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Abstract— A method is described for constructing directly from a time series a one-dimensional map
which simulates the dynamics of dissipative nonlinear oscillator under pulse excitation. On the base
of physical experiment, a procedure of determining the model parameters is proposed. The influence
of selecting a dynamical variable on the model’s dimension is demonstrated.

1. INTRODUCTION

Construction of dynamical model equations from a fluctuating time series is one of the
most important problems in nonlinear science. In -general case, this problem is very
complicated. It is closely studied [1-3] but is not likely to achieve termination. However, in
some cases using additional information and restricting the class of considered systems, one
is able to facilitate substantially the model’s construction, as well as to simplify the
procedure of its parameters determination. For example, the effective dimension of the
system is reduced if its dissipation is high enough within a characteristic time. The decrease
of the model dimension can be sometimes achieved by successful selection of the dynamical
variables and by passing from differential equations to maps. The low-dimensional model
maps have already demonstrated their efficiency when describing transition to chaos.
Particularly, the use of one-dimensional maps give an impressive advance towards revealing
several types of universal behavior which are common for systems of different nature [4].

In the paper, the one-dimensional map model of a driven dissipative oscillator is
constructed with the nonlinear pendulums, mechanical and electrical, (‘modernized’ clock
pendulum and LR-diode circuit shown in Fig. 1). A great damping is introduced into the
systems at the moment of periodic pulse excitation. The one-dimensional multimodal map
(2) is obtained by suitably selecting the variable. The map involves four parameters which
have a pronounced physical sense. The procedure of determining the parameters from
experimental data is described. The arrangements of the model parameter space and of the
experimental system (LR-diode circuit) are compared. The influence: of selecting the
dynamical variable on the model map’s form is demonstrated when processing the time
series.

2. SIMULATION OBJECTS

Consider a dissipative oscillator with the exponentially damping natural oscillations
having the form:

x(t) = xge™% cos (}——(l—zfﬁT)t), @
0 0

where x; is an initial deviation, T} is the oscillation period at x,— 0, and the constants
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and f define damping and nonlinearity, respectively. An essential feature of the systems
simulated is the dependence of oscillation period on xo.

Such a situation may be assumed for the mechanical clock’s pendulum (Fig. 1a). Here,
the period of the pendulum natural oscillations is varied proportionally to the initial
deviation from the equilibrium point by means of a clamp C which controls the length of
operating spring section (as it is made to speed up or to slow down the clock). If the
pendulum is periodically pulse excited at ¢ = nT moments (n is an integer and T is the
driving period) in such a way that it instantly stops, swings by an angle A with respect to
the position, where it has been at the excitation moment, and is left free again, then the
forced oscillations x(¢) should have the form indicated in Fig. 1b. The technical realization

(a)

®) Txw

<
<

-3
-3
b

Fig. 1.(a) and (b).
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Fig. 1. (a) Mechanical pendulum with the operating restoring spring length varying by means of the clamp C. x is
the angle of rotation about the equilibrium point; (b) Time dependences of the pendulum oscillations. The
pendulum is excited by pulses at the moments marked by points on the axis. High damping is introduced at these
moments. The rate of x(¢) variation is the same after the pulse excitation is terminated; (c) Electrical pendulum
(LR-diode circuit) and the source of external emf. x is current in the circuit, V is the pulse amplitude. In a circle,
a diode model is indicated consisting of nonlinear capacitance in parallel with nonlinear conductance. At forward
currents, the equivalent active conductance of the diode G, is high resulting in increased losses in the circuit;
(d), (¢) Time dependences of current oscillations in the LR-diode circuit under periodical excitation by short
forward current pulses at various relations between the driving period T and the period of small natural
oscillations TY.
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versions for the above example, that introduces great damping, are rather artificial for the
clock pendulum.* As for the electrical pendulum, a diode resonator system (Fig. 1c),
similar situation takes place when exciting current pulses have a forward polarity and
minority carriers inject into the diode base. In this case, conductance in the equivalent
diode circuit (see Fig. 1c) is high and thus, energy losses are sharply increased. A typical
view of current oscillations in the considered driven circuit is shown in Fig. 1d and e for
different values of driving period T. The initial oscillation phases are the same after
termination of each pulse, just as in the mechanical example.

