of_ the state being_stabiliz_gd.
_ _ _ _ _ The states stabilized in our work are fixed poixtsf the
wherex is a dynamic variablen=0,1,2,. .. is the discrete mapping(2). Then, wherx™ enters a small vicinity ok, we

time, mis the number of the element in the chain, dnid -5 write

the coupling coefficient. The boundary conditions are peri- o o

odic: x}=xM*1, whereM is the number of elements in the XM =x+xT ., xM=x+x", (4)
chain. The basic chain elemeftx]) is a mapping, which

reflects the temporal dynamics of an oscillator. We used th&/h€réXn.; andx,’" are small perturbations. Substitutifg)
multimodal multiparameter mapping and (4) into (1) and linearizing the expression obtained, we

obtain the equation for a fixed point

_ _ 2w
x=Ap+Xxexd —d/N]Jcog —— 5
0 o] ] S{N 1+ BA ©)
whose parameters characterize the amplituéle ¢nd nor-

malized frequencyN) of the external periodic disturbance, and a linearized equation for the perturbatiodfs , , from
the dissipation ¢), and the nonlinearity ). The mapping which we find the valué\]', at which the perturbatior], ;
(2) has both regular and chaotic solutions, qualitatively debecomes equal to zero:

+A, (2

2
Xnt 1= F(Xp) =Xpexd — d/N]COS{m
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FIG. 1. a — Plot of the mapping?) for A=6, d=0.2,
N=0.5, and3=0.2 (the chaotic attractor isindicated by the
thick line); b — spatiotemporal diagram of the establish-
ment of a homogeneous regime of perigat+— regime of
developed spatiotemporal chaos; d—e — controlled transi-
tion to a spatially homogeneous regime of perio¢et d

— intermediate stage of the transition.

A= —exy — d/N][ (1—2K)(x™—x)
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by a controlling disturbance of the for(6) using the scheme
described above. The magnitude of the controlling distur-
bance decreases with time. We note that the stabilization of
regimes with time and in space takes place only when there
is weak coupling between the elements of the chain. For
example,k=0.005 for the plots in Figs. 1c—1e. This is be-
cause the algorithm used is based on a method of successive
stabilization of the elements in the chain, and the weaker is
the coupling between the elements, the longer will the ele-
ment subjected to the controlling disturbance reside in the
vicinity of the unstable state being stabilized and, conse-
quently, the higher will be the probability of cluster forma-
tion.

Let us now consider the stabilization of spatially homo-
geneous states of period 1 for the second typical case, in
which the parameters of the system are such that bistability

The controlling disturbance acts when two conditionsjs observed in the elements of the chain and two chaotic

are satisfied simultaneously, vizx™—x|<e& and

2T — 2T
ki | x"*tco§ ———————|—xco§ ———
N(1+Bx™ 1) N( 1+ Bx
B 2
+| x"tcog —————
N(1+B8x0 Y

] |
—XCO§ ————— <
N(1+ 8x)

i.e., when both terms i66) are relatively small.

attractors coexist in them. The plot of the mappi@gy cor-
responding to this situation and the forms of the chaotic at-
tractors are presented in Fig. 2a. For the values of the param-
eters chosen the system has three unstable fixed points, two
of which appear in a chaotic attractor. If the initial conditions
in all the elements of the chain are assigned in the basin of
attraction of one chaotic attractor, the situation is similar to
the one considered above for the absence of bistability. Then,
each orbit of period 1 appearing in the attractor is stabilized
in the chain according to the scheme described. If the initial
conditions are such that some of the elements in the chain
undergo oscillations in one chaotic attractor and others do so

4. Let us first examine the controlled transition from ain the other chaotic attractor, a fairly broad window with
regime of spatiotemporal chaos to a spatially homogeneougspect tce and, therefore, a larger value of the controlling
regime for values of the parameters at which the chain eledisturbance are required to stabilize any of the regimes of
ments have a single fixed point of period 1. The plot of theperiod 1. This condition is fundamental, since regardless of
function (2) for such values of the parameters and the chaoti¢he strength of the coupling between the elements the oscil-
attractor which exists for them are shown in Fig. la. Thelations of an individual oscillator can occur in the absence of
single orbit of period 1 appearing in the chaotic attractorthe controlling disturbance in only one of the attractors.
with these values of the parametéFsg. 1) can be stabilized Therefore, stabilization of the fixed point appearing in the
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et The magnitude of the controlling disturbance needed to
al 7 bring the chain into a spatially homogeneous regime in the
4 : 2 bistability region can be reduced significantly, if random
: . noise is allowed to act on the system. Owing to the presence
p 3 of noise, switching between the bistable states becomes pos-
! ; 2 sible, and the oscillations of an individual oscillator can take
oo ! place alternately near each chaotic attractor. By supplying
0 .z", x, Iz % 0 noise to the system and simultaneously applying a control-
. ; ling signal to it, we can try to force the oscillations of all the
6 c 6 elements of the chain to move into the vicinity of only one
5 5 selected chaotic attractor. Thereafter, the noise can be re-
4 4 moved, and stabilization of the spatially homogeneous re-
iz ZE gime of period 1 appearing in that attractor can easily be
1] d T achieved. For the case depicted in Fig. 2b the application of
o : 0] : random noise with a maximum amplitude having an absolute
1 " 120 1 " 120 value A=0.2 to the system led to fourfold decreases in the
7] d 7] absolute values of the controlling signal and the intesvad
2: Z: which control takes place.
4] o] : 5. The approach used can be applied to the stabilization
* 4] * 3] of spatially homogeneous and spatially periodic regimes with
2] 2] different temporal and spatial periods, as well as to the sta-
1 1] bilization of spatial regimes in a two-dimensional array of
o A o . o bistable oscillators.
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