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• Ensembles of Van der Pol, Rayleigh and FitzHugh–Nagumo systems are reconstructed.
• The method allows to reconstruct arbitrary nonlinear potential function.
• Linear and nonlinear couplings by coordinate and by derivative were considered.
• High order dissipation functions of individual nodes were approximated and fitted.
• Ensembles up to 128 element were studied in chaotic and periodic regimes.
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a b s t r a c t

The method for reconstruction of nonlinear potential, dissipation and coupling functions for all elements
of ensembles of coupled generalized Van der Pol oscillators (including Rayleigh and Bonhoeffer–Van der
Pol oscillators) from multivariate time series is proposed.

It is based on the idea of using the smoothness of reconstructed potential function as a criterion
for quality of reconstruction. Therefore, no parametrization for potential is required and an arbitrary
potential function unique for each oscillator in the ensemble can be considered. Different approaches to
reconstruction of dissipation are studied. Linear and nonlinear coupling between oscillators is considered,
including coupling by derivatives. Effects of measurement noise, contaminating the series, are taken into
account.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

The problem of system reconstruction (also known as system
identification) from time series has been well known for many
years, and many general and special algorithms were developed.
The reviews can be found in [1–3]. The most known approaches
can be classified, using the following criteria:

• an approach targets a single dynamical systemor a network;
• an approach considers scalar time series (with possible

some variables hidden) or vector series;
• an approach targets dynamical systems with possible mea-

surement noise (most methods), or a stochastic differential
equations, where noise plays a fundamental role, like [4]
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(sometimes Bayesian approach is also used to reconstruc-
tion of dynamic systems [5]);

• an approach was developed for some general purpose (e. g.,
see [6]) or for some particular class of systems like nonau-
tonomous ordinary differential equations (ODEs, [7]), time
delayed systems [8], or stochastic phase oscillators [9].

The interest to the problem of equation reconstruction (at first,
a problemof identification of a single dynamical system)was rising
and dropping a number of times in the past. The first results were
achieved in [10]. The hidden variable approach [11] gave some
hope to reveal dynamics for models well written from the first
principles, if some variables are missing. This case is sometimes
referenced as ‘‘white box’’, since everything is known about the
system except some parameters and some dynamic variables.
Then, the more general, but less robust approach was proposed
in [6,12], using polynomial approximation and sequential differ-
entiation and/or time delay vector reconstruction. In contrary to
the previous one, this case is referenced as ‘‘black box’’ — nothing
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is actually known except time series. However, both techniques
occurred to be hardly to apply to experimental data. This was
recognized, and specific techniques for some narrow classes of
systems in special cases were developed [13], including nonau-
tonomous systems [7,14] and time delayed systems [8]. Since the
approaches based on general functional series for approximation
of nonlinear functions are usually very inefficient, some efforts
were made for removal of superfluous terms [15]. The number of
approaches was developed based on perturbed dynamics, includ-
ing driving response approaches [16,17] and methods based on
transient processes [18].

Recently, a new approach to the problem was proposed in
[19–21] for systems, where all dynamical variables are considered
to be known, butmanydifferent nonlinearities are included in form
of a sparse functional matrix. Such an approach can be considered
as a new generation of ‘‘black box’’ problemmethods, but simpler,
since the task of phase vector reconstruction is not considered, and
only one derivative is estimated numerically or evenmeasured ex-
plicitly. The method [20] allows to reconstruct a network, not only
the autonomous system, but the network is actually considered as
a single high dimensional oscillator. Also, authorsmention that the
approach is not efficient for large dimensions due to very fast rise
of the problem complexity with an increase of the dimension.

There are also special methods for reconstruction of systems
with varying parameters. The early works used the same methods
as for stationary systems, but in moving time window [22]. Then,
artificial neural networks in combination with the Monte Carlo
Markov chain analysis were proposed [23], and amethod based on
sparse functional matrix fitting [24]. These techniques often aim to
predict bifurcation or some other critical behavior.

The fine but not complete reviews of network reconstruction
oriented approaches can be found in [25,26]. These techniques can
be very relevant for biological applications, especially in neuro-
science, where the problem of coupling analysis between different
brain regions or between individual neurons is of great importance.
Possible applications may also be found in other fields, like radio-
engineering, climate study, econometrics or social sciences.

Often, network oriented approaches focus mostly on the net-
work structure and consider the equations for individual nodes as
simple as possible. In particular, auto-regressive models of first
order [27] or Kuramoto-like oscillators [9] are considered. Well
known approaches to coupling detection: Granger causality [28]
and partial directed coherence [29] are also based on autoregres-
sive models, but some generalizations for nonlinear cases were
proposed in [30–32]. Additionally, approaches for nonstationary
data were developed in [33,34]. As an exception, a fine technique
for reconstruction of a network with Rössler or Lorenz oscillators
was proposed in [35],which can be easily generalized for other sys-
tems. Use of simple models for nodes limits applicability of these
approaches, since themajority of biological or climate studies con-
siders individual subsystems to be complex andmultidimensional.
Therefore, many researches prefer not to reveal actual physical
and structural links and to focus on functional couplings, using
the measures of theory of information, like transfer entropy [36],
which do not deal with equations for individual nodes at all.

