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Abstract

Problems, arising during global reconstruction of dynamical models from time series, and

prospects of the further development of empiric modeling methods are discussed. We

present a specialized approach aimed at modeling the systems being under arbitrary

regular driving. Original “technical tricks” are also described: a technique for dynamical

variables selection and a model structure optimization routine. All the approaches are

illustrated with examples of reconstructing etalon equations and modeling real-world

(radiophysical) objects.

1. Introduction

1.1. To obtain a mathematical model from “the first principles” in practice is often

impossible. In more typical situations, numerous vague phenomena of different physical

nature affect the process under investigation or the first principles for the field of interest,

similar to Newton’s laws in mechanics, are not yet discovered. In such a case, experimental

data become the main source of information about an investigated system (an object of

modeling) and the problem of an empiric model construction arises. Since observations of

real-world processes are presented, as a rule, in the form of time series – sequences of

observable values measured at discrete time instants, the problem is called “modeling from

time series”. It is actual in physics, meteorology, seismography, medicine and physiology,

etc.
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Modeling of complicated (irregular) behavior is addressed here, as well as in other

contributions to this book. Earlier, this problem was treated from a statistical point of view [1]

since complicated behavior was associated only with enormous numbers of degrees of

freedom. In 1960-70s, it became clear that complicated behavior can be exhibited even by

simple (low-dimensional) nonlinear dynamical systems [2,3]. It gave rise to appearance of

methods for constructing empiric deterministic low-dimensional models in the form of

difference equations (maps) [4-6] and ordinary differential equations (ODEs) [4,7]
1
.

1.2. In general, the problem of empiric modeling can be formulated as follows.

There is a system of our interest (we will call it just “an object”).

One picks out some quantities k,...,1 , which characterize the processes occurring

in the system and which can be measured experimentally (they are called

observables).

An obtained time series of these quantities (i.e. the finite sequence  
1

( )
N

i i
t ,

where )(),...,(),()( 21 ikiii tttt , titi , t  is a sampling interval) is a

main source of quantitative information about the system under investigation.

It is known that the object possesses a set of properties MPP ,...,1  that are relevant

for our consideration. E.g. power spectrum of its time realizations exhibits a certain

structure, their correlation dimension estimates take on certain typical values, its

dynamics undergoes certain bifurcations under certain conditions.

It is necessary to construct a dynamical model capable of reproducing as many of the

properties MPP ,...,1  as possible using the time series. According to quite a general

approach, a model takes the form
2

djttht

tdtd

jjj ...,,1),())(x()(

),c),(x(Fx
 (1)

where 1( ,..., ) D

Dx x Rx  is a state vector of the model, F is a smooth vector field,

PRc  is a parameter vector, )(tj  are random “measurement errors”, jh  are smooth

functions defining relations between dynamical variables and observables (they are often

called “measurement functions”)
3
. One should find the values of parameters c, for which a

1
 Methods for construction of infinite-dimensional nonlinear models (delay differential equations [8,9] and

partial differential equations [10]) are also being actively developed. But they are beyond of our scope here.
2
 Even though the formulation (1) is given for ODEs, the further treatment would be similar for other model

types as well.
3
 Measurement functions are important components of the model. They may also involve some parameters.

In the simplest case, which is yet important and widely spread in practice, observables are suggested to

coincide with dynamical variables (that is accurate to j ), i.e. ( ( )) ( )j jh t x tx . Throughout this

paper, we often consider scalar time series and such a simple relation 1( ) ( ) ( )t x t t .
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model (1) more or less accurately reproduces the time series and possesses at least some of

the properties 1,..., MP P .

If the function F in (1) is expressed analytically in terms of elementary functions (in a

closed form) and the expression holds in the entire phase space, then the model (1) is called

global. Further we consider only global models.

1.3. The success of modeling depends on several factors. First of all, it is important to

select a model structure, which is adequate to the object, that involves:

the number D of dynamical variables kx  (as a rule, one has to use more variables

than the number of observables d),

the forms of the measurement functions jh , which describe supposed relations

between dynamical variables kx  and observables j ,

and the form of the function F.

In general, not all of the quantities, which enter a model as dynamical variables, can be

measured directly or even computed from the observable values. Thus, if dD  then at

least dD  of the necessary variables are not observed. Unobserved variables are often

called hidden. During modeling, time series of all model variables (including hidden ones)

need to be reconstructed somehow from the available data.

The choice of either way of hidden variables reconstruction is a particular case of the

important problem of model dynamical variables selection. If there are too many observables

then one should specify a subset of them to be used as model variables. If the observables are

not sufficient for model construction or they cannot be used directly, then different

combination of available data are employed. Very popular methods are sequential derivatives

and time delays (see, e.g., [11] and [7], respectively) both of which rest upon the celebrated

Takens’ results and their generalizations [12]. However, different ways of obtaining hidden

variables, which are based on a priori information about the system under investigation or

some peculiarities of its dynamics [13], may prove to be more appropriate for modeling.

Mixed situations, when one selects subset of observables and reconstructs hidden variables

from their time series, are also possible.

We note that the selection of variables may affect the form of model equations. Thus,

under the use of sequential derivatives [11,14-17] for modeling from a scalar time series

( )it , a model takes the form

),,...,,(

...,

,

,

21

32

21

cDD xxxFdtdx

xdtdx

xdtdx

 (2)
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where the observable is supposed to be one of the model variables (possibly, contaminated

with measurements errors) )()()( 1 iii ttxt . Notice that only a single scalar-valued

function F enters Eqs. (2) as opposed to the general equations (1) involving a vector-valued

function F. After the form of F, or F, is chosen from either considerations, i.e. the model

structure is completely specified, it remains only to estimate parameters c from a time series.