3. MODEL EQUATION AND ITS PROPERTIES

To construct a model return map, select the points spaced by the interval T on the
fluctuating time series caused by external force (Fig. 1b), i.e., perform strobing, and
establish a functional coupling between successive x,, values. The form of the return map
depends on the strobing moment chosen. We will define this moment by the time interval 7
starting after the exciting pulse is over (Fig. 1b). Note that 7 variation means some change
of variables. In the most simple case, as T tends to zero, (1) gives the following
one-dimensional multiparameter map:

Xpe1 = A + x,e7%N cos (————277——), ()
N( + Bx,)

where A is the driving amplitude, N = T,/T is the normalized driving frequency, a = 6T,

is the nonlinear damping, and B is the nonlinearity. Expression (2) can be renormalized to

the three-parameter form:

1
Zae1 = 1+ Az co8| ———|, 3
a1 s () ®
where z, = x,/A, A; =exp(—a/N), Ay =N/2m, A;=BA. In (3) all the parameters and
the variable are dimensionless but the physical sense of the parameters is less clear. The
previously reported results of investigation of the driven oscillator’s dynamics, particularly,
the results obtained for the nonlinear circuit [5—8] are traditionally represented for the
variables and parameters close to the used in (2). With regard to the above mentioned,
consider further just this model, assuming a conveniently selected units for x, and B in
Section 5 under comparison with the experiment.

The plot of the map (2) has a shape of a sinusoid, modulated in amplitude and
frequency. It is bounded by two crossed straight lines sloping towards the horizontal axis by
the angle « = *arctg (exp(—a/N)). The frequency is varying along the x, axis in such a
way that it tends to infinity at the point x, = —1/B and decreases, tending to zero, while
moving from this point to the left and to the right (Fig. 2). The extrema of function f(x,)
are placed at the points x, = (2/mNB) — (1/8), where m is a nonzero integer. The extrema
that are most distant along the x, axis correspond to m = %1, i.e. they are at the points
x,=(+2 — N)/BN. Parameter N defines the rate of frequency variation and B relates to
the scale in the horizontal. The B increase results in the curve compression along the x,
axis. The vertical shift of the function plot is defined by the A value. In the region where

*This may be a flywheel with the mass far exceeding the mass of a pendulum which rotates with the rate of
angular motion 27/T about the axis being perpendicular to that of the pendulum. The situation described is
realized under nonelastic interaction (e.g., if the flywheel having a convex friction sector with the angle A catches
on the pendulum). The spring length is varied by a special lever. In the simplest case, one may stop and turn the
pendulum with the hand.
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Fig. 2. The plot of the function (2) for the parameter values A =2.2, a=0.1, N =0.4, $=02. In the enlarged
fragment the equilibrium point C and the points visited when moving on another attractor, the chaotic one
(section C,C,), are marked.

x, > 0, the plot of the map (2) is similar in shape to one obtained in [9] for a system with a
triple instability.

Equation (2) can have periodic or chaotic solutions. At some parameter values, several
solutions may exist, i.e., multistability can be observed when the system behavior is defined
by the initial conditions. For example, Fig. 2 depicts a situation when there exist two
attractors in phase space, the chaotic one and the equilibrium point.
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4. ARRANGEMENT OF THE PARAMETER SPACE

In Figs 3 and 4, the parameter space structure of the system (2) is cited. The
arrangement of the parameter space is easier to represent if one discerns some character-
istic details. So, solid lines in Fig. 3a are the lines in the (N, A) plane where the
multipliers of the driving period cycles (period-1 cycles) take the value of +1. These lines
bound the regions which are represented at the sheets 0, I, II, III, ..., where various
period-1 cycles exist and evolve to chaos. The region boundaries are the lines of folds
converging at the cusp point at low and very high A values. If one constructs on the plane
the lines of the highest multiplier values at A — 0, they will connect the cusp point with the

(@ A, a=02

Fig. 3. The structure of the two-dimensional projections (N, A) and (N, a) of the model’s (2) parameter space at

B =0.2. The regions of various period-1 cycles are represented in the sheets 0, I, IL, .. .. The period doubling

bifurcation lines are presented in the sheets I and II by dashed lines. The resonance lines are shown by dotted

lines. With expanding the (N, A) plane (Fig. 3(a)) upwards, as A is increased, the lines are closed in pairs and

the configurations of the upper regions are similar to the lower part of the figure. Below the value a =0.1
(Fig. 3b), the parameter space structure is represented arbitrarily for visualization.
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Fig. 4. Various oscillation regions of the model (2) in the driving parameter plane (N, A) for the sheet I as a
function of the damping a. With numerals +1 the lines of multipliers of limit cycles which exist on the sheet I are
denoted. Notations 1, 2, . .. correspond to the periodic oscillation regions with the period being a multiple of the
driving period T. The oscillation regions with periods exceeding 4 (except d) and chaotic regions are not
presented. The fragment marked in b is enlarged in d. Scales: (@), (b) Npin=0.15, Npgx =0.55, Agin =0,
Amax = 12; (€) Npip = 0.15, Npox = 0.6, Apin =0, Amax = 8; (d) Ny = 0.35, Ninax =0.48, Apyin = 1, Apax = 3.5.

axis N at the point N =1/k, k=1, 2, 3, .... This corresponds to a main resonance and
the resonance on subharmonics. At parameters corresponding to the sheets overlap, the
multistability takes place. By moving over the plane above and below the multistability
regions, one can pass from one cycle to another softly, with no hysteresis. The hysteresis
occurs when crossing the above regions.