In this study the new, simple and numerically effective ap-
proach for reconstruction of networks of generalized Van der Pol
oscillators [37] with unknown nonlinear functions is proposed. It
is mostly based on the idea of nonparametric reconstruction of a
nonlinear function for individual nodes, proposed for two coupled
time-delay systems in [8], and generalized for larger ensembles
in [38]. This idea aims to reduce the parametrization in comparison
to the direct approaches such as [39], for which all nonlinear
functions of individual nodes have to be parametrized in order to
be reconstructed. Although parametrization is a powerful tool and
avoiding it completely is not a good idea in a typical case. In the

currentwork parametrization is used to reconstructmore complex
generalizations of Van der Pol oscillator, which include additional
nonlinear functions for dissipation and coupling.

Though the proposed technique can be considered as a combi-
nation of previously published ideas, it is unique from the point of
view of considered object. Van der Pol oscillator is one of the basic
models for the theory of oscillations, having many applications.
And it is the simplest model in the form of ODEs, being able
to demonstrate self-oscillations. The most recent review on this
theme can be found in [40]. Generalized Van der Pol oscillator
is also popular due to increased number of effects which it can
reproduce, see e. g. [41,42]. The examples of biological applica-
tions of the generalized Van der Pol oscillator can be seen in
the following papers: in [43] generalized Van der Pol oscillator
underlies active signal amplification in drosophila hearing; in [44]
and [45] generation of electrical activity by neurons and myocytes
is modeled by networks of generalized Van der Pol oscillators; a
generalized Bonhoeffer–Van der Pol oscillator was reconstructed
from data to describe living pacemaker neurons in [46]; in [47,48]
Van der Pol oscillators were used for modeling acoustical effects
in human vocal folds, in [49] — for modeling absence epileptic
seizures.

So, the applicability of generalized Van der Pol equation to the
real tasks, possibility to reconstruct the network based on multi-
variate time series having only one scalar series per each node (the
second coordinate can be achieved with numerical differentiation
or integration), and number of recent fruitful approaches dealing
with networks of first order oscillators like in [50] allow to hope
that the current study results will be useful.

2. Method

2.1. Ensemble of coupled oscillators with unknown potential function
and original dissipation function

Let us consider an ensemble of diffusely coupled generalized
Van der Pol oscillators with arbitrary nonlinear potential functions
fi(x):

ẍi −
(
ri − x2i

)
ẋi + fi(xi) =

D∑
j=1,j̸=i

ki,j
(
xj − xi

)
, (1)

where i is a number of an oscillator (node) in the ensemble, ri is a
parameter of linear dissipation (ri = 0 corresponds to Andronov–
Hopf bifurcation), and D is a number of nodes.

Let us consider time series {xi(tn)}Nn=1 of allD nodes of ensemble
to be measured with sampling time ∆t , where N is a series length.
For simplicity, let us denote xi(n) = xi(tn).

Following [38], let us sort all measured values of xi(n) and intro-
duce the map Qi(n), pointing from the number n of a value xi(n) in
the original series to its new number in the sorted one. Actually, it
does no matter what algorithm of sorting is used (except maybe
calculation time issue). It is also no matters whether sorting is
performed by an increase like here, or by a decay. The goal of
sorting is to find the data vector which has the xi value closest
to the current one, but simultaneously to guarantee using such a
point only once. Otherwise, the additional efforts to avoid linearly
interdependent lines in the matrix during least-squares algorithm
have to be performed further like in [50]. The sorting is done again
for reconstruction of every node, so the measured vectors, corre-
sponding to the considered timemoment, are kept unchanged, but
sorted by an increase of xi value, when the reconstruction of ith
oscillator is performed. The reverse map would be Q−1

i , leading to
Q−1
i (Qi(n)) = n.
Then, let us consider two sequential values in the sorted series

with numbers Qi(n) and Qi(n) − 1, which have the numbers n and
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pn = Qi
(
Qi(n) − 1

)
in the original series. The distance between

these values is generally as lesser as larger the length of the se-
ries, being very close for sufficient value of N under the obvious
assumption that the total series variance is limited.

Let us assume also that the functions fi are continuous, or they
have a finite and small in comparison to N number of discontinu-
ities of the 1st kind. If so, the close values of functions fi would
correspond to the close values of xi, so, values fi

(
xi(n)

)
and fi

(
xi(pn)

)
occur to be very close. Let us denote the difference between them
as δi(n):

δi(n) = fi
(
xi(n)

)
− fi

(
xi(pn)

)
. (2)

Let us subtract fi from (1), and then put it to (2), given the
following set of equations:

fi(xi) = −ẍi +
(
ri − x2i

)
ẋi +

D∑
j=1,j̸=i

ki,j
(
xj − xi

)
(3)

∆xi(n) = xi(n) − xi(pn) (4)

∆ẋi(n) = ẋi(n) − ẋi(pn) (5)

∆ẍi(n) = ẍi(n) − ẍi(pn) (6)

δi(n) = −∆ẍi(n) −
(
ẋi(n)x2i (n) − ẋi(pn)x2i (pn)

)
+

ri∆ẋi(n) +

D∑
j=1,j̸=i

ki,j
(
∆xj(n) − ∆xi(n)

)
. (7)

Let us consider the sum of squares of all δi(n) for the given i as a
function of coupling and dissipation parameters ki =

(
ki,1, ki,2, . . .

ki,D
)
and ri:

S2i (ri, ki) =

N∑
n=1

δ2i (n), (8)

where Qi(n) ̸= 1 due to the fact that for this point there is no
previous one in the sorted series (the corresponding value is a
global minimum of xi in the whole measures series). This sum
is analogous to description length target function used in [8].
The mostly similar idea, actually, was used for neural networks
reconstruction in [51], but with a different formalism.