A least-squares method is often exploited for this purpose 
4
, e.g., one minimizes the quantity

0 22

10

1
( ) ( ),

N

D i i

i

dx t dt F t
N

x c  to estimate parameters of the model (2).
 5

1.4. Depending on considerations determining model structure selection, one can

distinguish between several typical situations arising during modeling from time series.

Below, they are arranged in the order of decreasing complexity.

1) There is no a priori information. This situation is often referred to as the black box

problem. Here, the process of modeling may be called, indeed, the reconstruction of

equations from an observable time series. The structure of equations should be selected by

guess or in a universal form. An example of a universal (in a sense, standard) model structure

is Eqs. (2) with a polynomial on the right-hand side

1 2

1 2

1 2 , ,...,

, ,..., 0 1

( , ,..., ) ,j

D

D

K D
l

D l l l j

l l l j

F x x x c x
1

.
D

j

j

l K (3)

From a theoretical point of view, Eqs. (2) and (3) must serve well for approximation of any

system (1). But many researchers, relying on experience of their practical applications,

believe that polynomials are not appropriate for construction of high-dimensional models.

More promising methods exploit ideas of strong approximation, in particular, neural networks

and radial basis functions [19-23].

2) The structure of equations is known, to a significant extent, from physical

considerations. Only some nonlinear functions involved in a model remain unclear. Here, the

function F has not any longer to give a universal-form approximation of a dependence in the

D-dimensional space as in the black box situation. It may now involve just a few simpler

standard functions, e.g., univariate polynomials. Therefore, the modeling problem is

simplified considerably provided that the model structure is adequate to the object under

investigation. This situation may be called reconstruction of nonlinear characteristics.
6

3) The complete structure of model equations is written down relying on physical

considerations. Only parameters values are unknown. This case seems the most simple (again,

provided that the model structure is adequate to the object). The modeling problem reduces

4
 Sometimes, a general maximum likelihood principle and its modifications are applied [18]. But they are

advisable only at high noise levels and small number of model parameters to be estimated.
5

0N  is the length of time series of model state vectors obtained from the observable one. This time series is

used for parameters estimation and, therefore, is often called training time series.
6
 Note, that impossibility of obtaining a “good” model is the evidence for inadequacy of physical

considerations underlying the selected model structure. So, the modeling procedure can serve to compare

and validate different hypotheses concerning the mechanisms of the object functioning.
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just to estimation of parameters from a time series. But even in this case essential technical

difficulties can arise due to the large number of free model parameters and the presence of

hidden variables.

1.5. A peak of interest to the problem of global reconstruction from time series fell on

1990s (see [19-21,24-34], to mention a few works) after that the first reviews appeared (e.g.,

[35,36] and the book [37]). Black box techniques were mostly considered and choice of

variables and approximating functions was oriented to construction of models in a general

form. Thus, often employed model ODEs (2),(3) were called standard [11]. This term could

be referred also to other cases where model structure contains no information about any

specific features of an object. Pretentions of standards models to be always appropriate are

theoretically justified. As a rule, the justifications rely on Takens’ and Stone – Weierstrass’

theorems.

However, practical shortcomings of the developed methods (conditioned, to a significant

extent, by the use of universal structures) soon became apparent. All successes of real-world

objects modeling we are aware of (e.g., [11,14,15]) seem to be exclusions rather than typical

cases. Blunders at any stage of the modeling scheme can become obstacles: selected variables

may turn out inappropriate, but even the variables suitable for dynamical modeling do not

help if the forms of approximating functions do not correspond to them. Thus, the standard

structure (2),(3) cannot be the best choice for the entire variety of real-world systems. It often

leads to very bulky equations exhibiting divergent solutions.

In the recent papers addressing global reconstruction, rise of attention to the problems of

model structure selection (both dynamical variables and function forms) is noticed. A part of

the investigations is devoted to the development of approaches based on using a priori

information on the object [38-42]. Another important direction of research involves the

papers aimed at refining universal techniques [43-49].

1.6. In our opinion, main prospects of the further development of global reconstruction

techniques relate to the refusal of completely general (universal) model structures and

creation of specialized approaches oriented to certain classes of objects. It is reasonable to

consider sufficiently important classes which specific features are known a priori. On the

other hand, development of novel procedures for model refinement applicable both to

universal and special structures is also of significance.

We try to justify these theses in the presented paper where the development of special

techniques for global modeling of regularly driven systems is in the center of attention

(Section 3). They represent right one of the above mentioned important classes of objects.

Besides, we propose certain technological tricks appropriate for arbitrary situations, namely

a dynamical variables selection technique based on testing a time series for single-

valuedness and continuity of certain dependencies (Section 2),

a model structure optimization technique based on using transient processes

properties and allowing to exclude spurious model terms (Section 4).

In conclusion we present some general considerations on the problem of global modeling

from time series.
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2. Dynamical Variables Selection

As it has been already mentioned, to construct model equations in the form

))(()( tt xFy  from a time series )(itç , one forms, first of all, the series of state

vectors )(itx . Coordinates jx  of a state vector x (dynamical variables) can be obtained as

sequential derivatives, time delays, etc. Then, the time series of quantities to enter the left-

hand side of model equations )(ity  is obtained from the time series )(itx  according to

the chosen model type:

via numerical differentiation of )(itx  for ODEs, since dttdt )()( xy ;

via the shift of )(itx  along the time axis for discrete maps, since

)()( 1ii tt xy .

Finally, the form of the function F is specified and its parameters are estimated.

Voluntary dynamical variables selection can make approximation of the dependencies

)(xjy  with a smooth function extremely problematic [48,49] or even make these

dependencies many-valued. Here, we describe the method for assessing suitability and

convenience of the selected variables Dxx,...1  for constructing a global dynamical model.

