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We discuss some problems, concerning the application of nonlinear dynamics methods and ideas to
vacuum microwave electronics. We consider such phenomena as solitons, deterministic chaos and
pattern formation in different models of electron flows and devices. Our results reveal that

microwave electronics is an interesting field of apphcatlon of nonlmear dynamucs.
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Applications of nonlinear science to real systems are con-
tinually being developed, and in this work such applica-
tions to vacuum microwave electronic devices are ex-
plored. Nonlinear waves in electron beam are considered
and processes of solitary waves formation and interaction
are studied. One of the simplest electron systems demon-
strating chaotic behaviour, called the Pierce diode, is in-
vestigated and a simple description in a form of coupled
piecewise maps is suggested. Experimental and numerical

simulations of a new microelectronic oscillator based on a

field emission triode also exhibit bifurcations along the
transition to deterministic chaos. Finally, a phenomeno-
logical model of electron turbulence consisting of a chain
of coupled small volumes with electron oscillators is dis-
cussed. '

l. INTRODUCTION

The present paper deals with the microwave (MW) elec-
tron devices which are typical examples of distributed non-
linear systems. Such systems are among the most significant

subjects of nonlinear dynamics. Here we speak mostly about

nonrelativistic devices where the electron beam velocity is
much lower than the velocity of light in vacuum. The main
purpose of this work is to show the ways of using ideas and
methods of nonlinear dynamics in MW electronics. The pa-
per summarizes the most important results of the research
carried out during the last five years at Saratov State Univer-
Sity.

The article is organized as follows. In the section II we
consider nonlinear waves in electron beams. Solitary wave
solutions are obtained analytically. The processes of their
formation and interaction are simulated numerically. The
section III deals with one of the simplest electron systems,
demonstrating complex behaviour including deterministic

chaos. This system, called the Pierce diode, is investigated

by the numerical simulation. A simple model in the form of
coupled piecewise maps is suggested, which gives a proper
description of chaotic oscillations in the system. In the sec-
tion IV a new type of vacuum microelectronic oscillator

based on a field-emission triode is studied numerically and

experimentally. Deterministic chaos is observed and some
universal features of the bifurcation scenario are found. In
section V a phenomenological madel of electron turbulence
is proposed, which consists of a chain of coupled small vol-
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umes containing electron oscillators. Regimes of spatio-
temporal chaos are observed.

Il. NONLINEAR WAVES IN' ELECTRON BEAMS

The Russian poet Vladimir Vysotskii once wrote 1n one
of his poems about water waves:

The stormy night;

And while the sand is coming all apart

Hereafter being patched up with the snow-white foam,
m looking down on those poor waves

And watch them having their stubborn heads all broken.

It is precisely these ‘‘heads broken’’ that made the MW
electronics specialists abandon the fluid model of electron
beam in favour of the ‘‘large particles’ method.

It is essential to recall that the linear theory of different
types of MW electron devices usually employs the concept
of interaction of electromagnetic waves with various types of
linear waves in electron beams, such as space-charge waves,
cyclotronic, synchronic waves, etc. (see, €.g., Ref. 1). But the
nonlinear theory of such devices is always based on the nu-
merical simulation with the ‘‘large particles’’ method which

~ gives the opportunity of a proper description of overtaking of

some electrons by others.” Recall that overtaking corre-
sponds to wave breaking. Quite naturally there arose a ques-
tion if there were nonlinear analogies to the waves men-
tioned betore.

The ‘‘soliton boom’’ in the last two decades gave rise 0

papers in which equations describing this or that MW device

came down to one of the standard equations of nonlinear
wave theory, possessmg soliton solutions, mostly the nonlin-
ear Schrodinger equation or the Korteweg — de Vries (KdV)
equation (see the review in Ref. 3). It is obvious that such an
approach always leaves open the question of the limits of the
application. In our works*” we have performed analytical

“and numerical investigations of solitary waves based on the |

fluid model of electron flow.

