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Abstract
Purpose During the last decade, the reported prevalence of sleep-disordered breathing in adults has been rapidly increasing.
Therefore, automatic methods of sleep assessment are of particular interest. In a framework of translational neuroscience, this
study introduces a reliable automatic detection system of behavioral sleep in laboratory rats based on the signal recorded at the
cortical surface without requiring electromyography.
Methods Experimental data were obtained in 16 adult male WAG/Rij rats at the age of 9 months. Electrocorticographic signals
(ECoG) were recorded in freely moving rats during the entire day (22.5 ± 2.2 h). Automatic wavelet-based assessment of
behavioral sleep (BS) was proposed. The performance of this wavelet-based method was validated in a group of rats with genetic
predisposition to absence epilepsy (n=16) based on visual analysis of their behavior in simultaneously recorded video.
Results The accuracy of automatic sleep detection was 98% over a 24-h period. An automatic BS assessment method can be
adjusted for detecting short arousals during sleep (microarousals) with various duration.
Conclusions These findings suggest that automatic wavelet-based assessment of behavioral sleep can be used for assessment of
sleep quality. Current analysis indicates a temporal relationship between microarousals, sleep, and epileptic discharges in
genetically prone subjects.
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Introduction

Accurate assessment of the physiological state of the nervous
system is a challenging task of experimental neurophysiology,
especially during long-term monitoring of laboratory animals.
Three states of vigilance can be recognized based on physiolog-
ical parameters: wakefulness, rapid eye movement sleep (REM)

(paradoxical or active sleep), and non-REM sleep (passive
sleep). The level of vigilance is controlled by neuromodulatory
systems which are involved in modulation of breathing [1].
During the last decade, the reported prevalence of sleep-
disordered breathing in adults has been rapidly increasing.
PubMed indexed 4261 original research articles on “sleep-disor-
dered breathing” between 2010 and 2020. Therefore, automatic
methods of sleep assessment have become of particular interest,
especially in the framework of translational neuroscience.

Vigilance state can be influenced by experimental condi-
tions [2, 3], by the chronic development of diseases especially
in case of progressive development of neurological disorders
[4, 5], by normal/pathological aging [6, 7], etc. In contrast to
wakefulness, sleep is subjectively perceived as a reduced re-
sponsiveness to environmental stimuli. Non-REM sleep char-
acterized by “synchronization” of cortical electrical activity,
i.e., by the presence of high-amplitude low-frequency activity
in the encephalogram. Identification of exact moments of fall-
ing asleep gains a better understanding as shown in various
physiological states [8, 9]. Furthermore, automatic detection
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of reduced vigilance or sleepiness can be adapted for devices
which control waking level in human operators.

Vice versa, discontinuous sleep, sleep fragmentation, and
brief arousals even in healthy subjects often negatively impact
health. The nature of arousals during sleep has been reviewed
[10], and the relationship between arousals and epilepsy has
been thoroughly examined [11–13]. As to the methodology of
sleep research, there is a high demand for reliable, precise, and
accurate measurement of sleep parameters. A huge number of
methods have been developed to detect normal sleep oscillations
and pathological patterns in encephalograms, such as spike-
wave discharges and sleep spindles (e.g., [14, 15]). At the same
time, the problem of automatic recognition of the physiological
states in laboratory animals (i.e., sleep, wakefulness) has not
been solved yet, and researchers often detect sleep/waking states
visually in electroencephalograms using video recordings [16].
Methods of accurate sleep detection rely upon information about
muscle activity obtained with electromyography and/or oculo-
motor activity obtained with oculography [17–19]. The need for
synchronous recording of additional signals (video) significantly
complicates experiments and increases their cost. In this paper,
we introduce a reliable automatic detection system of behavioral
sleep in laboratory rats based on the signal recorded at the cor-
tical surface without requiring electromyography. This method
has been validated using video-ECoG and it can be adjusted for
detecting short arousals during sleep (microarousals). The pro-
posed method can easily be implemented for the automatic de-
tection of decreases in vigilance and it may occupy a free niche
in biotechnology. This method can also be adapted for real-time
use, for example, based on the CUDA technology [20].