It is based on testing the time series )(ity  and )(itx  for single-valuedness and

continuity of each dependency )(xjy  in the entire region of an observed motion. It is

crucial here that we use local characteristics rather than the averaged ones as in [34,50].

2.1. Description of Technique

If a dependency y(x) is single-valued and continuous in a domain V, then the difference

)()( 0xx yy  tends to zero when 00xx  for each V0x . In practice,

violation of this condition may be viewed as a sign of many-valuedness or discontinuity of

the dependency y(x). Since the length of an observable time series is finite, the above-

mentioned limit cannot, strictly speaking, be found. However, it is possible to trace a

tendency in variations of the quantity )()( ji tyty  when the vectors )(itx  and )( jtx

are made closer and closer, down to a certain finite distance. Given sufficiently large amount

of data N, high accuracy of measurements, and low noise level, the distance

( ) ( )i jt tx x  can be made sufficiently small for each local region of observed motion.

The technique of testing consists in the following (Fig.1,a). The domain V containing the

set of vectors 
0

1
( )

N

i i
tx  is partitioned into identical hypercubic boxes of the size . All
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boxes containing at least two vectors are selected. Let us denote them Msss ,..., 21 . The

difference between the largest and the smallest values of y inside a box ks   is called local

variation )(min)(max xx
xx

yy
kk ss

k . The largest local variation k
Mk1

max max

and its graph )(max  are used as the main characteristics of the investigated dependency.

Suitability of the considered quantities x and y for global modeling is assessed using the

following considerations [44].

1. If a dependency y(x) is single-valued and continuous, max  is sufficiently small for

small and tends to zero for 0 (Fig.1,b, filled circles). It is not hard to show

that the plot )(max  is a straight line for sufficiently small .

2. If a single-valued and continuous dependency has a region of very steep slope (a

“jump”), then max  remains rather big for sufficiently small  since that region is

situated typically within one box. However, further decrease in  leads to decrease in

max  because the region of the jump becomes divided into several boxes. The graph

)(max  exhibits a “kink” at the value of  roughly equal to the size of the steep

slope region (e.g., Fig.1,b, white circles). In such a case, the dependency y(x) is also

difficult to approximate with a smooth function.

3. 3) If max  remains large and does not diminish for 0 (Fig.1,b, filled squares)

then the considered variables are not appropriate for global modeling. Such a

situation may be related both to non-uniqueness of the dependency and high noise

level.

4. To summarize, dynamical variables should be selected so that the graph )(max

tend to the origin without kinks and with slight slope (Fig.1b, filled circles). The

most important feature distinguishing the proposed approach and providing its

usefulness for global modeling is the employment of local (rather than averaged)

characteristics.
7
 Let us illustrate this thesis by modeling a real-world nonlinear

nonautonomous system.

7 It may be easily shown that the averaged over all boxes local variation  does not allow detecting small

regions of non-uniqueness. Certainly, the use of only the largest value max  makes the technique too

sensitive to outliers. To apply the technique successfully in such a situation, it is possible to exclude

“atypical” data points from the time series before testing. One can also exclude small fraction of data points

giving the largest local variation even during the testing. We do not discuss this point in more detail, but

note that the presence of outliers in real-world data is not compulsory.



Boris Bezruchko, Dmitry Smirnov, Taras Dikanev, and Ilya Sysoev222

222

Fig.1. (a) Illustration for a technique of testing a dependency  y(x) for single-valuedness

and continuity in the case D = 2. (b) Possible appearance of plots )(max  for different

variants of dynamical variables.

2.2. Experimental Example

The scheme of a nonlinear electric circuit, harmonically driven RLC-circuit with switched

capacitors [51,52], is shown in Fig.2,a. The element K is an electronic key that connects and

disconnects the capacitor 2C  at a certain threshold value of the capacitor 1C  voltage. As a

result, the system in nonlinear and exhibits complex dynamics (in particular, chaotic

oscillations) at large driving amplitudes [41,44].

We employ a chaotic time realization of the current I through the resistor R  (see Section

3, Fig.6, ) as an observable time series )(it . The data are recorded with the aid of a 12-

bit ADC, the sampling interval is t = 4 sec, the driving period is T = 84 t, the length of the

series is 
43 10N . Six examples are considered below, three variants of the model

structure for two different observables. The results of the proposed method application

(Fig.2,b,c) and of the model construction are presented. The plots in Fig.2 are numbered

according to the numbers of the examples.

1. We try a popular model structure

1 1 1 2 3

2 2 1 2 3

3 3 1 2 3

( , , ),

( , , ),

( , , ),

dx dt F x x x

dx dt F x x x

dx dt F x x x

  (4)

where )2()(),()(),()( 321 iiiiii ttxttxttx  are time delay

coordinates, t21  is the first zero of the autocorrelation function. A smoothing
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polynomial is constructed for numerical differentiation. Three dependencies

),,( 321 xxx
dt

dx j
, 3,2,1j , are analyzed. The value of max  does not tend to zero

when decreases for all j. All plots )(max  look alike; one of them  (for j = 3) is

presented in Fig.2,b with white squares. It indicates impossibility of constructing an

efficient global model. The conclusion is confirmed in practice completely.

2. We try the standard structure (2) with )()(1 ii ttx . The dependency

3
1 2 3( , , )

dx
x x x

dt
 is tested. )(max  decreases for diminishing  (Fig.2,b, white

circles) that points out to possible single-valuedness. The result of modeling is that

an efficient model (2),(3) cannot be obtained. Most probably, a polynomial (3) is

inappropriate to fit the investigated dependency. Another form of the approximating

function F is necessary. Its choice is a separate problem which is not addressed in

this section.