Let us consider a cylindrical charge-neutralized electron
beam of radius » moving in an infinitely strong longitudinal i
magnetic field along the axis of a drift tube with perfectly
conducting walls. The tube axis coincides with the x-axis. If

~ velocity perturbations are too low to cause electron overtak-

ing, the system can be described by the following hydrody-
namic equations:

et vm = . (1);
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The variables in equations (1) and (2) are dimensionless and
normalized in the following way: velocity v and space-
charge density p are referred to nondisturbed values v, and

0o, space-charge field potential ¢ to mvzl e, time to w; L and

1/2 |
coordinate to vo/w,, where wp—(epolmso) is the

plasma frequency.
For the potential (p we use the well-known relation®

(P(x) l)eXP[ kyjx—x 1dx’, @)

1
p(x)= 2k, ) -

where k, = a/r(1<a<2). We can rewrite equation (3), for
, convenience, in the differential form

52 |
52‘ kip=p-— 1 . (4)

To find the analytical solution of equations (1) (2) and

~ (4) it is necessary to search for stationary waves that are
solutions dependent on ¥=x—ut, where u=const is the

wave velocity. Integrating equations (1) and (2) with the

boundary conditions

v=1, p=1

and substituting the result in (4) we get the ‘‘nonlinear os-
~ cillator’” equation '

d*

=R [14+20/(1-u)] -1 G
The potential energy of such an oscillator can be described
by the function [we should note, that if |2¢/(1 -—u)2|€1 (weak
nonlinearity), then expanding the right-hand sides of rela-
tions (6) and (7) a series up to second-order terms we could

obtain the equations havmg solutions in the form of KdV
solitons®]

, (T
a2 (7)
which has two extreme points at ¢=0 and ¢o=¢*,

Pl AN LAY ' (8)
AT Y2 A ’ A

where M =k, |1 — 1| and has the meaning of a Mach number.

When M <1, the equilibrium state at ¢ =0 is stable, but
i o=@*>0 it is unstable. When M >1 the equilibrium
state at @ =0 is unstable, and at ¢*<<0 we get a stable one.
Hence, in both cases the solitary wave solution is possible.
But for M<1 the solutions obtained do not satisfy the
boundary conditions (5). Thus in this case only periodic so-
lutions are to be expected. We are interested in solitary
waves and thus we assume that the condition M >1 is satis-
fied. The analysis shows that the solitary wave is stable for
M<2, so M has to satisfy the inéquality 1 <M <2. Thus it
follows from the definition of M, that velocity u is subject to
the inequality

=0 at d—otw (5)
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FIG 1. Fﬁrmatioh of fast space-charge solitary wave.
1+1/kl<u<1+2/kl | (9)
for a fast solitary wave and

1—2/k, <u<1-1/k, (10)

for a slow wave. Note that after linearization of equations

- (1)=(3) we can derive the following dispersion relation:

k2
2
Kl

(11)

So, the phase velocity v,,= w/k of linear waves lies within
the limits

1 — Uk, <v,,<l+1/k;

(12)

and one can see that the fast solitary wave velocity is always
higher and the slow wave velocity is lower than the v, .

Integrating equation (6) we find the correct solitary wave
solution in the implicit form*

2
U= —In(V \/V7+1) |
(MV—-1+ (M= D)(VZ- 1)\
- M-V )

k)
S -
N — n
| kJ_\/ﬂz_l \

(13)
where V=k, |v—2u++1{/2. Let us note that the integration
constant in (13) is chosen such that 3(v,,) =0, where

2 .

Umax™ 2u—1+ E
that is, the solitary wave velocity u is proportional to its
amplitude v ., , but the relation between these two values 1s
quite different from that of KdV solitons. It is necessary to
point out that the solution (13) describes electron bunches for
both fast and slow solitary waves.

Now let us turn to the direct numerical solution of equa-
tions (1)—(3). Main results are presented in Figs. 1-3 where
the spatio-temporal dynamics of the electron fluid velocity
v and the space-charge density p is shown. Numerical
simulation*” demonstrated that during the evolution process

(14)

" of a rather wide class of initial perturbations one or more

stable solitary waves arise and they propagate without

‘changing their form or velocity. In Fig. 1 there is an example

of the formation of fast space-charge solitary wave and an
oscillatory tail of small amplitude. Initial perturbation was
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FIG. 2. Elastic collision of two fast solitary waves.

taken to be a half-sine form; the relation between velocity
and density perturbation amplitudes was found by solving
the linear problem (all results are represented in the beam
frame of reference).