All terms of the sum (8) can be classified to belong to one of
two types: first two terms for each δi(n) are constants, the next
D terms are a linear combination of known values with unknown
coefficients before them (ri and coupling coefficients ki,j, taking
into account that i ̸= j). Since the value S2i should be very small,
one can reduce the considered problem of reconstruction to the
task of the target function (8) minimization. This task can be
solved as a usual linear least-squares problem, i. e. a problem of
approximation of values (9) with a linear combinations of values
∆ẋi(n) and

(
∆xj(n) − ∆xi(n)

)
, which could be considered as basis

functions.

βi(n) = ∆ẍi(n) +
(
ẋi(n)x2i (n) − ẋi(pn)x2i (pn)

)
(9)

One can easily find that limN→∞δi(n) = 0. However, neither basis
functions ∆ẋi(n) and

(
∆xj(n) − ∆xi(n)

)
, nor values βi(n) to be ap-

proximated tend to zero with N → 0, since proximity of xi values
in the sorted series does not mean automatically any proximity
of time derivatives or values of different xj. The derivatives and
coordinates for different nodes could occur proximate only under
generalized synchronization condition.

In the paper [38] the time delay was mentioned as a source of
success of the proposed approach. Actually, it was not completely
correct, since the time delaywas useful but not obligatory assump-
tion.

In summary, one can estimate dissipation parameters ri and
coupling coefficients ki,j by minimizing target function S2i sepa-
rately for every oscillator in the ensemble. Then, functions fi can
be calculated following formula (3) based on estimated values of ri
and ki,j.

2.2. Ensemble of oscillators coupled linearly both by coordinates and
velocities

Let us consider the first generalization of the model (1) by
introducing additional coupling terms

(
ẋj − ẋi

)
:

ẍi −
(
ri − x2i

)
ẋi + fi(xi) =

D∑
j=1,j̸=i

ki,j
(
xj − xi

)
+

D∑
j=1,j̸=i

k′

i,j

(
ẋj − ẋi

)
. (10)

The derivatives ẋi may be considered as velocities in mechanics
or as currents in electrodynamics, if xi is a coordinate or charge
respectively; in neuroscience it could also have some other, less
clear meaning.

To solve the reconstruction problem in presence of an addi-
tional coupling, let us reformulate (7) by introducing an additional
term:

δi(n) = −∆ẍi(n) −
(
ẋi(n)x2i (n) − ẋi(pn)x2i (pn)

)
+ ri∆ẋi(n) +

D∑
j=1,j̸=i

ki,j
(
∆xj(n) − ∆xi(n)

)
+

D∑
j=1,j̸=i

k′

i,j

(
∆ẋj(n) − ∆ẋi(n)

)
(11)

Then, the reconstruction can be performed by minimizing the
target function (8) similarly to the previously considered case.

2.3. Ensemble of oscillators with unknown potential and dissipation
functions

Let us consider another generalization of the model (1), where
a dissipation function gi(x) is unknown:

ẍi + gi(xi)ẋi + fi(xi) =

D∑
j=1,j̸=i

ki,j
(
xj − xi

)
. (12)

The method can be generalized for this case, if some reasonable
approximation is used for gi(x). The simplest possibilities are either
some basis, for example polynomial or trigonometrical, or local lin-
ear approximation. In some cases radial or cylinder basis functions
could be considered, since they partly combine both approaches.
An alternative model-free approach for basis expansion was pro-
posed in [52].

If we consider the polynomial decomposition of gi(x) into the
polynomial (13) of order P , then δi(n) can be rewritten as (14).

gi(x) =

Pg∑
ν=0

ρi,νxν
i , (13)

δi(n) = −∆ẍi(n) −

Pg∑
ν=0

ρi,ν
(
ẋi(n)xν

i (n) − ẋi(pn)xν
i (pn)

)
+

D∑
j=1,j̸=i

ki,j
(
∆xj(n) − ∆xi(n)

)
(14)

In such a case, the least-squares problem is reformulated as fol-
lows: ∆ẍi(n) are values to be approximated instead of βi(n), and
the total number of basis functions in (8) increases to (D + P).
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If one chooses to use a local linear approximation for gi, the
whole interval of measured values of xi should be split into L bins,
denoted further as [xi]l, where l = 1, 2, . . . , L. The edges of these
bins can be found by making the assumption of their equal length
or equal number of points frommeasured series in all bins. This can
be done easily, since the sorted series is already given. Then, gi(x)
can be presented as (15), leading to the formula (17) for δi(n).

gi(x) =

L∑
l=1

gi,l(x), (15)

gi,l(x) =

{
κi,lx + χi,l, if x ∈ [xi]l,
0, otherwise. (16)

δi(n) = −∆ẍi(n) − κi,l
(
ẋi(n)xi(n) − ẋi(pn)xi(pn)

)
− χi,l∆ẋi(n) +

D∑
j=1,j̸=i

ki,j
(
∆xj(n) − ∆xi(n)

)
(17)

Polynomials can behave bad (oscillate a lot) at the ends of the
considered intervals. In such a case local linear approximation
should be preferred. But one needs to use relatively large number
of bins to get a smooth enough approximation, so the number of
coefficients would be significantly higher in the common case.

2.4. Ensembles of generalized oscillators with high order dissipation

The method can be adapted to some very well known and
important generalizations of Van der Pol oscillator: Rayleigh os-
cillator [53] and Bonhoeffer–Van der Pol oscillator, also known as
FitzHugh–Nagumo model [54,55]. The latter is of the particular
interest for neuroscience applications.

