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Generative formalism of causality quantifiers for processes
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The concept of dynamical causal effect (DCE) is generalized and equipped with a formalism which allows
one to formulate in a unified manner and interrelate a variety of causality quantifiers used in time series analysis.
An elementary DCE from a subsystem Y to a subsystem X is defined within the stochastic dynamical systems
framework as a response of a future X state to an appropriate variation of an initial (X,Y )-state distribution or a
certain parameter of Y or of the coupling element Y → X ; this response is quantified in a probabilistic sense via
a certain distinction functional; elementary DCEs are assembled over a set of initial variations via an assemblage
functional. To include all those aspects, a “triple brackets formula” for the general DCE is suggested and serves
as a first principle to produce specific causality quantifiers as realizations of the general DCE. As an application,
transfer entropy and Liang-Kleeman information flow are related surprisingly as opposite limit cases in a family
of DCEs; it is shown that their “nats per time unit” may differ drastically. The suggested DCE viewpoint links
any formal causality quantifier to “intervention-effect” experiments, i.e., future responses to initial variations,
and so provides its dynamical interpretation, opening a way to its further physical interpretations in studies of
physical systems.
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I. INTRODUCTION

“Does a temporally evolving system (a process) influence
another one?” is a central question in many studies [1–41]. If
“yes,” one further asks whether such an influence (also called
causal or directional coupling) is strong in some sense. Oth-
erwise, this “yes” is not so informative. The former question
is that of “coupling detection” [3] or “causal discovery” [40].
The latter question is that of “quantitative characterization of
directional coupling” or “estimation of causality quantifiers.”
Well-known monographs [42,43] tell us how to define and
quantify causal couplings for random variables, but the sit-
uation is more problematic for processes. In the latter case,
a causal coupling exists if a variation in one system at a
given time instant produces a nonzero future response of
another system. However, existence of a coupling is yet a
qualitative statement. Therefore, numerous causality quanti-
fiers have been developed and are still being suggested. It
provokes multiple discussions concerning their relevance and
meaning [23,27,29,32,35,44–49]. For example, the transfer
entropy (TE) [1] is a celebrated concept [50] which gen-
eralizes the famous Wiener-Granger causality [51,52] and
is said to express “information flow” [50], “information
transfer” [1,13,17,53], “information transport” [1], “directed
statistical coherence” [53], etc. Still, a critical remark [32]
has shown that the TE interpretation is not always clear.
Hot debates have recently occurred around spectral causal-
ities [45–49], and this series of examples may readily be
continued.
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Various causality quantifiers for processes are used ev-
erywhere, from nuclear reactors [54], communication [55],
and galactic cosmic rays [56] to ecology [20], neuro-
science [10,12,45,57–62], and climate science [28,40,41,63–
72]. Any of those quantifiers is often considered or newly
introduced as a separate measure, independent of the others
and valuable per se. The resulting controversy is that any
causal coupling in a complex system may be stronger than
couplings in other directions according to one quantifier and
weaker according to another quantifier [29]. For example,
spectral causalities have been estimated from nuclear reactor
data [54] with an interesting conclusion about possible causes
of an observed anomaly inferred from larger values of such
causalities for certain pairs of signals. But what if another
causality quantifier gives a different conclusion?

Spectral causalities related to the information flow in the
TE sense [47,61] are widely applied to neuroimaging studies.
Their review [61] presents them as an important tool in line
with fMRI, EEG, and MEG techniques. However, another line
of research [5,73–78] with solid basis in mathematical physics
and many applications to climate science (e.g., [67,71,72,76])
develops the Liang-Kleeman information flow (LKIF) as a
“rigorous notion ab initio” [78]. The LKIF is measured in
“nats per time unit” like the TE rate, and both are often used
as (nonlinear) causality quantifiers. Which of the two informa-
tion flows is more appropriate and where? Not much attention
has been paid to resolving such controversies and revealing
whether a coupling is quantified in an appropriate sense.

