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Controlling spatiotemporal chaos in a chain of bistable oscillators
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The processes in coupled oscillators and their control under bistability conditions are considered.
The possibility of stabilizing spatially homogeneous states is demonstrated. ©1999
American Institute of Physics.@S1063-7850~99!02406-4#
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1. The processes in spatially distributed~multidimen-
sional! oscillatory systems are often simulated by oscillat
coupled to one another in a chain or an array. Such
sembles have also been used successfully as models o
tributed media. A chain of identical dissipative oscillato
closed in a ring, in which the oscillators are subjected
cophasal excitation by a periodic external force, can be u
to analyze the possibility of controlling chaos. The eleme
of the chain are nonlinear, capable of undergoing regular
chaotic oscillations, and bistable. The last property me
that two different forms of steady motions can take place
fixed values of the parameters. Bistability is typical of no
autonomous oscillatory systems at nonlinear resona
where hysteresis is observed when the parameters are va
The coupling between the elements of the chain is symme
and local~the elements interact only with neighbors!, as well
as diffusive ~dissipative!. The problem of controlling spa
tiotemporal chaos is considered in its classical form, i
stabilization of motions in an unstable limit cycle embedd
in a chaotic attractor by small changes in a controlli
parameter.1–5 The possibility of stabilizing spatially homoge
neous states of an ensemble of bistable elements usin
element-by-element regulation procedure6 and the effective-
ness of this approach in the presence of noise are dem
strated.

2. The following discrete model was investigated und
the condition that the elements in the chain are identical
their excitation is cophasal:

xn11
m 5~122k! f ~xn

m!1k@ f ~xn
m11!1 f ~xn

m21!#, ~1!

wherex is a dynamic variable,n50,1,2, . . . is the discrete
time, m is the number of the element in the chain, andk is
the coupling coefficient. The boundary conditions are pe
odic: xn

15xn
M11 , whereM is the number of elements in th

chain. The basic chain elementf (xn
m) is a mapping, which

reflects the temporal dynamics of an oscillator. We used
multimodal multiparameter mapping

xn115 f ~xn!5xnexp@2d/N#cosF 2p

N~11bxn!G1A, ~2!

whose parameters characterize the amplitude (A) and nor-
malized frequency (N) of the external periodic disturbance
the dissipation (d), and the nonlinearity (b). The mapping
~2! has both regular and chaotic solutions, qualitatively
4841063-7850/99/25(6)/3/$15.00
s
n-
is-

o
ed
s
d
s
t

-
e,

ied.
ic

.,
d

an

n-

r
d

i-

e

-

scribes the temporal dynamics of a nonlinear dissipative
cillator and the structure of its bifurcation sequences in
region of the existence of subharmonic oscillations and th
evolution to chaos, as well as reflects such nonlinear p
nomena as hysteresis, bistability, and multistability.7,8 The
form of a steady multistable oscillatory state is specified
the initial conditions.

At certain values of the parameters the system of eq
tions ~1! and ~2! goes over to a regime of developed sp
tiotemporal chaos.9,10 The attractors corresponding to suc
states contain a set of saddle periodic orbits, which can
stabilized by a controlling disturbance acting on the para
eters of the system.

3. Spatially homogeneous states of the chain were st
lized for two typical cases: for values of the parameters c
responding to an absence of hysteresis and the assoc
bistability in the elements of the chain and for the prese
of bistability in a single element. In accordance with t
control procedure used,6 the controlling disturbance is im
posed on the parameterA of each of the coupled oscillators
Thus, the parameterA depends both on the moment in tim
and on the number of the elementm and can be written in the
form

A5An
m5A01Ãn

m , ~3!

whereA0 is the constant component andÃn
m is the variable

component. Each of the elements in the chain is successi
subjected to the control procedure as its dynamic variablexn

m

comes into the vicinity of the state being stabilized.
The states stabilized in our work are fixed pointsx̄ of the

mapping~2!. Then, whenxn
m enters a small vicinity ofx̄, we

can write

xn11
m 5 x̄1 x̃n11

m , xn
m5 x̄1 x̃n

m, ~4!

wherex̃n11
m and x̃n

m are small perturbations. Substituting~3!
and ~4! into ~1! and linearizing the expression obtained, w
obtain the equation for a fixed point

x̄5A01 x̄ exp@2d/N#cosF 2p

N~11b x̄
G ~5!

and a linearized equation for the perturbationsx̃n11
m , from

which we find the valueÃn
m , at which the perturbationx̃n11

m

becomes equal to zero:
© 1999 American Institute of Physics
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FIG. 1. a — Plot of the mapping~2! for A56, d50.2,
N50.5, andb50.2 ~the chaotic attractor isindicated by th
thick line!; b — spatiotemporal diagram of the establis
ment of a homogeneous regime of period 1; c — regime of
developed spatiotemporal chaos; d–e — controlled tran
tion to a spatially homogeneous regime of period 1~e!; d
— intermediate stage of the transition.
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Ãn
m52exp@2d/N#H ~122k!~xn

m2 x̄!