Let us consider the following generalization of Eq. (10):

ẍi + gi(xi)ẋi + g ′

i (xi)ẋ
3
i + g ′′

i (xi)ẋ
5
i + fi(xi)

=

D∑
j=1,j̸=i

ki,j
(
xj − xi

)
+

D∑
j=1,j̸=i

k′

i,j

(
ẋj − ẋi

)
. (18)

Generally, it can be extended even over the cubic term for ẋi
without limitations, but each an additional term would increase
the number of coefficients,making the procedure of reconstruction
less robust. This generalization directly includes the case of cou-
pled Rayleigh oscillators. The coupled FitzHugh–Nagumo oscilla-
tors can be rewritten to this form by the linear change of variables.

All functions gi(x), g ′

i (x), and g ′′

i (x) have to be approximated
explicitly. The piecewise linear approximation analogous to (15),
(16) is considered further. For such an approximation the formula
for δi(n) can be written as follows:

δi(n) = −∆ẍi(n) − κi,l
(
ẋi(n)xi(n) − ẋi(pn)xi(pn)

)
− χi,l∆ẋi(n)

− κ ′

i,l

(
ẋ3i (n)xi(n) − ẋ3i (pn)xi(pn)

)
− χ ′

i,l

(
ẋ3i (n) − ẋ3i (pn)

)
− κ ′′

i,l

(
ẋ5i (n)xi(n) − ẋ5i (pn)xi(pn)

)
− χ ′′

i,l

(
ẋ5i (n) − ẋ5i (pn)

)
+

D∑
j=1,j̸=i

ki,j
(
∆xj(n) − ∆xi(n)

)
+

D∑
j=1,j̸=i

k′

i,j

(
∆ẋj(n) − ∆ẋi(n)

)
. (19)

The resulting approach demands to estimate D · (6 · L+ 2 · (D− 1))
coefficients.

2.5. Ensemble with unknown coupling functions

Let us consider that coupling is not linear, but there is some
unknown nonlinear function h(xj − xi). In contrary to [50], let

us consider possibility of different coupling functions for each
coupled pair of nodes in each direction. So, Eq. (1) can be rewritten
as (20):

ẍi − (ri − x2i )ẋi + fi(xi) =

D∑
j=1,j̸=i

hi,j
(
xj − xi

)
, (20)

Each coupling function hi,j can be decomposed. Local linear
approximation is not suitable for coupling functions, since all (D−

1) differences (xj−xi) must be sorted and separate binsmust be es-
tablished. This will cause very large segmentation. Actually, this is
similar to establishing bins in (D−1)-dimensional space. Therefore,
let us limit our consideration to the polynomial decomposition of
form (21) only.

hi,j(x) =

Ph∑
ν=1

γi,j,νxν (21)

Constant term in the decomposition (21) can be neglected, since
it must be the same for all hi,j with the same i (otherwise we will
face a problemof linear interdependence).Moreover, the proposed
technique is not able to determine a constant shift in coupling
function, since constant terms for all xi(n) and xi(pn) are the same.
Therefore, these terms are canceled in the formula for δi(n).

Considering the original dissipation function (20) and polyno-
mial approximation for gi, formula for δi(n) can be rewritten as
follows:

δi(n) = −∆ẍi(n) +
(
ẋi(n)x2i (n) − ẋi(pn)x2i (pn)

)
+ ri∆ẋi(n) +

D∑
j=1,j̸=i

Ph∑
ν=1

γi,j,ν

((
xj(n) − xi(n)

)ν
−

(
xj(pn) − xi(pn)

)ν
)
. (22)

Let us also consider the more general case, when neither po-
tential function fi(x), nor dissipation function gi(x), nor coupling
functions hi,j(x) are known. In this case the ensemble equations can
be written as (23):

ẍi + gi(x)ẋi + fi(xi) =

D∑
j=1,j̸=i

hi,j
(
xj − xi

)
. (23)

Using polynomial decomposition of dissipation function (14)
and polynomial decomposition of coupling functions (21), the dif-
ferences δi(n) are reformulated as follows:

δi(n) = −∆ẍi(n) +

Pg∑
ν=0

ρi,ν
(
ẋi(n)xν

i (n) − ẋi(pn)xν
i (pn)

)
+

D∑
j=1,j̸=i

Ph∑
ν=1

γi,j,ν

((
xj(n) − xi(n)

)ν
−

(
xj(pn) − xi(pn)

)ν
)
. (24)

So, the problem is reduced to a least-squares problem with(
Ph(D − 1) + Pg + 1

)
unknown coefficients.

Using the local linear approximation for the dissipation function
(15), the differences δi(n) are rewritten as follows:

δi(n) = −∆ẍi(n) + κi,l
(
ẋi(n)xi(n) − ẋi(pn)xi(pn)

)
+ χi,l∆ẋi(n) +

D∑
j=1,j̸=i

Ph∑
ν=1

γi,j,ν

((
xj(n) − xi(n)

)ν
−

(
xj(pn) − xi(pn)

)ν
)
, (25)

where l is determined by the (16). So, the problem is reduced to
least-squares with (Ph(D − 1) + 2L) unknown coefficients.