Moreover, one often argues that the causal language and
causal interpretations in time series analysis may often be
improper, and so it may be preferable to refuse the very term
“causality” in that field. The authors of Ref. [50] claim that
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the debate on the concept of causality “has generated rather
more heat than light” (p. 83) and suggest just to use a certain
approach (e.g., the Granger causality) as “a (as opposed to the)
notion of causality” (p. 83). If so, several questions remain.
How are many possible approaches interrelated? Is each of
them equally valid? Which of them is a better tool to reveal
and quantify causal couplings in a concrete study?

To address all the above issues systematically, one would
need a concrete formalism to derive various causality quan-
tifiers from a well-grounded general concept of causality as
from a “first principle.” As such a basis, one can readily
take the interventionist approach of Pearl [42], who argues
convincingly that the success of this approach is due to the
fact that “causality has been mathematized” (Ref. [42], p. xiii).
That approach has been applied to a stochastic dynamical sys-
tem (SDS) in Ref. [29] where the concept of dynamical causal
effect (DCE) has been introduced with further developments
in Refs. [49,79–82]. In particular, the TE has been shown to be
approximately equal to a certain short-term DCE and related
to several long-term DCEs under some conditions [81]. Still,
the existing DCE concept is insufficient to formulate the LKIF
as a DCE, to relate the TE to a certain DCE exactly, and
to interrelate the two quantifiers within the DCE framework.
Here the DCE concept is generalized and equipped with more
detailed and exact formalism and terminology. Namely, the
DCE is expressed via the “triple brackets formula” which
produces specific causality quantifiers (including the LKIF
and the TE) as its realizations. The enriched terminology and
notations allow one to formulate relations between causality
quantifiers in a short and precise manner.

Note that the basic problem here is not an inverse problem
of inferring couplings from data, but a direct problem of quan-
tifying couplings for a given system. After solving the direct
problem, one can return to the practically important inverse
problem with new tools. “A given system” here is an SDS
consisting of two subsystems X and Y characterized at time t
with vectors xt and yt of arbitrary finite dimensions which con-
stitute together a state vector (xt , yt ) of the full SDS. The SDS
is understood in the sense of Markovian random dynamical
system [83], i.e., its state vector (xt , yt ) uniquely determines
probability density functions (PDFs) of all future states. It is a
close generalization of the concept of deterministic dynamical
system (e.g., [84–86]) and so represents a basic paradigm in
physics (e.g., [87–89]). Hence, the DCE framework developed
here is as general.

It is implied here that evolution of an SDS may also depend
on a parameter vector a remaining constant through time. So,
for a given SDS, a researcher can specify any initial state
(x0, y0) and a parameter a (if any) and observe future states
in arbitrarily many independent experiments (trials) to com-
pare ensembles of time realizations under different conditions.
This setting is encountered in cases of, e.g., (1) fully known
evolution equations of an SDS, (2) a “black box” algorithm
implementing evolution of an SDS where a researcher can
provide initial states and parameters as input and get future
states as output, and (3) a real-world system which can be
manipulated and whose dynamics is argued to possess the
SDS properties (approximately). The entire approach is based
neither on explicitly given evolution equations nor on pas-
sively observed time series, but relies on the general definition

of the SDS and can be applied to both those situations. Due
to such a generality, it appears to be capable of producing
numerous causality quantifiers as specific DCEs and revealing
their common and distinctive features.

Section II provides a typical example of a controversial
situation with the TE and the LKIF as causality quantifiers
and suggests the generalized concept of DCE with a more
developed terminology (a mini-language). Its application to
interpreting and interrelating the two information flows is
given in Sec. III with unexpected results for the LKIF and an
exact derivation of the TE as a DCE. The formalism readily
extends to more than two subsystems and to partly observed
states as discussed in Sec. IV together with other perspectives.
Conclusions are given in Sec. V. Details are left to the Ap-
pendixes and Supplemental Material [90].