Material and methods

Experimental data were obtained in 16 adult maleWAG/Rij rats
at the age of 9 months. Experiments were performed at Institute
of Higher Nervous Activity and Neurophysiology RAS
(Moscow, Russia) and approved by the animal ethics committee
of this Institute. All animals were implanted with screw elec-
trodes under chloral hydrate anesthesia (i.p. injections 325
mg/kg, 4% solution in 0.9% NaCl). Electrodes were secured to
the skull using stainless steel screws (shaft length = 2.0 mm,
head diameter = 2.0 mm, shaft diameter = 0.8 mm) located at
the cortical surface over the frontal area (symmetrically in the left
and right hemispheres, AP +2; L ±2) and occipital area (right,
AP −6; L 3). Reference electrode was places at over the right
cerebellum. Coordinates are given in mm relative to the bregma.
After the surgery, animals were housed individually under
12:12 h light:dark cycle (light on 8 a.m.) with free access to food
and tap water. Recovery period lasted 10–14 days.

Electrocorticographic signals (ECoG) were recorded in
freely moving rats placed in Plexiglas cages (25x60x60 cm)
under 12:12 h light:dark cycle (light on at 8 a.m.). ECoG were

recorded continuously during the entire day (22.5 ± 2.2 h), fed
into a mult i -channel ampli f ier (PowerLab 4/35,
ADInstruments) via a swivel contact, band-pass filtered be-
tween 0.5 and 200 Hz, digitized with 400 samples/second/per
channel, and stored in hard disk. In addition to ECoG, rat’s
behavior was video recorded during 1–2 h using high resolu-
tion video camera Genius eFace 1325R. Video-ECoG in all 16
rats was visually inspected to detect behavioral sleep and wak-
ing states. Behavioral sleep (BS) was determined when an
animal took relaxed sleeping with closed or semi-closed eyes,
and these periods were accompanied by ECoG synchroniza-
tion in all channels. Waking state (AW) included passive and
active wakefulness when an animal was in standing position,
moved around the cage, or was immobile. The period of AW
was accompanied by theta in occipital ECoG and
desynchronization.

Majority of WAG/Rij rats (13 out of 16 subjects) showed
typical for absence epilepsy spike-wave discharges in ECoG.
SWDs occurred spontaneously during the state of passive
wakefulness and sleep, and were not associated with changes
in behavior (typical “absence” state). SWD during passive
wakefulness were associated with an increased breathing rate
[21]. Accelerated breathing rate during SWDmight be used as
an additional behavioral hallmark of absence epilepsy and
relates to physiological changes during absence seizures.
Immediately after SWD, an animal often flinched or
scratched. In the present study, we used previously described
method for SWD detection [22–24]. Briefly, increase of
wavelet power measured two narrow frequency bands, 8–10
and 17–20 Hz. SWDs were automatically detected during the
entire ECoG record (22.5 ± 2.2 h) in all 16 rats. The outcomes
of the automatic detection were visually corrected so the ac-
curacy of SWD detection reached 100%. Figure 1 displays an
example of 3-channel ECoG with typical SWDs.

Results

Results of the manual detection of BS in 1–2 h video-ECoG in
all animals were used to define criteria for the automatic sys-
tem of sleep detection. They were also used to access the
quality of the developed method. Below we describe the au-
tomatic detection method.

M registered ECoG signals were denoted as x1,...,xM, the
duration of ECoG signals as T, and the total number of sam-
ples in each ECoG signal is 512 T. A continuous wavelet
transform (CWT)Wi(f,t) was calculated for each ECoG signal
xi based on the Morlet wavelet with the parameter Ω0 = 2π.
With Ω0 = 2π, time scale in CWT approximated to the clas-
sical representation of Fourier frequency f, Hz, [25, 26]. For
automatic detection of BS, it was empirically found that the
maximum quality and detection speed were achieved when
the signal was set to the frequency range Δf = [5;10] Hz. For
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each ECoG channel, we computed instantaneous CWT ener-
gy Ei(f,t) as:

Ei f ; tð Þ ¼ Wi f ; tð Þ2: ð1Þ

The total instantaneous CWT energy EΔf(t) was calculated
at each time point t in frequency interval Δf as:

Ei
Δ f tð Þ ¼ ∑

f ∈Δ f
Ei f ; tð Þ: ð2Þ

Note that calculation of the instantaneous energy was lim-
ited to the frequency range Δf; therefore, the number of oper-
ations and machine time required for the analysis of experi-
mental data was substantially reduced. The integral value of
the total energy EΔf (t) (2) takes the form:

εi t0ð Þ ¼ N � Δt � ∑t2
t1E

i
Δ f tð Þ; ð3Þ

where t0 is current time moment, Δt = 0.5 s, t1 = t0 −0.5·Δt,
and t2 = t0 + 0.5·Δt. For all M frontal ECoG-channels, we
assessed the multichannel energy characteristic eεΔf4 (t0) as:

eε t0ð Þ ¼ ∑M
i¼1ε

i
Δ f t0ð Þ
M

: ð4Þ

Detection of BS was carried out on the basis of dependence
(4) analysis. Some principles of this analysis are shown in Fig.
2. In particular, we considered two threshold values T↑ and T↓
in the form as:

T↑ ¼ 1:3 � N � T � ∑T
0eεΔ f t0ð Þ; ð5Þ

T↓ ¼ 0:45 � N � T � ∑T
0eεΔ f t0ð Þ: ð6Þ

The thresholds T↑ (5) and T↓ (6) are individual characteris-
tics of ECoG activity assessed in each animal. Note substantial
variation of threshold values across 16 rats as shown in Table 1.

Next, the dependence (4) and found time moments t1, in
which the value ofeε (t) exceeds the threshold T↑ (5), i.e.eε (t1)
≥ T ↑ were analyzed. Next, we went back to the time t ↑≤ t1,
for which the value ofeε (t0) exceeded the threshold T↓ (6), i. e.
eε (t↑) ≥ T↓). We considered this time moment t↑≤ t1 as the
moment when the animal fell to sleep, i. e., beginning of BS.

Next, in order to detect the awakening moment, we com-
pared the current value of the dependence (4) with the thresh-
old value T↓ (6). The time moment t↓ was considered the
beginning of wakefulness stage if eε (t1) has become less than
T↑. However, states with duration less than 3 s were consid-
ered incorrectly defined and were excluded (Fig. 2).

Results of manual (Fig. 2a) and automatic (Fig. 2b) detec-
tion of sleep and waking states were matched closely. The

Fig. 1 Typical spike-wave discharges (SW, orange) detected in 3-
channel ECoG record in WAG/Rij rat#1. ECoG tracks are abbreviated
as FrL (frontal left), FrR (frontal right), and OcR (occipital right)

Fig. 2 The results of manual and automatic detection of sleep-wake
stages: (a) a fragment of manual detection done by neurophysiologist
using video-ECoG in rat #4; (b) the corresponding fragment of timing
dependence eε (t) computed in ECoG signals x1(t) and x2(t). The colored
areas show manually detected states of sleep (BS, blue) and wakefulness

(AW, green). The horizontal thick dashed lines mark the threshold values
T↑ and T↓, and the dashed vertical lines show the results of automatic
recognition of the same states. Red arrowhead marks the artifact in which
the energy characteristic eε (t) reaches the threshold for less than 5 s.
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statistical accuracy of the presented method was evaluated by
measuring the quality of automatic detection (see below). The
arrow in Fig. 2b points to the brief increase in characteristic
energyeε (t0) (4), but was not detected as sleep because of short
duration. An advantage of the automatic detection method is
its high sensitivity. This method was particularly useful to
identify short microarousal states interrupting continuous
sleep and to assess sleep fragmentation. This issue is illustrat-
ed in Fig. 3.

For the entire duration of ECoG, the relative errors in de-
tection of the start (δs) and end (δe) moments were estimated in
each BS episode. Then, the quality of automatic detection Q↕
was calculated as:

Q↕ ¼ ∑S
i¼1

δs þ δeð Þi
2

: ð7Þ

Table 2 demonstrates the results of quantitative assessment
of the quality Q↕ of automatic detection compared to the man-
ual detection in all animals.

Table 1 The four thresholds value in individual rats.

# T ↑ T ↓ # T ↑ T ↓ # T ↑ T ↓ # T ↑ T ↓

1 0.18 0.06 5 0.25 0.09 9 0.23 0.08 13 0.13 0.05

2 0.21 0.07 6 0.17 0.06 10 0.22 0.08 14 0.13 0.05

3 0.20 0.07 7 0.32 0.11 11 0.25 0.09 15 0.23 0.08

4 0.15 0.05 8 0.19 0.07 12 0.17 0.06 16 0.17 0.06

Fig. 3 Detection of the state of
microarousal. (a) Three-channel
ECoG recorded at the frontal left
cortex (FrL), frontal right cortex
(FrR) and occipital right cortex
(OcR) in rat #7. Behavioral sleep
(BS) and waking state (AW) were
manually assigned using video
recorded behavior. (b) A
corresponding fragment of timing
dependence eε (t0) calculated from
ECoG signals x1(t) and x2(t). The
colored areas show manually
detected sleep (blue), wakefulness
(green), and microarousal (red).
The horizontal thick dashed lines
mark the threshold values T↑ and
T↓, and the dashed vertical lines
show the results of automatic
diagnostics of the state of sleep
and wakefulness.