3. Following the recommendations on nonautonomous systems reconstruction [32,33]

(see also Section 3 of this paper), we try a model structure

1 2

2 1 2

,

( , , ),

dx dt x

dx dt F x x
   (5)

where )()(1 ii ttx  and  is a driving phase. The dependency

2
1 2( , , )

dx
x x

dt
 is tested. The time series of the phase  is obtained as

)2(mod)( ii tt , the angular frequency  is assumed to be known. The

plot )(max  (Fig.2,b, filled circles) shows that the dependency is, possibly, single-

valued. However, an efficient model (5) with bivariate polynomial and additive

harmonic driving (Section 3) cannot be obtained. Again, one needs to select a special

form of the function F.

4. We try the standard structure (2) with 

it

t
i dtttx

1

)()(1 . This variable makes

physical sense, it is the summed charge on the capacitors 1C  and 2C . The time

series )(1 itx  is obtained via numerical integration of the measured time series.

The value of )(max  for the dependency 
3

1 2 3( , , )
dx

x x x
dt

 does not decrease

when  decreases (Fig.2,c, white circles). An efficient model cannot be constructed.
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5. We try the structure (4) with 

it

t
i dtttx

1

)()(1  and delayed coordinates

)()( 12 ii txtx  and )2()( 13 ii txtx , where  is again the first

zero of the ACF. The dependencies ),,( 321 xxx
dt

dxj
, 3,2,1j , are tested. The

plots )(max  do not go through the origin in all three cases. One of them is

shown in Fig.2,c with white squares (for k = 1). An efficient model cannot be

constructed.

6. We try the structure (5) with 

it

t
i dtttx

1

)()(1 . The plot )(max  shows that

the dependency 
2

1 2( , , )
dx

x x
dt

 is single-valued and, moreover, varies

“gradually” (Fig.2,c, filled circles). A reconstructed model (5) with additive

harmonic driving and bivariate polynomial of the 11th order demonstrates a chaotic

attractor qualitatively similar to the experimental one (see also section 3, Fig.6) and

provides a forecast 5T ahead with relative error less than 5 %.

Fig.2. (a) The scheme for the circuit with switched capacitors. Here, ,1.01 FC

,4.42 FC ,03.0 HL ,10R ,2.0 VUthr V,344.20U  driving

frequency is 2.98 kHz, sampling frequency is 250 kHz. (b) The plots )(max  for

different dynamical variables when the variable Ix1 . The typical for all the

examples plot )(  is shown with the dashed line. (c) The plots )(max  for different

dynamical variables when the variable 1x  is an integral of the current I.

It is significant that an optimistic assessment according to the criterion )(max  and

successful results of the global reconstruction are achieved only in the last (the sixth) case.

Yet, plots of the mean local variation )(  are practically identical for all above-mentioned
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sets of variables; one of the plots is shown in Fig.2,b with the dashed line. Thus, it follows

that the averaged quantity  does not provide all information necessary for global modeling.

Therefore, in general  can be used only as an additional characteristic.

2.3. Refinement of Technique and Testing for Nonlinearity

Here, we describe briefly an approach to refinement of the technique and its use for

assessment of nonlinearity of a dependence y(x). Besides, we present the application of the

refined technique to the analysis of a biological time series. These novel results will be

published in more detail elsewhere.

The procedure described in Section 2.1 is a technique with a fixed set of non-overlapping

boxes (independent of the distribution of data points). It has the disadvantage that a vector x

lying near a box boundary is never compared to the close vectors from the neighboring boxes,

but it may be compared to more distant vectors from its own box. It can lead to intensive

oscillations in the )(max  for small  in the presence of noise. (The reason is that at a

certain small -value a pair of vectors may fall into the same box and at a close, but different,

-value those two vectors may fall into different boxes.) The non-monotony makes the

assessment of the considered dynamical variables more difficult. An example of such a

situation is illustrated in Fig.3,c, where the results of noisy time series testing are presented

for chaotic regime of the logistic map 
2

1n nx x  at 2.0 . The observable is

n n nx  where n  is a sequence of independent identically uniformly distributed

random values. We test the dependencies corresponding to the first iteration 1( )n n , to

the second one 2 ( )n n , and to the third one 3( )n n  from the time series containing

1000 data points.

The disadvantage of the technique may be obviated by using the set of overlapping boxes

centered at the vectors of the time series instead of the fixed set of boxes. In other words, for

each vector ( )itx  one should consider all its -neighbors, i.e. to calculate local variation of

y in the box with the side 2  centered at ( )itx . The number of considered boxes is then

equal to the number of vectors 0N . The largest value of local variation obtained in such a

way (let us denote it max ) monotonically decreases or, at least, does not rise with decrease

in . This advantage of the modified procedure is shown in Fig.3,c,d for the above mentioned

case of the logistic map.
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Fig.3. Comparison of testing techniques in a numerical experiment. (a) The first, the

second, and the third iterations of the chaotic logistic map. (b),(c) Results of testing with

the fixed-set-of-boxes technique from noise-free and noisy data, respectively. (d) Results

of testing with the modified technique from noisy data.

Due to this advantage, the plot max ( )  is more reliable and informative. In particular,

the slope of the straight line passing through the origin and a point 0 max 0( , ( ))  is the

estimate of the maximal “effective slope” of the investigated dependence for the chosen scale

0 . In the limit 0 0 , this slope equals to the maximum of the norm of the gradient of

y(x) over the investigated domain. Even more important, the plot max ( )  is a straight line

if the system under investigation is linear. So, the plot max ( )  can serve as a test for

linearity. Its concavity indicates nonlinearity of the system under investigation. Thus, the

above results for different iterations of the logistic map show that nonlinearity is more

pronounced for the third iteration.