3S x̄ sinF 2p

N~11b x̄!
G 2pb

N~11b x̄!2

1cosF 2p

N~11b x̄!
G D 1kS xn

m11cosF 2p

N~11bxn
m11!

G
1xn

m2vcosF 2p

N~11bxn
m21!

G
22x̄ cosF 2p

N~11b x̄!
G D J . ~6!

The controlling disturbance acts when two conditio
are satisfied simultaneously, viz.,uxn

m2 x̄u,« and

UkH S xn
m11cosF 2p

N~11bxn
m11!

G2 x̄cosF 2p

N~11b x̄
G D

1S xn
m21cosF 2p

N~11bxn
m21!

G
2 x̄cosF 2p

N~11b x̄!
G D J U,«,

i.e., when both terms in~6! are relatively small.
4. Let us first examine the controlled transition from

regime of spatiotemporal chaos to a spatially homogene
regime for values of the parameters at which the chain
ments have a single fixed point of period 1. The plot of t
function~2! for such values of the parameters and the cha
attractor which exists for them are shown in Fig. 1a. T
single orbit of period 1 appearing in the chaotic attrac
with these values of the parameters~Fig. 1! can be stabilized
us
e-
e
ic
e
r

by a controlling disturbance of the form~6! using the scheme
described above. The magnitude of the controlling dist
bance decreases with time. We note that the stabilizatio
regimes with time and in space takes place only when th
is weak coupling between the elements of the chain.
example,k50.005 for the plots in Figs. 1c–1e. This is b
cause the algorithm used is based on a method of succe
stabilization of the elements in the chain, and the weake
the coupling between the elements, the longer will the e
ment subjected to the controlling disturbance reside in
vicinity of the unstable state being stabilized and, con
quently, the higher will be the probability of cluster forma
tion.

Let us now consider the stabilization of spatially hom
geneous states of period 1 for the second typical case
which the parameters of the system are such that bistab
is observed in the elements of the chain and two cha
attractors coexist in them. The plot of the mapping~2! cor-
responding to this situation and the forms of the chaotic
tractors are presented in Fig. 2a. For the values of the par
eters chosen the system has three unstable fixed points
of which appear in a chaotic attractor. If the initial conditio
in all the elements of the chain are assigned in the basin
attraction of one chaotic attractor, the situation is similar
the one considered above for the absence of bistability. Th
each orbit of period 1 appearing in the attractor is stabiliz
in the chain according to the scheme described. If the ini
conditions are such that some of the elements in the ch
undergo oscillations in one chaotic attractor and others do
in the other chaotic attractor, a fairly broad window wi
respect to« and, therefore, a larger value of the controllin
disturbance are required to stabilize any of the regimes
period 1. This condition is fundamental, since regardless
the strength of the coupling between the elements the o
lations of an individual oscillator can occur in the absence
the controlling disturbance in only one of the attracto
Therefore, stabilization of the fixed point appearing in t
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other attractor is possible only for a value of« greater than
the interval with respect tox between the boundaries of th
chaotic attractors. The results demonstrating the contro
transition to each of the three possible spatially homo
neous regimes of period 1, including the one which does
belong to either of the attractors, are shown in Fig. 2.

FIG. 2. a — Plot of the mapping~2! for A52.6, d50.15, N50.28, and
b50.2 ~the coexisting chaotic attractors are indicated by the thick line!;
b — regime of developed spatiotemporal chaos in a region of bistabi
c–e — controlled transition to spatially homogeneous regimes of perio
~right-hand column! with various oscillation amplitudes: c —x5x1, d —
x5x2, e — x5x3 ~left-handcolumn — intermediate stage of the transitio!.
d
-

ot

The magnitude of the controlling disturbance needed
bring the chain into a spatially homogeneous regime in
bistability region can be reduced significantly, if rando
noise is allowed to act on the system. Owing to the prese
of noise, switching between the bistable states becomes
sible, and the oscillations of an individual oscillator can ta
place alternately near each chaotic attractor. By supply
noise to the system and simultaneously applying a cont
ling signal to it, we can try to force the oscillations of all th
elements of the chain to move into the vicinity of only on
selected chaotic attractor. Thereafter, the noise can be
moved, and stabilization of the spatially homogeneous
gime of period 1 appearing in that attractor can easily
achieved. For the case depicted in Fig. 2b the application
random noise with a maximum amplitude having an abso
valueD50.2 to the system led to fourfold decreases in t
absolute values of the controlling signal and the interval« in
which control takes place.

5. The approach used can be applied to the stabiliza
of spatially homogeneous and spatially periodic regimes w
different temporal and spatial periods, as well as to the
bilization of spatial regimes in a two-dimensional array
bistable oscillators.
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