We paid special attention to processes of solitary wave
collisions. Numerical simulation revealed that overtaking
collisions of waves which travel in the same direction when
viewed from the beam frame (i.e., collision of two fast or
two slow waves) are almost elastic and preserve the wave-
forms and velocities (Fig. 2). ‘‘Head-on’’ collisions between
waves which move in opposite directions (i.e., between fast
and slow wave) are essentially unelastic and produces
‘““radiation-like’’ disturbances (Fig. 3). (The solutions of
nonlinear dispersive wave equations usually consist of two
parts: solitary waves and weakly nonlinear waves, called os-
cillatory tales or radiation.’)

Now the question is how to treat these results in terms of
standard equations or those proposed because of phenomeno-
logical reasons? Overtaking collisions can at least be quali-
tatively described by the KdV equation. Physical processes
taking place at head-on collisions are to some extent (but not
entirely) in agreement with those described in two papers of
Seyler and Fenstermacher™. In Ref. 8 an equation (called
the symmetric regularized long-wave equation) was pro-
“posed for the description of the propagation of weakly non-
linear space-charge waves, which in the beam frame looks as
follows:

v 62v+
9:  ox? ' 2 dxot

Equation (15) possesses _sOlitary wave solutions which
slightly differ from XdV solitons. Numerical solution

LAY Fe

—W—-O. - (15)

- FIG. 3. Unelastic collision between fa‘st and slow solitary waves.

~ overtaking collisions. ‘‘Head-on™

revealed® that solitary waves behave almost elastically in
collisions were found to
be unelastic, but disturbances were observed not only in the
form of weakly nonlinear waves but also in the form of one
or more (up to eight) additional pairs of solitary waves. In
the direct numerical experiments with equations (1) — (3) no
new solitary waves appeared, even when amplitudes were
close to the breaking conditions.*” Our analysis showed, that
the appearance of additional solitary wave pairs in Ref. 8
occurs at the u values, when wave breaking should take
place.

1. PIERCE DIODE—THE SIMPLEST MODEL FOR
DISTRIBUTED MICROWAVE ELECTRON SYSTEMS
WITH COMPLEX DYNAMICS

The Pierce diode' consists of two infinite plane parallel
grids pierced by a monoenergetic infinitely wide electron
beam with space charge neutralized by an ion background.
The grids may be grounded or connected with a circuit con-
taining various passive or active elements. Charge density
and electron beam velocity at the input are supposed con-
stant; ion background charge density is equal to the unper-
turbed electron charge density in the beam. The only param-
eter of the system is the nonperturbed transit angle with

respect to the plasma frequency
a=w,d/v, ' (16)

where d is distance between girds; v is flow velocity at the
input electrode; and w, is plasma frequency appropriate to
charge density at the system input. In Ref. 10 it was demon-
strated for the first time that electron beam motion becomes
unstable at a> . Charge density fluctuations in the flow
cause charge redistribution in the outer circuit, connecting
grids, and the appearance of induced charges at the system
limiting grids. As a result the potential at the grids 1s con-
stant and field of induced charges strongly influences the
motion of the beam. Instability increases until a region with
the value of space-charge potential ¢ close to the cathode
potential arises, and a virtual cathode (VC) appears. The VC
reflects some part of the electron flow back to the input grid.

The Pierce diode is one of the simplest models of dis-
tributed: MW electronic systems, which is able to demon-
strate almost all types of the complicated dynamics. This

- system attracts considerable interest because of consideration

of deterministic chaos in the Pierce diode!!"1% as well as in

the more general case of charge imbalance at the entrance
electrode.’>'* For a general view on the various scenarios of
transition to chaos in the beam-plasma system see Refs. 15
and 16. The following brief description of the diode dynam-
ics is based on the results of Refs. 17-19.

Equations (1) and (2) are used, and in the case of an

infinitely wide beam instead of equation (4) we have

c?zqo

S3=akl-p). ' ()

Now x is referred to d and ¢t — to d/vy. The boundary con-
ditions are changed fundamentally. Now they are
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FIG. 4. The synchronization domain for hydrodynamical regime of electron
beam in the Pierce diode.

v(0)=1, p(0)=1, @0)=0 s
at the input grid and
e(1,6)=0 _ (19)

at the output grid.
The application of the hydrodynamic concept is limited
by the condition '

E0> "'ICI (2'0)

where E, is electric field at the system input. One can see
from the solution of the stationary nonlinear problem'' that
the flow velocity remains a single-valued function only when
inequality (20) is satisfied.