3. Results

To test the proposed approach, the numerical simulations of
ensembles of all considered in the previous section generalizations
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Fig. 1. Panels (a, c, e): time series of oscillator No 1 from the ensemble of D = 16 oscillators. Panels (b, d, f): the nonlinear potential function f1 , black line depicts the
original function, orange line depicts the function reconstructed in absence of measurement noise (it was specially plotted thicker), and blue dots correspond to the function
reconstructed from series contaminatedwith themeasurement noisewith standard deviation equal to 0.002. Panels (a, c) correspond to the original ensemble (1) in a chaotic
regime, panels (b, d) — to the ensemble (10) with the additional coupling by derivatives also in a chaotic regime, panels (e, f) correspond to a periodic regime in the original
ensemble (1). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

of Van der Pol oscillator were performed for different number of
nodes.

3.1. Reconstruction of ensemble with the original dissipation function
and linear coupling

For the original oscillator (1) coupling matrices were gener-
ated for different number of nodes D, varying from 4 to 64. Only
ensembles demonstrating chaotic behavior were considered for
reconstruction. The potential functions fi were set to the Toda
function (26).

fi(x) = ω2
i

(
1 − e−x), (26)

where ωi are frequencies of small, quasiharmonic oscillations
chosen randomly from the uniform distribution in the interval
[0.4; 1.46], and parameters ri were chosen from uniform distribu-
tion in the interval [0.1; 1.1]. Such a potential cannot be approx-
imated by a polynomial of finite order precisely, so the proposed
technique with nonparametrical estimation makes an additional
sense. Interestingly, Van der Pol oscillator with such a potential
was considered as a model of a laser in [56].

Coupling coefficients ki,j were generated from uniform distri-
butionwith zero low bound and standard deviation equal to J/

√
D,

where J = 0.5 in most considered cases.

Equations were solved using standard 4th order Runge–Kutta
algorithm with sampling time interval ∆t = 0.01. The transient
process of length of Ntrans = 215 sampling time intervals was
missed. Vector time series of length N = 214 from all ensemble
elements were recorded. Time series of one node of an ensemble
composed from D = 16 oscillators are shown in Fig. 1(a).

The reconstruction procedure described in the Section 2.1 was
applied. Since the method should be sensitive to the noise, series
contaminated with a measurement noise (noise realizations were
simply added to the already generated series) were considered.
To estimate the derivatives in such a case, the Savitzky–Golay
filter [57] of the second order was used with different number of
points m in a smoothing window. The low temporal resolution is
well known source of spurious causality [58]. In the considered
examples there was at least 60 data point per one oscillation.

To estimate the quality of reconstruction of individual nodes,
reconstructed nonlinear functions were compared to the original
ones (see 1(b) in both cases: without noise and for noise contam-
inated series. One can see a good correspondence of the original
functions to the reconstructed ones.

To estimate the quality of reconstruction of coupling coeffi-
cients, the distribution of relative errors of coupling estimates
∆k̃i,j = 1− k̃i,j/ki,j was calculated, where k̃i,j are obtained with the
proposed method and ki,j are the original values. The distribution
was plotted for the whole ensemble (240 coefficients in total) in
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Fig. 2. Panels (a, d): the distribution density of relative errors of estimates of coupling coefficients for an ensemble of D = 16 oscillators. The panel (a) corresponds to the
original oscillator (1), while panel (d) corresponds to the oscillator with additional coupling by derivative (10), for which errors in ki,j are indicated in red and errors in k′

i,j
are indicated in gray. Panels (b, e): the same distribution density in case of series contaminated by a measurement noise with the standard deviation 0.002. Panels (c, f):
dependence of a mean relative errors in estimation of coupling coefficients k̃i,j and dissipation parameters r̃i on the number D of oscillators in the ensemble. Panels (a, b,
c) correspond to the case of coupling only by coordinate, see Eq. (1); panels (d, e, f) correspond to the double coupling by coordinate and first derivative, see Eq. (10). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 2(a) and 2(b) for clear and noise contaminated series respec-
tively. The value ±1 corresponds to 100% error in coupling coef-
ficient estimation. One can see that for clear series the errors are
very small. For contaminated series they are significantly higher,
but nevertheless,more than 90% of coefficientswere reconstructed
with errors less than 10%.

To understand how the errors of estimation of coupling co-
efficients and dissipation parameters behave for different num-
ber of nodes, the reconstruction was performed for D =

8, 12, 16, 32, 48 and 64 nodes. Four different ensembles with
different couplingmatrices and different original parameters ri and
ωi were considered for each D. The mean relative errors for ri and
ki,j were calculated following formulas (27) and (28) respectively.

rerr =

⟨⏐⏐⏐⏐ ri − r̃i
ri

⏐⏐⏐⏐⟩
i=1,...,D

, (27)

kerr =

⟨⏐⏐⏐⏐⏐ki,j − k̃i,j
ki,j

⏐⏐⏐⏐⏐
⟩
i,j=1,...,D, i̸=j

, (28)

where r̃i are estimates. Resulting mean errors rerr and kerr were
plotted in Fig. 2(c) for differentD. One can see that an error kerr is in-
creasingwith an increase of number of nodes. This effect should be
expecteddue to the rise of thenumber of coupling coefficients to be
estimated per each scalar series. The particular oscillation regime
in the ensemble also plays some role. Generally, the higher is the
first Lyapunov exponent in the ensemble, the smaller are errors of
reconstructed coupling coefficients and dissipation parameters.