II. CAUSALITY QUANTIFIERS FOR PROCESSES

Section II A presents an illustrative example of coupled
overdamped oscillators where the TE and the LKIF values
drastically differ from each other, so the same directional
coupling is qualified simultaneously as very strong accord-
ing to the TE and arbitrarily weak or even zero according
to the LKIF. Section II B introduces the concept of DCE in
a more general way and with more details than was done
previously [29].

A. Example of controversy

The SDS which describes two overdamped oscillators X
and Y (e.g., [49,79,81]) and is widely used as a simple model
of irregular processes (e.g., [91,92]) reads

ẋ = −axx + axyy + ξx,t ,

ẏ = −ayy + ayxx + ξy,t , (1)

where (ξx, ξy) is a bivariate zero-mean uncorrelated
Gaussian white noise with intensities (�xx, �yy), i.e.,
〈ξx,tξx,t ′ 〉 = �xxδ(t − t ′), 〈ξy,tξy,t ′ 〉 = �yyδ(t − t ′), and
〈ξx,tξy,t ′ 〉 = 0, where angle brackets denote expectation.
Relaxation times of the uncoupled processes Xt and Yt (i.e.,
for axy = ayx = 0) are tx = 1/ax and ty = 1/ay. Their ratio
is mxy = ay/ax = 1/myx. If mxy > 1, the coupling Y → X is
“from a fast source Y to a slow recipient X” [81]. The product
axyayx > 0 corresponds to positive feedback, while axyayx < 0
to negative feedback. This product is zero for unidirectional
coupling (i.e., no feedback).

Figure 1(a) shows a single time realization of the un-
coupled processes Xt and Yt whose stationary variances
equal σ 2

X,0 = �xx/(2ax ) and σ 2
Y,0 = �yy/(2ay). Let us use rel-

ative coupling parameters βxy = axyσY,0/(axσX,0) and βyx =
ayxσX,0/(ayσY,0) [81] and consider a bidirectional coupling
with βxy/βyx = −mxy which corresponds to “relatively equiv-
alent couplings with negative feedback” [81]. Figure 1(b)
shows a time realization of the process (Xt ,Yt ) for such
coupling and equal relaxation times, i.e., for ax = ay and
βxy = −βyx, whose oscillatory character essentially differs
from the uncoupled case. For the same bidirectional coupling,
Figure 1(c) compares two ensembles of realizations of Xt for
the same value of x0 and two different values of y0 (three
realizations from each ensemble). The two sets of realizations
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FIG. 1. Time realizations of the SDS (1) with ax = ay = 1 and �xx = �yy = 1: (a) a realization of Xt (red thick line) and Yt (blue thin
line) for axy = ayx = 0 starting from x∗

0 = −0.5, y∗
0 = 1; (b) a realization of Xt (red thick line) and Yt (blue thin line) for axy = −ayx = −10

starting from x∗
0 = −0.5, y∗

0 = 1; (c) realizations of Xt for axy = −ayx = −10 starting from x∗
0 = −0.5, y∗

0 = 1 (red thick lines) and x∗
0 = −0.5,

y∗∗
0 = −1 (blue thin lines). The two ensembles differ from each other considerably for t < 0.3 and are statistically indistinguishable for t > 1.2

[see also Fig. 2(a)].

essentially differ from each other for the near future (t < 0.3)
which is another manifestation of the influence Y → X .

For the bidirectional coupling under consideration, let us
compare numerical values of the TE rate and the LKIF as
two widely used “information flows” characterizing causal
couplings. Their definitions are recapitulated in Sec. III along
with specific formulas. Here just their values are reported to
highlight a controversial situation. Let us denote τY →X the TE
rate, i.e., the derivative of the TE with respect to its temporal
horizon (Sec. III A). Let us denote lY →X the LKIF for the
stationary initial PDF as usually defined (Sec. III B). The TE
rate for βxy/βyx = −mxy reads

τY →X = axβ
2
xy/4. (2)