When the grids are grounded, a transition to chaos
through the Feigenbaum sequence of bifurcation takes place
while a«  decreases. In  particular, the value
(a;— a))/(a;— a;)=4.63+0.03, which is in a good agree-
~ment with the value of the Feigenbaum constant
- 0=4.669 ..
attractor crisis which arises because of the collision of the
attractor with the unstable equilibrium point.' %

The case where there is a capacity in the outer circuit
had been studied in Ref. 20. We studied the dynamics of
Pierce diode with other types of passive elements in the outer
circuit. When resistance is included the transition to chaos

through the Feigenbaum scenario still persists. Increasing the

resistance or the inductance leads to decreasing the bifurca-
tion values of a; the width of @ domains, corresponding to
 regular modes, do not change significantly. At the same time,
the chaos threshold shifts in the region of smaller a.

To -study the possibility of synchronization of chaotic
motion, it was suggested that the boundary condition is
p(1,)=A, sin (for). It was found that for some values of
Ao and f, the strange attractor transforms to the three-loop
“cycle in the phase space. The synchronization domain 1s
- shown in_Fig. 4 on plane of parameters Ay and f, where one

20 In the bifurcation diagram one can see an

can see a finite synchronization threshold, confirming the
dynamic character of chaotic oscillations. Transition to chaos
through the period doubling is observed when A, becomes
lower than the threshold value, as well as when the fre-
quency f, is detuned from the synchronization frequency.
What is the physical picture of electron processes In a

Pierce diode corresponding to chaotic behaviour? Two, 0s-

cillating in space and time, condensations of ‘‘electron
fluid’’ occur in the electron flow (they are approximately at
x=0.2 and 0.8). In the chaotic oscillation regime an initial
perturbation grows yet the charge density in the lower con-
densation still does not exceed some threshold value. After
that the strong deceleration field produced by this condensa-
tion reduces the flow velocity upstream. Thus, during the
time of about d/v, the diode loses much more ‘‘electron
fluid’’ than flows into it. Further, the instability leads to the
increasing of the density perturbation and the process may
occur over and over. But because of the difference in the
initial conditions the dynamics of the instability limitation 1s
different too. During this cycle the phase trajectory does not
come back exactly to its initial position, and, hence, the pro-

cess does not repeat itself.

A virtual cathode (VC) creates a reglon of reflected flow
and we cannot use a hydrodynamical description. We solved
the problem using a PIC-simulation method. 21 Each particle
moves in accordance with the dimensionless equation

P
— =~ E(x), 1)

where x; is the ith particle coordinate, E(x;) is space charge
field at point x; . The space charge potential is obtained from
equation (17).

~ The numerical experiment helps to reconstruct the pic-
ture of the physical processes in the oscillation of the elec-
tron beam with a VC. Having appeared, a charge density
disturbance leads to decelerating of the electrons entering the
system and to increasing the charge density in the perturba-

tion domain. When ¢ becomes greater than the accelerating

voltage reflected electrons appear and the charge density in
the VC domain decreases. The latter leads to reducing the
decelerating field and to terminating the particle reflection;
the system returns to its initial state, and the process de-
scribed above repeats.

There are three intervals of a values (1.00<a/7<1.28,
1.40<a/m<1.55, 1.58<a/m<1.68), where VC oscillations
are chaotic (the spectrum noise component is rather signifi-

“cant, autocorrelation function decreases, and a strange attrac-

tor emerges in the phase space).

~ The charge density in the flow peaks twice a period. The
first higher peak is the result of the Pierce instability devel-
opment, the second one occurs due to the kinematic electron
bunching. Both bunches can easily be recognized on the

" space-time plot of ‘‘electron sheets’” motion during one 0s-
cillation period (Fig. 5). -

Trajectory concentration corresponds to electron bunch
formation. Figure 5 demonstrates the VC decay, when some
of .the electrons are reflected by it, and the others are decel-
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FIG. 5. The trajectory of charged particles during virtual cathode formation.

erated in the VC domain and move towards the output grid.
During the VC decay process the charge density and the
decelerating field of the VC decrease. So, the velocity 'of
entering electrons becomes greater than that of the electrons
which entered the system previously. Such a velocity modu-
lation leads to the formation of an electron bunch moving
through the system (the second peak in the time history of
the charge density corresponds to this electron bunch).