In the presence of contaminating noise, the number of points
m (smoothing time window length for Savitzky–Golay filter used
for numerical estimation of derivatives) becomes important. For
different oscillators in the ensemble the optimal m value can be
different; it can be found empirically taking into account that the
better estimates usually occur for the lower value of the target
function (8).

3.2. Reconstruction of ensembles with two types of coupling

For the case of ensemble with two types of coupling (10), cou-
pling coefficients ki,j were generated from the uniform distribution
with the zero mean and the standard deviation equal to J/

√
D, and

coupling coefficients k′

i,j — from the normal distribution with the
zero mean and the same standard deviation J/

√
D, with J = 0.3.

The typical time series of oscillations can be seen in Fig. 1(c). The
measurement noise with standard deviation of 0.002was added to
series of all nodes after the simulation.

The reconstructed nonlinear function was plotted in Fig. 1(d).
The errors of nonlinear function reconstruction in presence of
noise were larger than for the case of oscillators coupled only via
coordinates (1). However, the quality of reconstruction changed
from one oscillator to another in the ensemble, and it was different
for different ensembles. Four different ensembles were generated
for different number of nodes D = 8, 12, 16, 32, 48 and 64. Dif-
ferent random coupling matrices and different random dissipation
parameters ri were studied.

To characterize the average precision of reconstructed coef-
ficients ri and ki,j, the formulas (27) and (28) were used. The
mean relative error for reconstructed values of coefficients k′

i,j was
established similarly, following Eq. (29).

k′

err =

⟨⏐⏐⏐⏐⏐k′

i,j − k̃′

i,j

k′

i,j

⏐⏐⏐⏐⏐
⟩
i,j=1,...,D, i̸=j

. (29)

These estimates were plotted in Fig. 2(f). The distributions of
parameter estimate errors for all elements of an ensemble of 16
oscillators were plotted in Fig. 2(d) in absence of measurement
noise and in 2(e) in presence ofmeasurement noise,whichwas dis-
tributed normally with the zero mean and the standard deviation
equal to 0.002. Errors for coefficients ki,j were plotted in red, and
errors for coefficients k′

i,j were plotted in gray. The errors without
noise are negligible. But even in the presence of noise, more than
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Fig. 3. Panels (a,c): results of reconstruction of potential function fi , black line shows the original function, orange line (specially plotted thicker) shows the results of
reconstruction using local linear approximation of g , green line (specially plotted even more thicker) shows the results reconstructed using the polynomial approximation
of g; panels (a) and (c) were plotted for two different oscillators of the ensemble of 8 nodes. Panels (b,d) show the result of reconstruction of dissipation function g for the
same oscillators with the samemeaning for colors. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

80% of coefficients are reconstructed with the relative error equal
to 0.25% or less.

Interestingly, there was no significant difference between pre-
cision in reconstructed values of ki,j and k′

i,j even in the presence
of noise, but errors occurred to be much larger for the ensemble
(10) than for the ensemble (1). This means that the total number
of coefficients to be estimated is more important and the error in
estimation of the first derivative is negligible in comparison to the
error in estimation of the second one.

The average errors (27)–(29) increased with the number of
oscillators in the ensemble D at the constant time series length N
(see Fig. 2(f)), what was predictable.

3.3. Reconstruction of ensembles with unknown dissipation function
and linear couplings

To illustrate the efficiency of themethod in the case of arbitrary
unknown dissipation function gi, the Gaussian (30) was used as
gi, since such a function allows to establish regimes similar to the
original ones.

gi(x) = ri − µi

(
1 − e−x2/σ2

i

)
. (30)

The function (30) can be decomposed into an infinite polynomial
series.

The same values of the sampling time ∆t , the series length N
and the transient process length Ntrans were considered, as above.
Values ri were similarly randomly obtained from the uniform dis-
tribution in the interval [0.1; 1.1]. Values of parameters µi were
chosen as µi = 1 + ri in order to achieve robust generation.
Values of parameters σi were obtained randomly from the uniform
distribution in the interval [0.8; 1.2].

Fig. 3 shows the results of reconstruction of potential functions
fi and dissipation functions gi using the polynomial approximation
for gi (green curves) and the local linear approximation (orange
curves). The polynomial order Pg = 12 was chosen as leading to
theminimal values of target function (8). Generally, both functions
f and g occur to be reconstructed fine. However, for some nodes
in the ensemble the polynomial approximation leads to oscillating
tails, as it can be clearly seen from Fig. 3(d). The thickness of
the estimated function f6 oscillate due to these oscillating tails.
Note that following the proposed approach, f was not decomposed

into a series, but calculated using formula similar to (3) after all
parameters had been estimated.

The local linear approximation of g allows to get better results
in comparison to thepolynomial one in some cases: see e. g. Fig. 3(c,
d) for oscillator No 6. But one has to pay for this by an increased
number of coefficients in the model. In particular, in the example
provided the number of bins L = 64, so the total number of
coefficients was D(D − 1) + 2L = 184. At the same time, the
polynomial approximation demanded only D(D−1)+Pg +1 = 69
coefficients. The target function values occur to be very similar for
both types of approximation for 5 oscillators from 8 in ensemble,
but for three others including oscillator No 6 the resulting target
function value for the polynomial approximation was 10–20 times
higher.

Actually, the preferable type of approximation for g cannot
be guessed a priori. But the value of a target function can be
considered as amarker for a better choice. Also, the individual con-
sideration for each oscillator can be preferred. This is not very time
consuming and can be performed automatically, since reconstruc-
tion is done using ordinary linear least-squares routine which has
a number of very efficient realizations. The most time consuming
part of the procedure is usually an application of Savitzky–Golay
filter, but it can be easily moved to GPU.