As an example of the proposed techniques application to a complex real-world system, let

us briefly consider testing an acoustic time series. The time series is a digitized recording of

the human voice (in fact, air pressure variations), which was done when a man was

pronouncing the sound [a:]. Sampling frequency was equal to 44.1 kHz. The recording length

was
410  data points. A dependence 2 2 4( , , )i i i i  was tested. We present the plot

)(max  in Fig.4,a; it does not indicate single-valuedness. Other conclusions can hardly be

drawn from the figure because of the above-mentioned disadvantages of the fixed-set-of-
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boxes technique. The modified technique leads to the monotone plot max ( )  (Fig.4,b). It is

easily seen that the dependence max ( )  is significantly concave that allow drawing a

conclusion about nonlinearity of the system under investigation. We do not go further into

details here.

Fig.4. Testing vocal time series described in the Section 2.3. (a) The fixed-set-of-boxes

technique indicates many-valuedness. (b) The modified techniques indicates also

nonlinearity.

3. Structure Selection (Modeling Nonautonomous Systems)

As it was already mentioned in the Introduction, standard models (2),(3) often prove

cumbersome and have divergent trajectories. This is practically inevitable payment for the

generality of basic conception, for the saving of time and efforts on the choice of the most

suitable mathematical construction. Probability to guess an adequate model form without

using a priori information or special preliminary investigation of the object is, in general, very

low. The technique described in the previous section provides a possibility to decide between

different sets of dynamical variables. But they do not guarantee the success of modeling

because one needs also to select an adequate form of functions entering model equations.

Here, we show the expediency of selection of functions based on the use of a priori

information with the example of nonautonomous systems being under arbitrary regular

(periodic or quasiperiodic) driving. The main idea is that explicit functions of time are

incorporated into the model equations to describe an external driving efficiently.

3.1. Additive Harmonic Driving

A modification of the standard structure in application to nonautonomous systems was

proposed in [32,33] for the simplest case of harmonic additive driving. Even though systems

of this kind are widely spread in practice, it is more important for the current consideration

that they represent an example illustrating possibility of efficient modification of the standard

structure via incorporating certain specific features of the object into the model. We
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reproduce briefly the main points of the approach by following [33]. It is suggested to

construct a model in the form

1 2

2 3

1 2

,

,

...

( , ,..., , ),D D

dx dt x

dx dt x

dx dt G x x x t

(6)

,
2

sin
2

cos),...,,(),,...,,( 2121 tbtaxxxFtxxxG DD  (7)

where F is an algebraic polynomial. For D = 2, these are general equations of harmonically

driven oscillator.

One should have certain prerequisites to build a model in the form (6),(7). A priori

information or a discrete peak in the power spectrum of an observed time series may be such

prerequisites. Location of the peak may be viewed also as a rough estimate of the driving

period. Given the value of T, parameters a and b and polynomial coefficients are estimated

via the linear least-squares routine. To estimate  is not so simple since it enters the equation

(7) nonlinearly. An error in its estimation 0TTT  (where 0T  is an unknown “true”

value) inevitably leads to a significant “phase shift” between the true driving and the

corresponding model terms if the training time series is quite long. It is shown in [32,33] that

the relative error of driving approximation T  depends only on the ratios 0T/T  and 0/TTN

via

0 0

~ N
T

T T

T T
, (8)

where NT  is the duration of the training time series. It follows that the driving period should

be estimated more accurately for longer training time series, otherwise incorporation of

explicit time dependence is useless. From this point of view, a too long time realization

becomes an obstacle for constructing a model (6),(7).

To estimate accurately the driving period T, two preliminary steps are included into the

reconstruction procedure. Firstly, a good starting guess for the period should be made. A peak

value 
*T  of the power spectrum can be taken as such a guess since power spectrum with the

shape shown in Fig.5,  is often exhibited by periodically driven systems. Secondly, model

dimension D and reasonably large value of K are fixed and trial value of T is varied in the

vicinity of the starting guess 
*T . Equations (6),(7) are fitted to time series data for each trial

T. The presence of a profound minimum on the plot  versus T is a sign of adequacy of the
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structure (6),(7). The minimum point of this plot coincides with true period value to a great

accuracy (typical form of the plot )(lg T  is shown in Fig.5, b).

Fig.5. (a) Typical appearance of the power spectrum for harmonically driven chaotic

systems. There is a pronounced peak. (b) lg  versus a trial value of driving period T for

a model (6),(7).

This approach is shown to be efficient, in particular, for modeling nonlinear radiophysical

systems. Some of the results of its application
8
 are presented in Fig.6. This is the example of

modeling driven RLC-circuit with switched capacitors (see the scheme in Fig.2,a) from the

integrated chaotic time series of current I, that is for the dynamical variables selected as the

best ones in Section 2. An obtained model (6),(7) with D = 2 and K = 9 
9
 behaves like the

original system and provides a forecast with relative error less than 5 % quite far ahead

(namely, on the interval 5T that is big for the considered chaotic regime).

Note that the main cause of efficiency of the structure (6),(7) is that it allows obtaining a

model of lower dimensionality than it would be necessary under the standard approach.

Modeling harmonically driven oscillators with the aid of the standard structure (2),(3) was

considered in [47]. In particular, in the absence of noise an adequate 4-dimensional model

was obtained for a 3-dimensional original system that required numerical estimation of the

time derivatives up to the fourth order. Seemingly, the standard approach could hardly be

efficient already for low noise levels since sufficiently accurate calculation of high-order

derivatives would be impossible. Besides, it is more probable for the standard polynomial

approximation to be efficient when a model phase space is low-dimensional.