These two bunches are formed for arbitrary initial con-
ditions. According to Ref. 22, it is possible to speak about
the formation of two autostructures in the system under con-
sideration. The dissipation, which is essential for structure
formation, is caused by the escaping electrons, which carry
away the Kinetic energy.

It is demonstrated in Refs. 18 and 19 that strong chaotic
oscillations in the electron beam are related to the interaction
of structures. In the regular or weakly irregular regimes

—_—

—1 Yn+1

1 0.8

0.4
— 00 L o
60 04 08X, 00 04 0 |

o a) - by

FIG. 6. The maps for charge density in the chaotic regime: (a) for virtual
cathode, (b) for second structure and (c) for virtual cathode in the weakly
chaotic regime.

structure interaction is realized only through the space-
charge field, and the coupling through the flow is not signifi-
cant. Strongly irregular oscillations -appear when the charge

~ density in the second electron bunch increases so that some

electrons can be reflected by it. This reflected flow defines
the initial conditions for VC formation (in the phase space
the trajectory moves from the rarely attended attractor region
which corresponds to the reflection from the second bunch).

In Ref. 19, a simple model of the system in the form of -
two coupled maps was proposed as a result of the analysis of
the charge density time histories in each structure. The dis- -
tributed nature of the system is not considered in the model,
but it can describe instability and nonlinearity, leading to -

structure formation, as well as coupling between the struc-

tures. |

The first map (with regular dynamics) describes the re-
lationship between the values x, ., and x, of the charge
density in the VC domain at sequential time points (Fig. 6a):

ax, ,a>1—charge density increase on the VC, when x,<x,,

xn+1.

(22)

const—charge density increase limitation, at x >X,.,

where xc,. is the charge density value in the VC domain at which the limitation takes place.
The second map describes the charge density y, . to y, at sequential time points in the second structure (Fig. 6b) and can

be put as follows:

ay, ,a>1—charge density increases in the electron bunch, at y,<y.,1,

b 1nt b,—charge density decrease because of escaping

Yu+1T

of the bunch from VC domain at y,<y.,;,

(23)

1y, + c;—charge density increase limitation because of reflecting

- of some elect_ro'ns fromthe bunch aty,>vy..,,

where y_,, is the charge density in the second bunch after
modulation and y,,, is the threshold of charge density limi-
tation. |

~ Structure couplmg in the flow is considered as follows:
- the charge density value in the VC domain sets initial con-

CHAOQOS, Vol.

ditions for the second map, and the charge density in the part.
of the beam reflected from the second structure is added to-
the charge density in the VC domain after the limitation.
Decreasing of the control parameter y.,, provides coupling’
between the structures, leading to transition to chaos through:
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intermittency (this result coincides with the ‘‘particles-in-
cell’’ simulation).

Weakly chaotic oscillations at the VC are not caused by
the interaction of the structures. The instability is determined
by the connection between the charge density in the VC
domain during formation and the same after limitation. This
corresponds to the negative slope of the second part of the
first map at x,>x_, (Fig. 6¢c).

IV. A FURTHER IDEA OF NONLINEAR DYNAMICS
APPLIED TO VACUUM MICROELECTRONICS

As soon as a new active element appears in electronics,
one thinks first of all about the construction of an oscillator.
One of these new elements is a field emission microtriode.
Its nonlinear character is defined by the Fowler-Nordheim
law (see Ref. 23 for example). An oscillator based on such
an element is of great interest in the rapidly developing field
of vacuum microelectronics, in particular, because the mi-
crotriode can operate at microwave frequencies.

It 1s possible to construct such an oscillator using posi-
tive feedback in the microtriode amplifier (as in conventional
vacuum-tube oscillators). However, because of the absence
of current saturation, an infinite growth of oscillation ampli-
tude would be observed in this oscillator, which would cause
the cathode destruction at a high current density. To compen-
sate the amplitude growth it is necessary to insert a dissipa-
tive element with nonlinear characteristics into the feedback
circuit. When the amplitude is less than the threshold A, a
nonlinear dissipation does not compensate the instability de-
fined by the nonlinearity of the active element, and when the
amplitude values are greater than A, dissipation leads to the
oscillation amplitude saturation.

The analysis of this oscillator is also interesting from the
viewpoint of constructing an active nonlinear medium-
model, because it is known that the simplest medium-model
is a chain (or lattice) of coupled oscillators (see Refs. 24 and
25, for example).

