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Systems with deleyed feedbac are being studied
extensively in radiophysics and electronics, nonlinear optics,
and certain other fields '’. One of the current problems in the
dynamics of systems of this class is that of determining the
specific features of their behavior near the threshold for the
onset of chaos. Systems with a delay should be thought of as
distributed systems in which the role of spatial structures is
played by the configurations of the signal which are
presented during the delay interval. Despite several
experimental and numerical studies on certain aspects of the
transition to chaos in systems with delay, the problem
remains largely unresolved. An interesting direction in this
research is an analysis oriented toward the concepts of
universality and similarity (scaling), which was mentioned in
Ref. 8 in connection with systems with delay. For an
experimental test of the conclusions which follow from the
results of that study, a special physical model consisting of a
system with a digital delay line has been developed. This
delay line can introduce a delay which can be varied over a
wide range. We will compare the experimental results with
the results of a numerical solution of the differential
equations which describe the system and also with the
conclusions which follow from the universality and scaling
relations found In Ref 8.

The system studied in the present experiments consists
of a chain of the following elements, which has been closed
into a ring:

1. A nonlinear element, which has an essentially
instantaneous response over the time scale of interest and
which has a nonlinear characteristic with a quadratic
extremum. This element was fabricated as a transistor
circuit. The output voltage can be approximated very
accurately as a function of the input voltage by the
expression

F(U)=h—1In|e?V 118 4 ¢ 450030 4 0,00115) .

The quantity A can be adjusted smoothly and will play the
role of the basic parameter controlling the transition of the
system to chaos.

2. A low-frequency filter, which consists of a chain of
N = 6 identical RC circuits which are connected in series
through buffer amplifiers (which have a gain unity). The

pulsed  response  function of this  filter is
N-1 -N

t" 7 (RC -

#-e d RC, and its Fourier transform (the
(N —1)!

transfer function) is § =(1+i@RC)™. Approximating the
logarithm in the transfer function by the first terms of a
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Taylor Series, we find S =~ e

FIG.1. Oscilloscope traces of the oscillations in the case in
which the sweep time of the oscilloscope is approximately
3T. T/t = 23 (a-e), T/t = 34 ()

Reproduced from: Sov. Tech. Phys. Lett. 14(6) June 1988, 408-410



-1.5
H
)
A\ /
—2.5- =+
+ \—-.____._F . 7

_305 T T T T
5 10 15 20 25

0T/

FIG.2. Partitioning of the (A, 7/t) parameter plane into
characteristic regimes. The solid lines show experimental
values of A. 1 — values found through the use of universal
function and constants of Ref.[8]; 2 — results of numerical
studies of system of differential equations (2). The numerals
specify the oscillation period, in units of 7.

The quantity AT=NRC characterizes the delay introduced by
the filter, while T = \/ NRC/2 characterizes the duration of

the response to a pulsed perturbation, i.e., the inertial
properties of the chain. The response function of the filter is
approximately symmetric with respect to the point t = A7, in
accordance with the assumption in Ref. 8.

3. The delay line. The signal which is received at the
input is transformed to digital form and stored in on-line
memory, which introduces the delay. At the output, the signal
is transformed back into analog form. By controlling the
memory, one can vary the delay time Tj, over three orders of
magnitude while keeping the other characteristics of the
circuit constant (the input and output impedance R, the
transfer ratio, etc.).

The overall dynamics of this ring chain is described by
the following system of differential equations:

dUi {f(UN(t_To)a i=1

RC—+U. = (2)
dt Uu.,i=2,.,N,
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where U is the voltage at the output of the i-th filter element.

We fix the normalized delay 7/t , and we examine the
changes in the nature of the dynamic regimes as the control
parameter A is increased. At a certain instant, self-oscillations
appear in the system, with a period which is highly accurately
equal to 27, where T = T, + AT is the time required for the
signal to pass through the feedback loop, with the delay
introduced by the delay line and the filter taken into account.
If the quantity 7/t is not too small, the signal rapidly acquires,
as the parameter A increased, a characteristic shape, which is
approximately rectangular (Fig. 1a). The typical width of the
switching fronts (drops) is determined by the response time T,
while the length of the gently sloping regions is determined
by the delay time 7. With a further increase in A, we observe a
sequence of period doublings and then a transition to chaos
(b-d In Fig. 1). In the numerical calculations, one can detect a
large number of doubling bifurcations within the
framework of Eq. (2), while in the experiments only two
can be seen reliably, because of the rather high level of
digitization noise. Nevertheless, in the experiments one
can clearly follow the features of the evolution of the struc-
tures on the route to chaos which are characteristic of a dis-

tributed system and was considered in Refs. 8 and 9. Near
the drops at the edges of the gently sloping regions, the
signal has some irregularities or "tails," which penetrate
somewhat into the gently sloping regions. It can be seen
from Fig. 1 that the tails which arise in the course of one of
the period doublings are longer than those which existed
earlier. This observation agrees with the scaling laws which
were established in Refs. 8 and 9. The chaos arises initially
as irregular oscillations in the signal level in the middle of
the gently sloping regions. On an oscilloscope trace, this
event corresponds to a sequential smearing of the elements
of the structure which arose previously, in the order
opposite that in which they appeared in the sub-critical
region. With increasing A the region occupied by the chaos
and also the depth of the irregular oscillations increase.

Figure 2 is a map of the dynamic regimes in the plane
of the control parameter X and the normalized delay time
T/z. Bifurcation lines found experimentally are shown here,
along with those found numerically in a solution of Egs. (2)
and those found from the relations of Rets. 8 and 9 through
the use of the universal function found there. That universal
function determines corrections to the Feigenbaum
bifurcation points for systems with a delay. At very large
values of 77/t, the bifurcation values of A go onto horizontal
asymptotes, which correspond to bifurcation points of the
mapping f{U). With decreasing 7/t, the bifurcation lines
bend upward; up to values 7/1~10, we find a good
agreement with the data based on the universality and
scaling relations,

When we return from the region of developed chaos
back along the parameter A, we frequently observe the
appearance of regular regimes (oscillation modes),
distinguished by a large number of the variations of the
level over the delay interval (e and fin Fig. 1). At moderate
values of 7/t (on the order of 15-20), the higher-order
modes have a fundamental period which is smaller than the
time required to traverse feedback loop by a factor of 3,
5,... As A is increased, these modes demonstrate a
transition to chaos similar to that described above. The
diagram remains the same in the A, 7/t plane, but 7 must
now be understood as half the period of the given
oscillation mode. If 7/t is large, one can observe a
tremendous variety of regimes on the return from the region
of chaos to the region of regular dynamics. These regimes
are characterized by differing numbers of samples and
gently sloping regions of different lengths over the delay
interval (Fig. 11).

The system which we have studied here is not
afflicted by the factors which complicate the analysis and
interpretation of processes in conventional systems with
delay (reflection of signals within circuit elements, etc.). On
the other hand, it differs from the theoretical (numerical)
models in that it allows one to bring the imposing arsenal of
experimental research facilities to bear on the problem.
Accordingly, despite the obvious disadvantage of a high
level of digitization noise, we believe that this systern is of
definite interest.
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