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ABSTRACT

Purpose. Optimal value of the embedding lag calculation is made. Lag is one of empirical parameters of math-
ematical models, used in autoregressive models for prediction, coupling analysis, signal classification etc.
Methods. The first minimum in the dependence of the mutual information function on the time lag was de-
tected.
Results. The calculation showed that the optimal lag is about 8 sampling intervals (1/64 s or 1/8 of the char-
acteristic oscillation period for the absence seizures).
Discussion. The optimal lag is about 1/8 of the characteristic oscillation period was obtained for both epilep-
tiform and background activity, including preictal and different stages of ictal activity, i. e. this time scale is
present in the signal throughout the observation time.
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1. INTRODUCTION

Generalized spike-wave discharges (SWD) are formed due to dysfunction of the thalamo-cortical system. They
are an electroencephalographic sign of absence epilepsy. Absence epilepsy is a widespread among children and
adolescents (up to 50% of the total number of cases of all types of epilepsy) form of epilepsy, which etiology is not
completely clear. The main manifestations of absentee epilepsy are partial or complete losses of consciousness
for a short time.

Patients with absence epilepsy do not have indications for invasive studies and surgical interventions. This
limits the possibilities of acquisition of information about the neurobiological mechanisms of this disease. There-
fore, experimental work is traditionally carried out on rats of two inbred lines with a genetic predisposition to
absence epilepsy: GAERS and WAG/Rij.1–4 Pharmacological, behavioral and electroencephalographic signs of
absence epilepsy in them are similar to those in humans.5–7

For humans, the main oscillation frequency during SWD decreases from 5 Hz at the beginning to 3 Hz at the
termination, the seizure duration has an average of 5–6 s. In GAERS rats, the main frequency decreases during
the seizure from 8 Hz to 7 Hz, the average seizure duration is 15 s. In WAG/Rij rats, the sharpest drop in the
main oscillation frequency is observed — from 11 Hz to 8 Hz during the first 1 s of the discharge, the average
seizure duration is 8 s.8

Application of various measures and criteria of nonlinear dynamics and mathematical statistics to electroen-
cephalograms of patients suffering from various pathologies has a long history.9 From the point of view of
nonlinear dynamics, the electroencephalogram is nothing but an experimental time series. In some problems
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such as: determination of connections between different EEG channels,10–13 series clustering,14 diagnostics of
interaction between the central nervous system and the motor system,15 separation of pathologies and norms
and others, it is useful to build an empirical mathematical model from experimental time series. If the properties
of the experimental data are used to specify the model parameters and the nonlinear function form, then signifi-
cantly fewer coefficients will be needed, which will increase the estimation reliability. Also, a smaller time series
length can be used to build a model. This in turn makes it possible to have a higher temporal resolution when
observing changes in signal characteristics over time. The above is essential for biosignals where the stationarity
time is limited.

The purpose of this work is to calculate the optimal value of the embedding lag, which is one of empiri-
cal parameters of mathematical models, used in autoregressive models for prediction, coupling analysis, signal
classification etc.

2. METHODS

2.1 ANIMALS AND DATA

In this work, 130-minute recordings of intracranial EEG (signals of local field potentials, LFPs) from 6 male
WAG/Rij rats were analyzed, 2 experimental recordings from different experiments were considered for each
animal, with 28 seizures for each animal in each experiment. All seizures were spontaneous. The data were
obtained at a sampling rate of 512 Hz and recorded by a 16-bit ADC with hardware filtering in the 1-99 Hz
range and suppression of 50 Hz interference. Four channels corresponding to the hippocampus (Hp; AP −3.5;
L 2; depth 3.5), parietal cortex (PC; AP −1.6; L 4), frontal cortex (FC; AP 3.5; L 3) and occipital cortex (OC;
AP −6; L −3.5) cortex were recorded. The position of all electrodes was verified histologically.

The length of the selected seizures was at least 6 s. Six intervals (epochs) of 2 s length were extracted
from each seizure with surrounding in time activity (table 1). The analysis was performed for each epoch. For
convenience, the seizure onset time is considered as 0 s and the seizure termination is taken as T s. These epochs
were selected in accordance with the results reported in.16 Preictal activity is at this time, as a rule, changes
in connectivity leading to seizure initiation are detected already.17,18 Decoupling is this interval corresponds
mainly to the moment of decoupling found in.16

Table 1. The analyzed epochs

Epoch Time interval

background activity [−5;−3] s before the seizure onset
preictal activity [−2; 0] s before the seizure onset
decoupling [0; 2] s after the seizure onset
seizure maintenance [2; 4] s after the seizure onset
postictal stage [T ;T + 2] s after the seizure termination
termination [T − 2;T ] s before the seizure termination

The time series of recording intracranial EEG for the parietal cortex is shown in fig. 1.