The value of |βxy| may rise unboundedly retaining stationarity
of the process and leading to greater “oscillation period” in
Fig. 1(b). Hence, the TE rate can become arbitrarily large too.
The LKIF for the SDS (1) with any parameters reads [76]

lY →X = axyσXY /σ 2
X , (3)

where σ 2
X is the stationary variance of Xt and σXY is the

stationary cross-covariance 〈XtYt 〉. It can be shown that σXY =
0 and, hence, lY →X = 0 for the bidirectional coupling with
βxy/βyx = −mxy. Thus, the coupling Y → X is arbitrarily
strong when quantified with the TE rate and zero when quan-
tified with the LKIF. A moderate variation of parameters in
some vicinity of the above values keeps an arbitrarily large
value of the TE rate and an arbitrarily small value of the
LKIF, i.e. the controversial characterization of the “coupling
strength” as simultaneously small and large is robust. Every-
thing is the same for the coupling in the direction X → Y .

As shown in Figs. 1(b) and 1(c), effects of the coupling
Y → X on the dynamics of X are large. Hence, the large TE
rate seems to characterize the coupling adequately, while the
zero LKIF does not. Does it mean that the LKIF may not
generally be called a “causality quantifier”? Then what about
the solid argumentation [78] of the LKIF as a rigorous notion
ab initio? On the other hand, in a wide range of situations
both the TE rate and the LKIF take on similar values which
are proportional to each other with a moderate factor. For
example, for a unidirectional coupling Y → X (i.e., ayx = 0)
from a slow source (i.e., ax � ay), one derives lY →X ≈ 4τY →X

(Sec. III D). Moreover, both lY →X and τY →X are zero as soon
as the coupling Y → X is absent (i.e., axy = 0). So the LKIF

may well be a reasonable causality quantifier. Is the LKIF
a relevant quantifier only sometimes? Is the TE generally
better than the LKIF? To address these issues, the DCE for-
malism and terminology are suggested below on the basis of
the interventional causality concept (Appendix B 1) combined
with the dynamical systems viewpoint (Appendix B 2). A
wide interdisciplinary context is given in Appendix A. This
formalism will allow us to justify both the TE rate and the
LKIF as possible causality quantifiers through explicating the
interventional meaning in which they characterize “coupling
strength” (Secs. III A and III B) and precisely formulate their
common and distinctive features (Secs. III C and III D). More
importantly, it applies to many other quantifiers serving as a
general first principle as discussed in Sec. IV and Supplemen-
tal Material [90].

B. Generative formalism

In usual language, causality means that a cause as some-
thing independent produces an effect. For a simple quantitative
expression, consider a random variable U whose PDF depends
on another variable V . One denotes a conditional PDF of
U for an imposed value of V = v as p(u|do(v)), where the
special notation do(v) highlights the active imposition which
is called intervention in the famous do-calculus [42]. If the
interventional PDFs p(u|do(v∗)) and p(u|do(v∗∗)) for some
pair of different values v∗ and v∗∗ differ from each other,
one says that the causal coupling V → U exists. Its causal
effect [42] is any measure of difference between the two
PDFs. For example, one often uses the average causal effect
(ACE) [42,93] as the difference of the conditional expecta-
tions E (U |do(v∗∗)) − E (U |do(v∗)). Further details are given
in Appendix B 1.

Consider any SDS which consists of two subsystems X and
Y and denote it S; see Appendix C 4 for rigorous definitions
including Markovianity of S . Its full state vector (Xt ,Yt ) is a
combination of the two random vectors Xt and Yt of arbitrary
finite dimensions. Let ξ(0,t ) be a random event which is a
realization of noises which influence both subsystems over the
time interval [0, t]. If the value (x0, y0) of the full initial state
is given, no matter actively imposed or passively observed,
the PDF of the future state (Xt ,Yt ) at any t > 0 is uniquely
determined. Then an evolution operator �t maps the initial
state (x0, y0) to the future random state (Xt ,Yt ). The latter is
a random variable whose value in a single trial depends on
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FIG. 2. Functionally conditional expectations of Xt (solid lines) ± one standard deviation (dashed lines) under the reference (red thick lines)
and alternative (blue thin lines) initial conditions for the SDS (1) with ax = ay = 1, axy = −ayx = −10, �xx = �yy = 1, and x∗