There are two approaches to the investigation of this
oscillator. The first approach is the derivation of a math-
ematical model and its- numerical investigation. The second
one 1s the construction of a radiotechnical model-analog. Us-
ing the second approach, many nonlinear phenomena in ac-
tive media had been investigated experimentally on the LC
transmission lines: space competition of the waves, explo-
sive instability, generation of stationary waves at high-
frequency and low-frequency waves interaction, and so on
(see Ref. 25, for example).

The plan of our oscillator is shown in Fig. 7. The oscil-
lator consists of a field emission microtriode, a nonlinear
RLC-circuit (nonlinearity is determined by a resistor R), and
an inductive feedback. The anode current value depends on
the grid voltage according to the Fowler-Nordheim law:?%%’

I,=AF(aU+b)? exp(—B®Y(F(aU+b))),  (24)

where I, is the anode current, U is the grid voltage, A and
B are nearly constant parameters, ® is the emitter work
function, F is the field-enhancement factor, and a and b are

7 Grid

T

Cathode

Power

FIG. 7. The experimental scheme of the oscillator, based on a field emission
microtriode.

geometric constant values. We used parameter values and
designations from Refs. 26 and 27. It is possible to demon-
strate that /, depends on the grid voltage U exponentially at
U>-bla.

- Nonlinear dissipation is determined by the current-
voltage characteristic of the resistor R: '

I=1I,[exp(UIU,)—1], (25)

where [ is the resistor current, U is the resistor voltage, and
Iy and U, are resistor parameters. Let us notice that the
theoretical current-voltage characteristic of a semiconductor
diode has the form of equation (25) where I, is the theoreti-
cal reverse diode current, Uy=kT/e is the thermal potential,
k 1s the Boltzmann constant, T is the temperature in Kelvin,
and e is the electron charge. The oscillator equation with
dimensionless variables takes the form:

d*x

) (8o exp(kx))

dx
—u(2x+20+ 1)exp(—1/(x+ 0))) e + x

0, autonomous mode,
= (26)

V sin(pr1), non-autonomous mode.

The following dimensionless variables are introduced
into equation (26): x is the grid voltage, g, and k are non-
linear resistor parameters, u is the coupling coefficient, o is
the nonlinearity parameter, V and p are amplitude and fre-
quency of external force, and 7 is the time.

It 1s obvious that equation (26) differs significantly from

- the classical Van der Pol or Rayleigh equations (see Ref. 24,

for example).
The radiotechnical model (see Fig. 8) includes the

LC-circuit with nonlinear dissipation (diodes D) and the
-nonlinear amplifier 2 having the exponential characteristic.

The feedback is closed through coupling transformer consist-
ing of inductors L,,L,. The linear amplifier 1 serves to apply
the external harmonic drive. The nonlinearity parameter is
tuned by varying the gain of the exponential amplifier and
dissipation is varied by changing the number of diodes in the
circuit. The feedback coefficient is fixed.

CHAOQS, Vol. 6, No. 3, 1996
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Amplifier 1
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FIG. 8. The radiotechnical model of the oscillator.

In experiments with the model-analog, the types of be-
haviour were recognized using time series, phase portraits

and power spectra. The time series were observed on the

oscillograph screen and recorded in a computer. To obtain
the phase portrait, we apply the voltage time series from the
nonlinear amplifier output to the first oscillograph input. The
same signal after passing through the RC-filter is apphed to
the second input of the oscillograph.

Experimental investigation of the autonomous oscillator
demonstrated that the soft and hard self-excitation of oscil-
lations is possible (limit cycle is obtained). With nonlinearity
parameter growth, the size of the limit cycle increases and its
shape deforms.

In the nonautonomous mode we investigated the radio-
technical model-analog by varying the amplitude and fre-
quency of the external harmonic source for different nonlin-
earity parameter values.

We observed the following dynamlcs for low values of
the nonlinearity parameter the oscillator demonstrates either
quasiperiodic oscillations with two incommensurable fre-
quencies or resonance on torus (synchronization tongues)
when the amplitude and the frequency of the external force
are varied. When the nonlinearity parameter increases, the
synchronization tongues overlap. The behaviour in overlap-
ping regions corresponds to the transition to chaos by inter-
mittency. Inside the synchronization tongues a transition to
chaos through the period doubling is observed.