8
 Various approaches have been developed to validate empiric models. They include comparison of invariant

measures, topological indices, etc, see the section “Model validation” in the review by G.Gouesbet et al in

this book. We use only two simple techniques: prediction time and visual inspections of phase orbits

projections. They are sufficient for the purposes of illustration of the approaches developed here.
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Fig.6. (a) A projection of an experimental orbit for the circuit with switched capacitors

onto the plane charge – current. (b) A corresponding projection for the best reconstructed

model (6),(7) with D = 2 and K = 9.

Harmonic force represents an important but sufficiently narrow class of possible ways of

driving. Here, we present extensions of the approach to more complex and realistic situations.

Besides, we somewhat modify the technique for driving period estimation to make it more

efficient. We will treat in turn two cases:

1. arbitrary form of regular (i.e. periodic or quasiperiodic) additive driving;

2. arbitrary way of entry of harmonic driving.

3.2. Arbitrary Additive Regular Driving

In this case we propose to use the model structure (6) with explicit time dependence but

not necessarily harmonic. That is, we employ

)(),...,,(),,...,,( 2121 tgxxxFtxxxG DD , (9)

where F is an algebraic polynomial, and function )(tg  describes the driving and also

involves free parameters. Two approaches to the specification of )(tg  are possible. The first

one is to guess a special formula on the basis of a priori information. The second variant is

much more general and can be used in the absence of detailed knowledge of the driving form.

It consists in exploiting trigonometric polynomials

9
 Exclusion of spurious terms from the model structure was also performed with the aid of a procedure

similar to the one described in Section 4.
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0 , ,

1 1

2 2
( ) cos cos

lkm

l j l j

l j l l

jt jt
g t a a b

T T
,  (10)

where m = 1 for a periodic case, and quasiperiodic driving is described by the sum of m > 1

trigonometric polynomials with different periods lT  and orders lk . The technique for

parameter estimation of the model (6),(9) relies on the least-squares routine (LSR). But, since

several free parameters can enter nonlinearly the expression for g (this is, at least, the driving

period in the case of periodic driving), it is reasonable to use one of iterative techniques to

solve a nonlinear least-squares problem. We have used the modified Levenberg – Marquardt

routine implemented in the IMSL library.

Note, that considering the driving period as a free parameter for nonlinear least-squares

problem alters the above conclusion (Section 2.1) that a long time series is an obstacle for

modeling driven systems. That conclusion is true only under the condition that the driving

period is preliminary determined and is not adjusted any more with LSR. But if it is estimated

along with all the model parameters via LSR, then the accuracy of its estimation just depends

on the time series length. This is again because the “phase shift” between the true driving and

model terms is large for inaccurate determination of the period. So, long time series allow,

and even force, more accurate determination of the period value. But a good starting guess

for the driving period is still important to apply nonlinear LSR and power spectrum analysis

remains useful for that (Fig.5,a). If power spectrum gives a bad starting guess that may occur

in special cases, then the approach of [32,33] (Fig.5,b) can help, but a trial value of T should

be varied over a wide range rather than near a good starting guess.

We examine efficiency of the approach in numerical experiments by reconstruction of

equations from chaotic time series of the x-coordinate of Toda oscillator

2 2 1 ( )xd x dt r dx dt e t  (11)

for different forms of driving )(t . Namely, for impulse periodic, periodic with

subharmonics, and quasiperiodic driving. Here, we present just one of the examples when

)(t  is a sequence of Gaussian impulses of alternating polarity (Fig.7):

22
)2/(

exp
)(

exp)(
Ttt

At ;
2

mod)( 0

T
Ttt , (12),

where T is a driving period, A is a driving “amplitude”, 0t  is an initial phase,  is an

impulse width. Time series is obtained here (and in all numerical examples below) by

numerical integration of the original equations with the Runge-Kutta routine (step size and

sampling interval are equal to 0.01, the time series length is 5000).
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Fig.7. Periodic sequence of Gaussian pulses (12), 6.3T , 20A , 00t ,

2.0 .

We compared different approaches to structure selection that include standard structure

(2),(3), nonautonomous models (6),(9) with a special formula, and nonautonomous models

with trigonometric polynomials (6),(9),(10). The results of their application are illustrated in

Fig.8 where model and original phase orbits are shown. The standard approach gives bad

results: for the best model an approximation error is large %9.86 , prediction time is

small Tpred 08.0 , and phase orbit does not resemble the original one, see Fig.8,b. As it

is expected, a model (6),(9) with 8,2 KD  and special formula (12) for description of

driving (in effect, only the parameters T , A , 0t ,  are estimated from time series)

demonstrates practically ideal coincidence with the object: %003.0 , Tpred 21  and

chaotic attractor is indistinguishable from the original one. Results for models (6),(9),(10)

with 8,2 KD , m = 1 depend on the number of harmonics 1k . Qualitative similarity of

model and original phase orbits is achieved already at 81k , but quantitative characteristics

are not yet the best: %3.4 , Tpred 26.2 . Model quality rises with the number of

harmonics, see Fig.9. The best results are obtained at 151k : %1.0 , prediction time is

quite big
10 Tpred 24.19 , the attractor is shown in Fig.8c.

10 The horizon of predictability for the given largest Lyapunov exponent and noise level (truncation and

round-off errors) is 60hor T . Prediction time pred  is of the same order of magnitude as hor . Their

distinction is explained by the imperfection of the model class: an algebraic polynomial is used to

approximate an exponential function.
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Fig.8. (a) A projection of phase orbit of an object (11),(12); (b) a projection of phase orbit

of the best standard model (2),(3) with D = 2, K  = 9; (c) a projection of phase orbit of the

best model (6),(9),(10) with D = 2, K = 8, m = 1, 1 15k .