3.4. Reconstruction of ensembles of oscillators with the high order
dissipation

Reconstruction of the ensemble of oscillators (18) with the
high order dissipation coupled both by coordinate and velocity is
interesting, complex and very relevant for practical applications,
since Rayleigh and FitzHugh–Nagumo systems become included
into the consideration. To study it, the functions gi were chosen
to be same as in the previously considered case, see formula (30).
The functions g ′

i (i) and g ′′

i (x) were considered as second order
polynomials of the form

g ′

i (x) = γ ′

i + α′

ix
2, (31)

g ′′

i (x) = γ ′′

i + α′′

i x
2, (32)

where all coefficients γ ′

i , γ ′′

i , α′

i and α′′

i were chosen randomly
from the uniform distribution with the parameters [0, 0.5]. Such
a choice corresponds to the case of ‘‘normal’’, i. e. positive dissipa-
tion. Ensembles of D = 8 and D = 16 oscillators were studied.
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Fig. 4. Results of reconstruction for two oscillators from the ensemble of D = 16 oscillators of type (18), i.e. with high order dissipation and coupling both by coordinate
and velocity. The upper row (panels a–d) corresponds to the oscillator No 1, the lower row (panels e–h) corresponds to the oscillator No 10. Panels (a, e) show the results of
potential function fi(x) reconstruction, panels (b, f) show the results of dissipation function gi(x) reconstruction, panels (c, g) and (d, h) show the results of reconstruction of
high order dissipation functions g ′

i (x) and g ′′

i (x). The original functions were plotted in black, the functions reconstructed from clear series were plotted in orange thick, the
functions reconstructed from noisy series were plotted in blue. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)

Vector time series of N = 214 points were used similarly to
all previous cases. The additive measurement normal noise with
the zero mean and the standard deviation 0.002 was added to
simulated series.

The results of reconstruction of all functions: potential function
f (x), dissipation function g(x), and high order dissipation functions
g ′(x), g ′′(x) were plotted in Fig. 4 for absence of noise (orange
lines) and in presence of noise (blue lines) for two different os-
cillators. The local linear approximation was used for dissipation
functions. L = 64 was used in cases of clear series, but L = 8
was used for noisy series to improve the statistical properties of
coefficient estimates. One can see that potential function andmain
dissipation function g were reconstructed mostly acceptable even
in the case of noise. The high order dissipation functions were also
reconstructed fine without noise, but for the noise present there
were significant errors in reconstruction of them, especially at the
boundary segments of the x range.

The coupling coefficients for mostly all oscillators are recon-
structed fine in absence of noise, the errors are at the similar level
as those presented in Fig. 2. When the noise was added, the coef-
ficients were reconstructed with large errors. The relatively good
reconstruction of individual potential and dissipation function to-
gether with the bad reconstruction of coupling coefficients can
be a result of partial synchronization, since many couplings occur
to be interchangeable by their effect due to the similar dynamics
of the driving nodes. Interestingly, for one oscillator, where most
couplings were small except 5, the quality of reconstruction of
these 5 relatively large coupling coefficients was high: ∆k̃i, ∆k̃′

i ∈

[0, 0.2].

3.5. Reconstruction of ensembles with unknown coupling functions

To demonstrate the method applicability for the case of un-
known nonlinear coupling functions hi,j, the arc-tangent coupling
functions (33) were chosen, since sigmoid functions are usually
considered in neuroscience.

hi,j(x) = ki,j arctan(x), (33)

where coefficients ki,j were generated similarly to previously con-
sidered cases.

For the original dissipation function of Van der Pol oscillator,
δi(n) can be written as (22). The results of coupling function ap-
proximation were plotted in Fig. 5(a, b) for an ensemble of 8 nodes
for two different coupling functions. Polynomial approximation for
hi,j with polynomial order Ph = 11 was used for all 56 unknown
coupling functions. Better approximation of coupling function is
achieved for larger coupling coefficients ki,j, e. g. compare Fig. 5(a)
and (b). This is not surprising, since in this case the impact of the
driving into the dynamics of reconstructed nodes is larger. Better
reconstruction for weak couplings can be achieved using longer
series. Also, polynomial oscillations at both edges of the range can
be clearly see in Fig. 5(b).

For themost general case, when neither coupling functions, nor
dissipation functions were known, the results of reconstruction of
coupling functions were plotted in Fig. 5(c, d) for an ensemble of
8 oscillators. The local linear approximation with L = 64 bins was
used for dissipation function in the considered case. The quality of
results is mainly similar to the case of original dissipation.

3.6. Dependence of results on the time series length

Reconstruction of large ensembles of tens and hundreds of os-
cillators demands a lot of data, otherwise the problem of coupling
coefficient estimation and the problem of reconstruction of self
nonlinear functions of individual nodes occurs to be ill defined. In
this subsection, the proposed method is tested for different time
series length. The networks of original generalized oscillators (1)
and oscillators with an additional coupling by derivative (10) were
studied. For them the mean errors of estimation of nonlinearity
parameter ri and coupling coefficients ki,j and k′

i,j were calculated
using formulas (27)–(29) respectively. Results were plotted in
Fig. 6.

The coupling coefficients ki,j and k′

i,j have larger relative errors
than the nonlinearity parameter ri. This can be explained by the
larger role of ri for the dynamics, since it influences both amplitude
and frequency of oscillations, while different couplings can partly
interfere due to partial synchronization, and therefore, an error in
one coefficient can be partly compensated by an error in another.