2.2 FORECASTING MODEL

Since the time series containing the absence seizures are quite short and irregular (see Fig. 1), it was decided to
construct models in the form of model maps (Eq. 1) rather than differential equations:

x′n+τ = f
(
xn, xn−l, . . . , xn−(D−1)l

)
, (1)

where xn =
(
xn, xn−l, . . . , xn−(D−1)l

)
is a state vector reconstructed by means of the method of delays,19–21

which is a classical approach to transpose time series in phase space, i. e. to obtain the high-dimensional state
vector from the scalar time series (black points in fig. 2) {xn}Nn=1 for each time point, x′n+τ is the predicted value
(grey star is in fig. 2) corresponding to the measured value xn+τ (triangle is in fig. 2), f is approximating function
(polynomial of the order P in our case), τ is the length of prediction interval (prediction length), i. e., the time
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Figure 1. The time series of local field potentials from the parietal (somatosensory) cortex (signal of rat No. 6 is used).
The colored background indicates the intervals studied in the work: Red [−5;−3] s before the seizure onset (background
activity); Yellow [−2; 0] s before the seizure onset (preictal activity); Green [0; 2] s after the seizure onset (decoupling);
Blue [2; 4] s after the seizure onset (seizure maintenance); Dark Purple [T − 2;T ] s before the seizure termination; Purple
[t;T + 2] s after the seizure termination (postictal stage).

lag between the last point used for vector reconstruction and predicted point, D is embedding dimension that is
actually the number of components in a state vector, l is a time delay (or lag), i. e. time interval between EEG
values is used to construct the state vector.

Model coefficients are estimated using the least-squares routine22 by minimizing the squared prediction error,
that measures the difference between the predicted values x′n+τ and the observed ones xn+τ . In this example
model parameters are: τ = 12, l = 5, D = 5.
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Figure 2. Time series plot with absence seizure, where parameters of adapted nonlinear model are shown. Points of time
series {xn}Nn=1 are marked with black dots. The point to be predicted xn+τ is marked with a triangle. The predicted by
model value x′n+τ is marked by a gray star. Points used for prediction (state vector components) are marked with circles.
Notation: l is embedding lag, τ is a prediction length. In this example model parameters are: τ = 12, l = 5, D = 5.

This work aims to find the optimal value of the embedding lag for state vector reconstruction from time series
of WAG/Rij rats et the seizure. Previously, the optimal lag has already been estimated using the BIC23 together
with the optimal model dimension and the optimal polynomial order18 and in combination with the prediction
length.24 Here we offer another approach for independent selection of the optimal lag and compare results of
this approach to previous ones.
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2.3 OPTIMAL LAG

It was shown19 that when reconstructing a state vector over scalar time series, the optimal way to determine
the embedding lag is to select it as the first local minimum based on the dependence of the mutual information
function of the experimental series on itself shifted in time. Therefore, in this paper, in each case (animal, record
number, epoch), different lags were considered in the range from zero to the half of the characteristic period.
Then, the value corresponding to the first minimum of Ix,y(l) was chosen.

The mutual information function Ix,y between two samplings (in our case — time series) {xn}Nn=1 and {yn}Nn=1

characterizes the degree of series similarity. Applied to the same series with a shift when yn = xn−l, the function
shows how quickly the system forgets its past state. There are several approaches to calculation Ix,y. We used
a relatively modern approach proposed in,25 which is based on the counting nearest neighbors of the point in
(X,Y ) plane. This approach is known to have the least demands on the data volume, which is important in the
study of non-stationary physiological signals by nature. The final formula (2) to estimate the mutual information
function is as follows:

Ix,y = ψ(N) + ψ(1)−
〈
ψ(nx(i) + 1) + ψ(ny(i) + 1)

〉
i
, (2)

where N is the series length, nx(i) and ny(i) are the number of neighbors of the i-th point on the plane (X,Y ),
ψ(n) is the digamma function.

Since the method has a significant computational complexity, a sorting algorithm26 was used.

3. RESULTS

The first minimum in the dependence of the mutual information function on the time lag was detected. Further,
the histogram of frequencies for the first minima of the function Ixy(l) depending on the l was plotted for each
epoch for all records of all studied animals for the four studied channels (see Fig. 3). It is worth noting that
such histograms were also built separately for different records for different animals, and they look very similar
to the cumulative histogram plotted in Fig. 3. This means that the results for all animals are very close.

Six subfigures of Fig. 3 correspond to 6 different considered epochs (see Fig. 1): background, preictal, onset,
maintenance, termination, and postictal. On the X-axis, the step at which the first minimum of the mutual
information function is reached is plotted, i. e. the desired optimal model lag is postponed. On the Y-axis, the
frequency is deferred.

The calculated histogram showed that the optimal lag is about 8 sampling intervals (1/64 s or 1/8 of the
characteristic oscillation period for the absence seizures). This result was obtained for both epileptiform and
background activity, including preictal and different stages of ictal activity, i. e. this time scale is present in the
signal throughout the observation time.

4. DISCUSSION

Earlier,27 it was shown that for records containing absence seizures, the optimal embedding lag for empirical
modeling can be estimated as l = Θ/10, where Θ is the characteristic oscillation period. This result was obtained
using the BIC23 together with the optimal model dimension and the model polynomial order as a result of the
single procedure.

Then,24 it was shown that the optimal lag is related to the prediction length. And when choosing a prediction
length close to Θ/4, the optimal lag should be equal to l = Θ/12. In that work, the selection was made not
aiming forecast as a goal, but immediately for the Granger causality method, which used these predictive models,
considering sensitivity and specificity of the coupling analysis as a primary goal. For this, special criteria have
been developed.

In this paper, the optimal model lag was selected according to the first minimum of the mutual information
function, which theoretically should lead to the fact that the state vector used in the construction of an individual
model for the studied time series contains maximum information about the object. As a result, the value of
the optimal lag l = Θ/8 was obtained. Nevertheless, it can be seen that all the estimates obtained by different
methods for lag are quite close.
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Figure 3. Histogram of frequencies for the first minimum of the mutual information function. X-axis: the step at which
the first minimum of the mutual information function is reached. Y-axis: the frequency (number of times reached) for
the first minimum. Each subfigure corresponds to one of the time intervals: background, preictal, onset, maintenance,
termination, and postictal.
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