0 = −0.5, y∗
0 = 1,

y∗∗
0 = −1: (a) the reference ρ∗

XY = δ(x − x∗
0 )δ(y − y∗

0 ) and the alternative ρ∗∗
XY = δ(x − x∗

0 )δ(y − y∗∗
0 ) [see also Fig. 1(c)]; (b) the reference

ρ∗
XY = δ(x − x∗

0 )δ(y − y∗
0 ) and the alternative ρ∗∗

XY = δ(x0 − x∗
0 )ρY |X (y0|x∗

0 ) as used in the TE definition; (c) the marginal PDF ρst
X (x0) with the

reference conditional PDF δ(y0 − y∗
0 ) and the alternative conditional PDF ρY |X (y0|x0) as used in the LKIF definition. In each panel, the two

futures differ from each other considerably at small t < 0.3 and also at some greater t , e.g., t ≈ 0.8. All plots are obtained by solving Eqs. (E6)
and (E12).

ξ(0,t ) realized in that trial. Such a mapping reads (Xt ,Yt ) =
�t (x0, y0) with the two projections of the full operator �t

given by Xt = �X
t (x0, y0) and Yt = �Y

t (x0, y0).
The causal coupling Y → X between the subsystems X

and Y means that a change of an initial value y0 produces a
change of a future random variable Xt given an initial value
x0 = x∗

0 . A general justification of such an understanding of
causality is presented in Appendixes B 1 and B 2. Figure 1(c)
presents an example of such a Y change performed and the
corresponding X change produced. Let us define here that the
produced change of Xt can be quantified in any way, e.g., as
any change of its PDF [29] or a change of its particular value
xt given a particular noise realization ξ ∗

(0,t ). Then the produced
change can be quantified as any difference between the ran-
dom vectors X ∗

t = �X
t (x∗

0, y∗
0 ) and X ∗∗

t = �X
t (x∗

0, y∗∗
0 ). Let us

specifically call this difference here distinction and define it as
a certain functional, not compulsorily metrics or distance (see
Appendix C 3). Let us denote such a distinction functional
with the figure brackets and a double vertical delimiter as
{X ∗

t ||X ∗∗
t }.

A change of y0 from y∗
0 to y∗∗

0 has been called initial
intervention in Ref. [29]. However, due to Markovianity of
the SDS S , the PDF p(xt |x0, y0) for passive observations
coincides with the interventional PDF p(xt |do(x0), do(y0))
where the values (x0, y0) are imposed by intervention [42] (see
Appendix B 2). Instead of interventional experiments, one can
equivalently compare ensembles of time realizations passively
observed after the states (x∗

0, y∗
0 ) and (x∗

0, y∗∗
0 ) each of which is

encountered at many different time instants in a long observed
time series. So the term “intervention” is not compulsory for
an SDS, because real interventions are not necessary. One
can also say “initial change,” “initial perturbation,” or “initial
variation” from y∗

0 to y∗∗
0 . The last term is used here as more

neutral.
To generalize the above concept of initial variation [29],

let us recall that one often asks how an SDS evolves from
an ensemble of initial states (e.g., [5,38,75,88]) rather than
from a single state (x∗

0, y∗
0 ). Let such an ensemble be de-

scribed with a PDF ρXY (x0, y0) = ρX (x0)ρY |X (y0|x0). A single
initial state (x∗