Dashed lines in Fig. 3a are the lines of multiplier —1 which correspond to period
doubling bifurcation of period-1 cycles. These bifurcation lines bound the regions of
complicated oscillations, and just that with a period exceeding the driving period and
chaotic ones. For simplicity, they are presented for the sheets I and II only. Similar
structure is obtained for the (N, a) plane in Fig. 3b. Together with Fig. 3a, it allows one to
represent the arrangement of the considered regions in the space of three parameters
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(N, a, A). It is seen from Fig. 3b that the complicated oscillation regions based on
different period-1 cycles are separated in the space under high dissipation, but with
decreasing damping a they intersect in the multistability regions. Near the cusp points a
configuration is realized in the parameter space known as the crossroad area (Fig. 3a, b)
[10].

Taking into account that different complicated oscillation regions are arranged identi-
cally, consider in more detail only the sheet I at successively decreasing a values (Fig. 4). If
only period-2 cycle exists under high dissipation within the discussed intervals of para-
meters A and N in the complicated oscillation region (Fig. 4a), then, with decreased
damping, two nonoverlapping period-4 cycles are revealed inside the region (Fig. 4b). At
smaller dissipation values the multistability appears inside the region I and the crossroad
area is again realized in the section (Fig. 4c). It is interesting to note that, as damping
decreases, the lower “beaks” of the period-2 regions tend to N = 2/(2k + 1) where k =1,
2, 3, .... Thus, the chosen complicated oscillation regions turn out to be filled by typical
structures which are similar to that presented in Fig. 3. As a result, at arbitrary motion
over the parameter space a transition to chaos can be observed via a sequence of period
doubling bifurcations or via different hard transitions that one is able to imagine while
looking at Fig. 5. In the chaotic regions there exist wide windows of period-3 cycles which
also evolve to chaos via the sequence of period doubling bifurcations and maintain the
above features.

The structure-of the parameter plane (N, f) is similar to that considered for the (N, A)
plane. Figure 6 demonstrates the influence of parameter 8 on the shape of the complicated
oscillation regions. As f increases with the other parameters fixed, the complicated
oscillation regions in the (N, A) plane deviate stronger from the vertical. As § and A vary
such that BA = const, the form of oscillation is not changed.

5. DETERMINATION OF THE MODEL’S PARAMETERS FROM EXPERIMENT. COMPARISON
OF EXPERIMENTAL AND NUMERICAL RESULTS -

Using the maps (2) and (3) as a model of the diode circuit (Fig. 1(c)), we determined the
parameter values from the time dependences of current in the circuit driven by short
(compared to T, and T) pulses from the current source. An oscillogram shown in
Fig. 1(d), corresponds to the case when T is insignificantly higher than T,. As T increases
the natural oscillation period shows dependence on the amplitude (the pendulum’s
nonisochronism (Fig. 1(e)).

The parameters of the model can be determined by the current oscillogram (Fig. 1(e)) in
the following way:

e N = T,/T, where T, is the period of small amplitude oscillations, and T is the driving
period;

® g is determined from the exponential approximation of an envelope denoted in the
figure by a dashed line;

® A is determined by the current jump in the circuit at the moment of pulse excitation,;

e fis determined by using the ratio:

g 270 @)
tiXe — L2Xo

where t; and f, are the moments of time which correspond to a certain fixed oscillation
phase value, for example, to the function x(z) extremum as it is shown in Fig. le. These
moments are taken for different initial amplitudes xy; and x(, measured by the same
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Fig. 5. The structure of the model (2) parameter space obtained by one-directionally moving in the direction

shown by arrows near the axes. In the enlarged fragment of a only the structure of the sheet I is shown. Notations

1, 2,3, ... correspond to the periodic oscillation regions with periods being a multiple of the driving period T.
The chaotic oscillation regions are painted in black color and labeled as ‘chaos’.

units as A. The § value thus obtained for the nonisochronous pendulum depends on the
magnitudes of t,,/T. It is expedient to choose the ; and ¢, values such that the number
of oscillations on these time intervals was close to 1/N in the model equation.