Fig.9. Relative root-mean-squared approximation error and prediction time (in the units

of the driving period) versus the number of harmonics for models (6),(9),(10).

Similar results are obtained for regular driving of different kinds and for noisy time series

with noise levels up to 1%. They will be reported elsewhere. It is important to note that

efficient models (6),(9),(10) can be obtained even with trigonometric polynomials of very

high orders, which are necessary to describe non-smooth driving. This is an essential

advantage of the approach since instability of models (2),(3) with high-order algebraic

polynomials seems the main cause of the standard approach failures. To overcome this

difficulty, one should exclude “superfluous” (spurious) terms from the model structure, e.g.,

the papers [46,23] and section 4 of this paper deal with that problem. Under the use of

trigonometric polynomials for driving approximation, the necessity to exclude spurious terms

from them does not arise.
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3.3. Arbitrary Way of Regular Driving Entry

Let us consider only the case of harmonic driving here, generalizations to an arbitrary

form of periodic and quasiperiodic driving will be straightforward. The degree of generality

significantly higher than for a model (6),(7) can be achieved by using the structure (6) and a

polynomial with alternating coefficients [41]

D

j
j

K

Dlll

D

j

jl

jDlllDlllDlllD

Kl

xtbtactxxxG

1

0,...,2,1 1
,...,2,1,...,2,1,...,2,121

.

,sincos),,...,,(

(13)

To estimate parameters of the model (6),(13), one can employ the above mentioned LSR.

To illustrate efficiency and advantages of the structure (6),(13), we present a numerical

example of modeling from a chaotic time series of the 1u -coordinate of Toda oscillator when

driving is not just additive. The original equations read

1

1 2

2 2

,

0.45 (5 4cos )( 1) 7sin .u

du dt u

du dt u t e t
 (14)

The best model (6),(13) is achieved at D = 2, K = 9. It exhibits chaotic attractor practically

identical to the original one (Fig.10,a,b). Such results cannot be achieved with models (6),(7)

(Fig.10,c). Standard models (2),(3) demonstrate, as a rule, globally unstable orbits (Fig.10d).

Prediction times for the best models (6),(13), (6),(7), and (2),(3) are equal to 7T, 1.5T and

0.15T, respectively. See [41] for more details.

Fig.10. (a) A projection of attractor of Toda oscillator (14). (b-d) Projections of phase

orbits for a model (6),(13) with D = 2, K = 9, a model (6),(7) with D = 2, K = 10, and a

standard model (2),(3) with D = 4, K = 6, respectively.

The considered stages (dynamical variables and model structure selection) are the key

ones for modeling. However, efficient specialized techniques for model refinement are also

useful. Thus, model structures (6),(9),(10) and (6),(13) allow obtaining more parsimonious

models since they contain less variables, than it would be needed under the standard

approach, due to incorporation of explicit time dependence. Big model size conditioned by a
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high-order trigonometric polynomial (10) does not lead to difficulties as it has been shown

above. But nonautonomous models involve also algebraic polynomials describing

nonlinearity of the object and, hence, a large number of terms in those polynomials can lead

to difficulties. Many of their terms can reduce the model quality drastically. So, to construct

nonautonomous models involving algebraic polynomials as well as the standard models, it is

important to exclude spurious model terms. A feasible special procedure for that is presented

in the following section.

4. Model Structure Optimization

Usually, global models are constructed from time realizations of established motions

corresponding to attractors in phase space of an object. Such an approach seems reasonable

when only the dynamics on the attractor is of interest. However, for modeling object

dynamics in a wide domain of the phase space, success is more probable when one uses time

realizations of transient processes, i.e. when a phase orbit has not yet settled down onto an

attractor. As it was shown in [43], the use of transients can be sometimes useful to refine a

model by optimizing its structure. As we hypothesize, this is because they explore a wider

domain of the phase space. In this section we briefly describe the main results concerning

detection of the time series segment which is optimal for modeling. Then, a model structure

optimization procedure will be explained.

To detect a segment optimal for modeling, we compare performance of global models

obtained from different segments of the time series, some of them involve a transient while

the others do not. For the sake of convenience, it is reasonable to illustrate the idea by using

sufficiently simple autonomous system. We choose Van der Pol – Toda oscillator which

equations read as

1 2

2

2 1 2 1

,

(1 ) 1 exp( ).

dx dt x

dx dt x x x
 (15)

Reconstruction is performed from a scalar time series of the 1x -coordinate involving a

transient. The corresponding phase orbit is shown in Fig.11, a. Models of the form (2) with D

= 2 are constructed in two variants differing from each other by the form of the function

),( 21 xxF . In the first case, a standard bivariate algebraic polynomial is employed:

.,),(
0,

2121 KjixxcxxF
K

ji

ji
ij  (16)

In the second case, F is given by

)()(),( 12
2
121 xfxxxxF K , (17)
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where )( 1xfK  is a univariate algebraic polynomial of the order K which should approximate

the exponential function. To assess a model quality, right-hand side reconstruction error is

calculated. This quantity compares functions entering right-hand sides of an object and a

model ( 0F  and F , respectively):

S
dxdxxxFxxF 21

2
21021 ),(),( , (18)

where S is an integration domain containing the phase orbit and, hence, much larger than the

domain of an attractor. The lower is , the better is a model.

Fig.11. (a) A phase orbit of the system (15). (b) Model error  versus the location m of a

reconstruction window for models (2),(16) (the curve 1) and models (2),(17) (the curve 2)

with polynomials of the 7th order.