Table 2 Values of the relative errors δs, δe, and the quality Q↨ of
automatic as compared to manual detection in all rats (# denotes ID
number)

# δs, % δe, % Q↨, % # δs, % δe, % Q↨, %

1 96.53 94.7 95.62 9 83.46 90.33 86.9

2 94.55 97.29 95.92 10 92.32 93.84 93.08

3 88.41 96.12 92.27 11 94.94 96.31 95.63

4 90.35 86.22 88.29 12 99.23 97.34 98.29

5 86.75 89.43 88.09 13 82.52 87.36 84.94

6 83.88 91.39 87.64 14 87.15 90.14 88.65

7 99.09 91.59 95.34 15 92.38 89.65 91.02

8 76.13 81.85 78.99 16 91.97 95.98 93.98

Group medians for relative errors δs, δe, and quality Q↨ are 91.16, 91.49,
and 91.64, respectively
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Special attention was paid to brief episodes of awaking
during sleep, so-called microarousals. Microarousals were re-
ferred to as “phasic EEG events which were not associated
with awakenings regardless of their desynchronizational or
synchronizational (sleep response-like) morphology and re-
gardless of their connection with autonomic or some sort of
behavioral arousal” [10]. In accordance to the criteria devel-
oped by the Sleep Disorders Atlas Task Force of the American
Academy of Sleep Medicine [27], we detected microarousals
as 3–15 s waking state preceded by at least 10 s of non-
interrupted sleep. Wakening episodes longer than 15 s were
recognized as wakefulness (Fig. 3a and b).

Noteworthy is that vigilance state in WAG/Rij rats is af-
fected by the occurrence of spontaneous spike-wave dis-
charges (two examples of SWD are shown in Fig. 1). The
number of SWD in 16 subjects varied from the maximum of
302 SWDs in rat #1 to single SWD in rats #11–13 and no
SWD in rats #14–16. Figure 4a displays the number of SWDs
(Nsw) and microarousals (Nma) in all 16 rats as detected in 24h
ECoG. The number of microarousals in non-epileptic rats
#11-16 was in average 62.0±21.7 (mean±s.d.) demonstrated
a strong tendency to be lower than in epileptic rats # 1–10
(45.2±17.5, p=0.056, Mann-Whitney U test).

In order to examine distribution of sleep episodes,
microarousals, and SWD over 24-h time interval, we per-
formed additional analysis. Duration of sleep was measured
in each hour, Δh, as well as the number of sleep episodes, NS;
relative duration of sleep per min was computed as T =∑S ∈

ΔhTs/60. The relative number of microarousals and SWDs
were computed as:

Nmah i ¼ Nma

T � 60; Nswh i ¼ Nsw

60
: ð8Þ

Figure 4b–d demonstrates the results of 24-h dynamics of
SWDs, microarousals, and sleep episodes in three epileptic
rats (#1, #3, and #5). These data indicate that, first, the number
of SWD, Nsw, was higher during the 1st half of light period
that fits well to the literature [29–31], suggesting the presence
of circadian of absence seizures in WAG/Rij rats. Second,
distribution of sleep episodes, NS, and microarousals, Nma,
over 24-h period varied across three rats, therefore, circadian
dynamics of sleep and microarousals was not obvious. This
contradicts to the classical studies in rats indicating that slow-
wave sleep readily occurred at the beginning of the light-phase
and then exhibited a decreasing trend [31]. This discrepancy
might be caused by differences in methodology. Here we used
ECoG synchronization as an objective marker of sleep state
and sometimes included the state of drowsiness (if it meets the
inclusion criteria). No earlier studies have examined the tem-
poral relationship between microarousals, sleep, and SWD
during 24-h period, and we will study this relationship in the
future. In addition, we expect age-related changes in the sys-
tem sleep-microarousals-SWD that will also be examined.

Discussion

Our paper addressed methodological issues, which were cru-
cially important for the automatic analysis of multi-channel
EEG data. First, we proposed wavelet-based method of auto-
matic sleep recognition in rats. We found that an increased
wavelet power in 5–10Hz frequency bandmeasured in frontal
and occipital cortical areas could be used as reliable marker of
behavioral sleep. An increase of 5–10 Hz rhythmic brain ac-
tivity simultaneously in three ECoG channels seems to be a
reliable biomarker of behavioral sleep in rats. This can be
accounted for neuronal synchronization and the presence of