Topography of the parameter plane for the experimental
system, when the nonlinearity parameter is sufficiently large,
is shown in Fig. 9. The horizontal axis corresponds to exter-
nal force frequency, normalized to the self-oscillation fre-

% 7
5

0.0 0.25 0. 0. 75 1 0 ~ FIF,

FIG. 9. Topography of the parameter plane of amplitude-frequency external

force for experimental system.
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FIG. 10. The discrete time series of processes in radiotechnical model and -
phase portrait projections: (a) quasiperiodical regime, (b) resonance cycle,
(c) doubled resonance cycle, (d) weakly chaotic regime, () chaos, (f) inter- -
mittency regime.

quency of radiotechnical model-analog at a fixed nonlinear-
ity parameter. The vertical axis corresponds to the amplitude
of external force in millivolts. Quasiperiodicity regions are
shaded. The boundaries of regions of the resonant cycles are
shown by continuous lines. The fractional numbers corre-
spond to the resonance numbers. The continuous lines 1nside
the synchronization tongues bound a region where perod
doubling bifurcations and transition to chaos take place.
Chaos regions are painted in black.

Figure 10 shows the discrete time series of processes in
our radiotechnical model [ U;= U(¢;) dependence] and phase
portrait projections [U,;+,=f(U;) dependence]. Here U, are
the sampled values of the voltage from the output of the

“nonlinear amplifier, recorded into the computer using an

analog-digital converter.

Figure 10a illustrates a quasiperiodic motion. This mode
corresponds to point 1 in Fig. 9. The time series show that
the analyzed process has two incommensurable frequencies
which are the self-oscillation frequency of the radiotechnical
model-analog and the modulation frequency.

Figures 10b,c correspond to the appearance of a resonant

.cycle on the torus with the rotation number 1/2 and its period

doubling (points 2,3 in Fig. 9) The period of the external

drive 1s denoted by T
Only one period doubling bifurcation is usually observed

in the experiment. After this bifurcation, transition to chaos
(Fig. 10d) and merging of the attractor bands take place (Fig.
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10e). The time series in Fig. 10d is chaotic (point 4 in Fig.
9). This fact manifests itself in the ‘‘thickening’’ of the phase
portrait projection, but the rough structure of the resonant
cycle is still preserved. When the merging of the attractor
bands takes place, this structure i1s destroyed. The transition
to chaos after only one period doubling bifurcation of a reso-
nant cycle occurs possibly, because of the strong dependence
of the system on internal noise. The latter 1s associated with
the exponential form of the current-voltage characteristic of
the nonlinear element.

Figure 10f demonstrates the time series and phase por-
trait projections which could be considered as transition to
chaos through intermittency (point 5 in Fig. 9) so the time
series gives nonperiodic bursts. The phase portrait projection
has two distinct parts: an outer part corresponding the time
series bursts, and an inner part which is close to the structure
of the attractor corresponding to the period doubling route to
chaos. The numerical simulation results are in qualitative
agreement with the experimental ones.

V. PHENOMENOLOGICAL ELECTRON TURBULENCE
PATTERN MODEL (EMISSION IN CONNECTED
SMALL VOLUME CHAINS CONTAINING ELECTRON
OSCILLATORS)

Phenomenological models, created first of all to explain
turbulence phenomenon, occupy an important part in nonlin-
ear dynamics. :In particular, a turbulence model arising in
hydrodynamic flow by the formation of interacting coherent
structures should be mentioned.”® In microwave electronics
the structure formation in electron flows had been observed
experimentally by the authors of Ref. 29. The appearance of
the chaotic oscillations had been found experimentally in a
tubular annular electron flow drifting in a longitudinal con-
stant magnetic field,’® and it had been suggested that the
complex dynamics of the flow had been caused by the elec-
tron structures interaction. In our works’!”* we considered
the following phenomenological model of electron flow be-
ginning with the stage when the structures have sprung up.

Let us admit that there is a sequence of electron struc-
tures affecting each other. Suppose that the structures are
small volumes of the active medium consisting of electron
oscillators. It can be assumed that superradiance takes place
in every electron ensemble (see Refs. 33 and 34, for ex-
ample). This superradiance arises as a result of oscillator
interaction via the field of their radiation and phase focusing.
Processes in the flow of interacting electron ensembles are
described by the set of dimensionless differential equations!