Also, the dependences of errors over N for periodic regime (see
Fig. 6(c, d)) are usually more flat than for chaotic ones (Fig. 6(c, d)).
This is not surprising, since periodic regimes do not provide many
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Fig. 5. Results of reconstruction of coupling functions for the ensembles of D = 8 oscillators. Original functions were plotted in black, reconstructed functions were plotted
in gray thick. Panels (a,b) correspond to the ensemble of type (20) — with the original dissipation function, two different coupling functions. Panels (c,d) correspond the
ensemble of type (23) — with unknown dissipation function (actually Gaussian), also two different coupling functions for the same oscillator. Polynomial order Ph = 11 was
used in all cases.

Fig. 6. Dependence of reconstruction mean errors for nonlinearity coefficients ri and coupling coefficients ki,j and k′

i,j on time series length. Subplots (a, c) correspond to the
ensemble of original oscillators (1), while subplots (b, d) correspond to the modified network with additional couplings by derivative (10). Subplots (a, b) show results for
chaotic series and subplots (c, d) — for periodic ones.

new information for reconstruction after one period is taken into
account. The possible improvement can be achieved only due to
better averaging and noise reduction, and due to the fact that the
sampling interval and theperiod of oscillations are not in an integer
ratio in generally.

Since the number of coupling coefficients rises as O(D2), while
the amount of data is proportional to (N ·D), and therefore rises as
O(D) with increase of the number of oscillators D, the longer series
are usually necessary for larger networks.

4. Discussion and conclusion

The idea of reconstruction of mathematical models from exper-
imental time series and the idea of coupling estimation from time
series of activity of two or more systems are very old and overlap a
lot. Reconstruction of nonautonomous [7] or coupled [8] oscillators
always means that the coupling is estimated in addition to the
individual dynamics. And using forecasting models for coupling
estimation, as it was proposed by Wiener [59] and Granger [28],
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always implies that some individual dynamics for each considered
system is modeled.

But actual realizations of these two ideas are mostly different
for many years. While the original work of Granger did not limit
the type of models used for coupling detection, pretty all known
implementations are based on different autoregressive models,
which can be considered as stochastic maps in terms of nonlin-
ear dynamics. In contrary, ordinary differential equations [10] are
considered in the field of model reconstruction from the begin-
ning, because ODEs are mostly used in many fields of physics,
including biophysics, while papers on reconstruction of maps and
time-delayed equations are also known. Reconstruction of partial
differential equations is usually considered to be too complex, or
systems described by them are substituted by networks of smaller
subsystems, described by ODEs.

The separation of coupling detection and system identification
methods has a significant reason. When reconstructing couplings,
dealing with nodes described by relatively complex equations is
always disadvantageous, since the individual parameters and non-
linear functions of nodes have to be reconstructed in addition to the
coupling. Therefore, these functions are usually considered to be
known, like in [35]. But for experimental data these functions are
usually unknown. The approximation by polynomials and trigono-
metric functions is also possible like in [6,7,39]. But decomposition
of unknown functions into some basis usually leads to significant
(and even dramatic) increase in number of unknown coefficients,
and therefore makes results not robust enough.

The other problem is that reconstruction of complexmodels for
individual nodes, composed of multiple equations, demands series
ofmultiple variables to bemeasured simultaneously for each node.
Approaches oriented to reconstruction in the presence of hidden
variable behavewellwhen they dealwith a single systemwithwell
known structure, as in [11], but they occur to be not applicable for
an ensemble of such systems with hidden variables per each node.

Thus, existing approaches [29–31,36,33,34,60] made a signifi-
cant impact into the knowledge of network organization in neu-
roscience [61–66], climate science [67,68], social sciences [69].
But difficulties of interpretation of their results still demand the
intense development in the field.

The possible way to advance is to use approaches which do
not demand the explicit parametrization of nonlinear functions of
individual nodes or coupling functions, like in [50]. Instead, a tech-
niquemay focus on smoothness of these functions as a criterion for
their correct estimation or some other targets. Such an approach
was suggested in the current paper for coupled generalized Van
der Pol oscillators. To increase generality, the combined tech-
nique, in which potential function is reconstructed implicitly, but
the dissipation function (or functions) and the coupling functions
are parametrized explicitly, was also considered. In addition, the
generalized case, including variously coupled Rayleigh oscillators,
and Bonhoeffer–Van der Pol oscillators (also known as FitzHugh–
Nagumo equation) was studied. The quality of reconstruction oc-
curred to be acceptable for most considered cases except for some
links, corresponding to very small coupling terms.

The limitation of the proposed approach is that it is still sen-
sitive to measurement noise, especially for large ensemble size,
because noise reduces the amount of information about an ensem-
ble and because the second derivative has to be estimated. This
limitation originates from the idea to use sequential differentiation
as a way to reconstruct state vector, which is general for many
other previously proposed approaches for ODE reconstruction,
see for instance [6,7]. However, if one can measure derivatives
explicitly, the problem can be eliminated or at least significantly
reduced. The situation when the first or second derivative is the
only measured signal is also possible; in such a case numerical
integration should be performed for vector state reconstruction,
which is not so sensitive to noise as numerical differentiation. Also,

for the relatively small ensembles of 8–16 nodes even the proposed
approach occurs to be efficient enough for medium noise level.
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