Fig. 4 Individual statistics of
spike-wave discharges and
microarousals automatically
detected in WAG/Rij rats. (a) The
number of spike-wave discharges
Nsw (green scale) and
microarousals Nma (red scale)
detected in 24-h ECoG record in
16 rats 16 rats (# denotes rat’s ID).
The bottom plots show
distribution of the number of
spike-wave discharges Nsw (green
line) and microarousals Nma (red
line) over the time in 24h ECoG
with the dark period highlighted
in gray: (b) rat #1 (Nsw = 302), (c)
rat #3 (Nsw = 168), (d) rat #5 (Nsw

= 152). The total number of sleep
stages, NS, is shown on the
bottom panel
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so-called mid-frequency oscillations such as sleep spindles
and 5–9 Hz oscillations detected in WAG/Rij rats [32, 33].
Further analysis in non-epileptic rats is needed to evaluate an
increase of 5–10 Hz rhythmic brain activity as a hallmark of
behavioral sleep.

Second, we detected microarousals in ECoG as 3–15 s
periods of wakening during sleep using criteria which satisfy
the rules of the American Academy of Sleep Medicine [27].
We found that microarousals interrupted continuous sleep in
all individuals, and they were missed by visual inspection, but
were accurately detected using the proposed method. Our
analysis was done in rats with genetic predisposition to ab-
sence epilepsy (WAG/Rij), in which epileptic activity varied
from 0 (non-epileptic rats) to 302 seizures per 24 h. Statistical
results demonstrated that the number of microarousals in non-
epileptic rats showed a strong tendency to be lower than in
epileptic rats; therefore, absence epilepsy seems to promote
microarousals. Sleep microstructure in WAG/Rij rats is
known to differ from that in healthy rats. In as much as
SWDs predominantly occur during drowsiness and light
slow-wave sleep, during transition from wakefulness to sleep
[21], slow-wave sleep in WAG/Rij rats was often interrupted
by the occurrence of SWDs. In addition, WAG/Rij rats show
longer intermediate sleep state [28].

The nature of microarousals in epileptic patients has been
studied by prof. Peter Halász and his coauthors [10–13] sug-
gesting antagonistic relationship between sleep promoting
system and the arousal-promoting systems. Standard sleep
scoring systems identify states (i.e., wake, rapid eye move-
ment (REM) and non-rapid eye movement (NREM) sleep),
but not transient event (i.e., microarousals). However, reliable
identification of transient microarousals might be useful for
both clinical and theoretical purposes as it was stressed by
[27]. Statistical analysis of microarousals may expand our
understanding of the nature of sleep and its disturbances.
The interest to the microarousal state has recently been in-
creased, and studies of microarousals were done in patients
with epilepsy [12, 34], apnea [35], primary insomnia [36],
chronic pain syndromes such as migraine [37, 38], and car-
diovascular vascular diseases [39].

One of the key problems in automatic detecting
microarousals - assessment of the moments of falling asleep.
A number of studies have considered the possibility of auto-
matic diagnostics of micro-awakenings in patients based on
the analysis of EEG together with ECG and/or EMG data
[40–42]. The proposed method has at least two advantages.
F i r s t , i t i s r a t h e r s imp l e and r equ i r e s s o l e l y
electrocorticographic data. Second, it implements a fully au-
tomatic signal processing cycle by taken into account individ-
ual characteristics of EEG dynamics such as the threshold
values T↑ (5) and T↓ (5). The limitation of the proposed meth-
od relates to its restricted application toWAG/Rij rats. Further
development of the proposed method in rodent models and in

human patients may facilitate automatic analysis of sleep and
better understand phenomenology of arousals during sleep in
physiologic and pathologic conditions.

Conclusion

Our study is the first to propose an automatic wavelet-based
method of sleep recognition in rats that relies upon multi-
channel electrocorticographic data. We defined a reliable
marker of behavioral sleep—an increased wavelet power in
5–10 Hz frequency band as measured in frontal and occipital
cortical areas. Second, we introduced an approach for the au-
tomatic detection of microarousals using criteria which satisfy
the rules of the American Academy of Sleep Medicine [27].
Transient interruptions, such as microarousals during sleep,
are often overlooked, because they could not be recognized
by standard sleep stage scoring systems. According to our
results, the number of microarousals in non-epileptic rats
showed a strong tendency to be lower than in epileptic rats;
therefore, absence epilepsy seems to promote microarousals.

Epilepsy could successfully be modeled in vivo, more spe-
cifically, in genetic rat models. The proposed method was
developed in WAG/Rij rats, and it could be directly applied
to other rodent models. With regard to differences between rat
and human brains, we hope that the proposed approach can be
adjusted to the analysis of humans EEG data.
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