CitiO|cw|*—ey=—C+ Kpci_ 1+ Kpciyy,  (27)
where k="1,... ,M; i=1,23,...; M 1is electron number in
each ensemble; c;; is the dimensionless complex variable
corresponding to the kth electron field in the ith structure;
sum ¢;=(1/M) E _Cy; defines the dipole momentum of the

ith electron system the @ parameter is proportional to the
ratio of the coefficient of nonisochronism to the electron dis-

FIG. 11. Power spectra for time series, given by equation (27)

sipation factor>; K and K are the coefficients of mutual
influence of the structures; and the dot denotes differentia-
tion on the dimensionless time. '

We have solved the equation (27) numerically under the
assumption that at the initial time a weak perturbation of
electron phases 6 had been introduced, that is, at the initial
time: | |

(Zﬂ'k 27Tk
—jl =+ 8 cos ——

M M (28)

Cii=exp

Electron structures motion fits the ‘‘transfer of information’’
from (i—1)th to ith section of the flow In a time
At=AT/N, where N is the number of structures simulta-
neously present in the flow, and AT is the time of radiation
of a single electron volume which approximately corre-
sponds to the structures ‘‘lifetime’’ in the interaction space.

Figure 11 demonstrate a rather noticeable complication

~ of the spatio-temporal dynamics of the flow of coherent elec-

tron structures: the temporal regularity breaks with the in-
creasing of the discrete spatial coordinate i. Let us notice that
there is a large number of parameters which strongly influ-
ence the behaviour of the system and the field distribution
(see Ref. 31).

Let us complicate the model. Suppose now that the
structures pass through the chain of identical uncoupled cavi-
ties. Let the electron structures stay in each of them for a
time 7 which i1s sufficient for the electrons to interact with
the cavity field. This model may be described by the follow-
ing system of equations’:

int J O cknl? = 1)Cm=icri ritiben=jc,,  (29)

where c,; is dimensionless complex variable, corresponding
to the ith cavity field; c,, corresponds to the field of the
kth electron in the nth structure; ¢, = (1/M) Z;_,c;, is the

averaged field of the nth structure; 6 1s a ratio of the noniso-
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FIG. 12. Spatio-temporal distribution of the radiation field for the flow

interacting with two cavities for different values of frequency &'.

chronism coefficient to the amplification parameterz'z;, and
E=¢' —j&" is the dimensionless complex resonant frequency
of the cavity. |

For the nth electron structure entering the flow the initial
conditions are

cu(O)=exp| =i 7| 30
The system of equations (29) is solved during the time T
when the nth structure passes through the ith cavity. After

the time T the nth electron structure enters the (i + 1)th reso-
nator and since that time the variables ¢, should be used In

equations (29). At the same time the (n— 1)th structure en-
ters the ith resonator instead of the nth one, and so on.

~ First we consider the flow passing through one cavity
situated at its beginning (i=2) and the other near the end

(i=10). The results corresponding to this case are shown in

Fig. 12. Depending on the value of ¢', the process looks
either more ordered (£’ =0.1) or more chaotic (&'=0.2).
The ordering occurs when &' is close to the fundamental
frequency of the flow in the absense of cavities which is
about 0.14 (Fig. 11). At (¢ =0.2) there is no resonant inter-
action and the influence of the cavities leads only to phase
defocusing. Thus we have a more complicated distribution of
|£1% in time and space.
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| FIG 13. Phase portraits for the flow interacting with the chain of ten cavi-

ties.

__ Now let us consider a chain consisting of ten cavities.
Phase portraits (Fig. 13) reconstructed from realizations for
the fields of the first, second, third and fifth cavity show the

decay of periodic oscillations with the increasing of i, which

corresponds now to the cavity number. Calculations show

that initially optimal phase distribution of oscillators breaks
when i increases. Such a mechanism destroys the periodical
nature of energy interchange between electrons and cavity
fields. This is the cause of rather complicated irregular be-
haviour of the function |c,|*(i,?). |

VI. SUMMARY

Let us point out once again, that though this paper 1
devoted to peculiarities of nonlinear interaction of electron
Aows with microwave electromagnetic oscillations and
waves, it was an attempt to. show the way of application of
nonlinear dynamics ideas and methods in microwave elec-
tronics. So, nonlinear dynamics specialists should pay atten-
tion to an interesting field of application, namely microwave
electronics. As far as electronic specialists are concerned, the
following verse by Alexander Kushner holds true for them:

The aspect takes into account very few

But at a closer look it is extremely new.
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