There are other methods to experimentally determine the parameters. So, N can be
determined as the driving frequency-to-linear resonant frequency ratio. One is able to find
a by measuring the circuit’s Q factor at a low driving amplitude with respect to the known
relationship between damping decrement and Q factor: @ = Q/m. The nonlinearity para-
meter can be found with the help of the following relation:

_ 1 27Tt1

B=— x{ — — e - 1},
Xo To[arccos (x,/xo X exp (at,/Ty)) + 2nk]

&)

where k is an integer, the number of oscillations x(t) for the time ¢, (Fig. le, k = 2).
The 8 dimension and absolute value is defined by choosing the units of measurement for
A and x,. But the choosing does not affect the qualitative form of the parameter space
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(2) (b)

N

Fig. 6. Deformation of the sheet I structure of the (N, A) plane with varying the parameter B, a=02,
Oscillation regions with period exceeding 2 and chaotic ones are not presented. Scales: Npin =0.1, Npax = 0.6,
Amin =0, Ay =12,

structure. For example, with the 5-fold scale decrease in A, the lines in Fig. 6(b) will
coincide with the lines in Fig. 6(a) where the § value is 5 times smaller.

For a particular LR-diode circuit, we have experimentally constructed the driving
parameter plane where the regions of existence and evolution of various driving period
cycles are illustrated (Fig. 7a). The scale in A and x was established to agree with the scale
in Fig. 3a which was constructed under numerical investigation of (2). The bifurcation line
configurations in both the figures are similar. Then, the bifurcation lines were experiment-
ally constructed for the sheet I, Fig. 7b. According to the approach proposed, we
determined the f value at the number of oscillations equal to 2 within the observation
interval #,. It corresponds best of all to N close to 1/2, and it turned out to be about 0.2.
Other parameters were found too. In the end, the data of physical experiment and that of
numerical model investigation were compared at close parameters. Comparing the arrange-
ment of the (N, A) planes at fixed a and S values, (see Fig. 7 and Figs 3(a), 5(a)) one
may conclude about a good enough agreement between the model and the object behaviors
in the region N <1. The shapes and location of the same period cycles are close. The
positions of some hard transition lines coincide, as well as some other details agree.

However, the model does not represent the features of the experimental system at
N > 1. In the real system, at 1 < N <2, a sequence of period adding cycles exist. These
cycles evolve to chaos similarly to the harmonic driving case [5, 6, 7, 8, 11]. As for the
model, the complicated oscillation regions are actually absent within this interval of N
values. The region marked in Figs 3, 4 and 5 by 0 is the last one and its configuration
differs sharply from its experimental shape.

6. DEPENDENCE OF THE MODEL PROPERTIES ON CHOOSING A DYNAMICAL VARIABLE

Consider the influence of 7 choosing on the form and properties of the model map. For
an arbitrary 7, the return map can be written using eq. (1) only in the nonexplicit form:

Y1 = fns Xn) = f(Vn> 8(¥n)); ©)



Constructing a 1D map directly from a time series

(a) o TRL |

0
0.25 0.6
N

Fig.7. The structure of the driving parameter plane of the LR-diode circuit. The regions of various period-1 cycles

(a) and arrangement of these regions with indicated oscillation periods (b). Hatched are the regions of chaotic
oscillations. The hard transition lines are shown by dashed lines.

where

~ét ( 27 )
Yn X, € cos| ——7T
TO(]- + ﬁxn)

27 ) Q)
—_—1}.
To(1 + Bxpns1)

Numerical experiment enables one to analyze the map shape for various fixed 7 values
(see fragments in Fig. 8) and to compare it with that shown in Fig. 2. In general case, the
map is not one-to-one, i.e., several x,.; values correspond to one x, value. Discrepancy
between the values of x,,; decreases with the increase of the damping &. It is remarkable
that, in spite of substantial model map differences and attractor differences due to selection
of the dynamical variable, a complete agreement is observed between the structure of the
map (6) parameter space and the structure shown in Figs 3-5 for the map (2). That is, that
the system’s dynamics is unambiguously defined by the observed time series. The variable
selection can depend on convenience and goal of simulation.

- -&
Yne1 = Xp41© 1C°S(
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Fig. 8. The plot of y,.1 vs y, obtained with respect to equation (7) at the point movement on the chaotic
attractor, 7= 1.8, 6=0.01, =02, T,=1,T=25, A=2.

7. CONCLUSION

Thus, we have proposed and investigated the.one-dimensional multiparameter model of
the dissipative nonlinear oscillator with the parameters defined from the physical experi-
ment’s data. The model describes the behavior of the real system, the LR-diode circuit
driven by current pulses at driving frequencies below the linear resonant frequency. It
makes it possible to discern the feasible oscillations including the chaotic ones and to
predict the arrangement of the system’s parameter space structure without writing and
solving differential equations. It is of interest that in the parameter region N <1, the
model represents the parameter space structure for the circuit driven by harmonic force
[12-14]. It demonstrates also several features and the parameter space configurations
typical for oscillators with nonsymmetric potential [15]. All the above is an evidence for the
approach proposed to be promising for simulating highly dissipative systems.
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