Searching for a segment of the time series (a reconstruction window), which is optimal

for modeling, is performed as follows. A certain length of a reconstruction window (M data

points) is specified. We denote a reconstruction window as 
1

)(
Mm

miit , where m is the

number of its starting point. The initial point of the original time series coincides with the

starting point of a reconstruction window for m = 1. When m increases, a reconstruction

window moves along a time series into the domain of an attractor. Models are constructed for

different values of m. Optimal location of the reconstruction window corresponds to a

minimum on the plot  versus m.

Plots (m) in Fig.11, b show that the best results for a model (2),(16) are obtained with

the use of the transient, see the curve 1, small m. For a model (2),(17) the overall results are

better by an order of magnitude, see the curve 2, but they are almost independent on the

location of the reconstruction window. It can be explained as follows. The structure (2),(16)

includes variety of superfluous (spurious) terms, e.g., the terms 21xx ,
2
21xx ,

2
2

2
1 xx , etc,
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which are not relevant for the original equation (15). Theoretically, model coefficients

corresponding to superfluous terms should vanish. But in practice their estimated values

differ from 0 due to round-off and truncation errors and impossibility of accurate

approximation of exponential function by an algebraic polynomial. Superfluous terms can

become significant outside of a reconstruction window and lead to essential discrepancies

between an object and a model. For a model (2),(16) involving spurious terms,  depends on

m essentially (Fig.11,b) that is induced by essential dependence of “spurious coefficients” on

m (Fig.12,a). For a model (2),(17), the use of a transient does not have advantages because its

good performance is due to the absence of spurious terms rather than the extension of the

explored region in the phase space.

Let us look again at Fig.12,a where the plots for coefficients corresponding to necessary

terms are grouped on the left and for superfluous terms – on the right. The superfluous

coefficients are obviously less stable than the necessary ones, the instability appearing close

to the beginning of the time series, i.e. in a transient period. Relying on these considerations,

we propose a procedure for model structure optimization based on sequential exclusion of the

terms corresponding to the less stable coefficients. The stability (reliability) of some

coefficient a can be evaluated as the ratio of its mean value to its standard deviation

2
1

aa

a
m , where angle brackets designate average over the ensemble of values of

a obtained at different m.

Thus, to optimize a model structure, the less stable coefficient (with smallest 1m ) is

found and the corresponding term is excluded from the model.
11

 Reconstruction procedure is

repeated for the simplified structure. The next less stable coefficient is detected and the next

term is eliminated, and so on until exclusion of a new term leads to model deterioration. In

Fig.12,b we present the error versus the number of excluded terms as obtained during

reconstruction from the time series of the system (15) starting from the model structure

(2),(16). It can be seen that the proposed procedure allows essential reduction of the error

(after exclusion of 20 terms) and, hence, enhancement of the model quality.

Despite the above-mentioned successful results, we should make several remarks. Firstly,

we cannot guarantee that the use of transients will generically help. Secondly, reconstruction

from different segments of a realization representing dynamics on an attractor, in principle,

can also lead to similar refinement of the model structure. Thus, reconstruction with standard

functions from unstable periodic orbits or from laminar phases of an intermittent signal can be

successful [54]. But, in our opinion, the use of transients should often be more useful. This is

a hypothesis but it relies on an empiric basis. For example, one can see in Fig.12 that

coefficients corresponding to spurious terms oscillate quite intensively only in the region of a

transient. So, inspection of a transient part of the time series is essentially preferable for their

detection in this case.

11
 A similar procedure was considered in [53] where it was called “zeroing and refitting” rather than “model

structure optimization”. In the current context we prefer the latter term.
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Fig.12. Results of modeling the system (15) from a scalar time series. (a) Coefficients of

a model (2),(16) corresponding to polynomial terms presented near the panels versus the

location m of a reconstruction window. (b) The error versus the number of excluded

terms. Optimization is performed starting from the model structure (2),(16).
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5. Conclusions

Analysis of publications shows that to date significant efforts have been made to solve

the modeling problems of the kind that we refer to as the highest level of complexity in

Section 1.4 (reconstruction of equations in the case of absence of a priori knowledge about an

object under investigation). However, examples of successful modeling in such a situation are

quite rare and determined by the possibilities of obtaining additional information on the

possible model structure.

In the most preferable situation when the model structure is completely known, e.g., from

the first principles, the results of modeling depend mainly on the amount and precision of

experimental data. Estimation of parameters performed in such a situation can, nevertheless,

be a very useful tool for many applications. Very interesting researches of this kind are

presented in [38,55].

To our best knowledge, there are almost no works addressing the second level of

complexity; to a certain extent, the paper [39] can be related to them. However, in our

opinion, it is this statement of the problem that is the most promising for obtaining useful

results in many fields, since it represents a combination of empiric modeling and modeling

from the first principles.

In this paper, we address only the most difficult situation – a reconstruction problem. To

advance further in the field of global reconstruction from time series, one needs both the

development of novel technical procedures and creation of methods oriented to sufficiently

narrow classes of objects. The latter approach is, in a sense, close to the second situation from

the systematization given in Section 1.4. And it might be, probably, the most important

direction of research. A special preliminary analysis of time series and the use of a priori

information are needed for this approach. In our works, prospects and necessity of such a

“specialization” are shown and technical procedures are presented. The main results are as

follows:

1. the proposed technique for preliminary testing of times series of dynamical variables

(section 2) provides the variants which are the most suitable for modeling;

2. the proposed modifications of the standard model structure (section 3) allow

obtaining efficient models of nonautonomous systems for arbitrary periodic and

quasiperiodic driving, both for additive and parametric character of driving;

3. the proposed procedure of model structure optimization (Section 4) allows

elimination of spurious terms from the model structure using properties of transient

processes, whereby performance of an empiric model can be significantly refined.
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