0, y∗
0) represents an ensemble with a specific

PDF ρXY (x0, y0) = δ(x0 − x∗
0 )δ(y0 − y∗

0 ); its behavior for the

SDS (1) is exemplified by the thick red lines in Fig. 2(b) and
both thick red and thin blue lines in Fig. 2(a). Behavior of
ensembles with initial PDFs which are not Dirac δ’s initial
PDFs is exemplified with the thin blue lines in Fig. 2(b) and
both thick red and thin blue lines in Fig. 2(c). Let us call
the PDF ρXY a (functional) initial condition contrary to a
single initial state. Then the future state (Xt ,Yt ) is a random
vector which depends on two independent random events: a
particular initial state (x0, y0) drawn from ρXY and a particular
noise realization ξ(0,t ). The future Xt is determined by the
function Xt (x0, y0, ξ(0,t ) ) and an initial PDF ρXY (x0, y0). In
order to characterize the causal coupling Y → X , one should
compare the futures X ∗

t and X ∗∗
t for two different functional

initial conditions ρ∗
XY and ρ∗∗

XY with the same marginal PDF
ρX (x0) (see examples in Fig. 2), i.e., ρ∗

XY = ρX (x0)ρ∗
Y |X (y0|x0)

and ρ∗∗
XY = ρX (x0)ρ∗∗

Y |X (y0|x0). This is because an uncoupled
subsystem X exhibits the same future random state Xt for the
same marginal initial PDF ρX independently of ρY |X , so one
gets X ∗

t = X ∗∗
t and {X ∗

t ||X ∗∗
t } = 0 in any sense. If the coupling

Y → X exists, the futures X ∗
t and X ∗∗

t differ (i.e., {X ∗
t ||X ∗∗

t } 	=
0) in some sense for some t and some ρ∗

Y |X 	= ρ∗∗
Y |X . Let us

call the ordered pair (ρ∗
XY , ρ∗∗

XY ) the initial condition variation
which consists of the reference initial condition ρ∗

XY and the
alternative initial condition ρ∗∗

XY .
Let us call the variable Xt , its PDF, and its statistical

characteristics obtained under the initial condition ρXY

functionally conditional and introduce shorthand notations.
The notation p(xt |·) is not appropriate since it stands
for the ordinary conditioning on a single state. For the
functionally conditional variable Xt itself, let us use another
kind of brackets [Xt |ρXY ] and denote its PDF similarly
as p(t )

X [xt |ρXY ]. Note that the ordinary conditional PDF
is p(t )

X (xt |x∗
0, y∗

0 ) = p(t )
X [xt |δ(x0 − x∗

0 )δ(y0 − y∗
0 )] and so

p(t )
X [xt |ρXY ] = ∫

p(t )
X (xt |x0, y0)ρXY (x0, y0) dx0 dy0. Let us

denote the functionally conditional variance var[Xt |ρXY ], the
functionally conditional Shannon entropy H[Xt |ρXY ], etc. In
particular, H[Xt |ρXY ] = − ∫

p(t )
X [xt |ρXY ] ln p(t )

X [xt |ρXY ] dxt .
Throughout the paper, all integrals are taken over the entire
range of Xt .

Denote �̃X
t an operator which maps an initial condi-

tion ρXY to a future random state [Xt |ρXY ], i.e., [Xt |ρXY ] =
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�̃X
t (ρXY ). Everything is similar for �̃Y

t and the full oper-
ator �̃t . So the square brackets [Xt ,Yt |ρXY ] with different
t > 0 encode the entire functioning of an SDS (see Ap-
pendix C 4). Let us call the value of the distinction functional
{[Xt |ρ∗

XY ]||[Xt |ρ∗∗
XY ]} the dynamical causal effect (DCE) of the

initial condition variation (ρ∗
XY , ρ∗∗

XY ). This is an elementary
DCE since it quantifies the response to a single initial varia-
tion. Note that various versions of the distinction functional
are possible (Appendix C 4), “ranging” from the difference of
expectations to the Kullback-Leibler divergence and so on.

The evolution of an SDS is often described with an op-
erator �t (x0, y0, a) which depends on a parameter vector a
whose value remains constant through time. The vector a is
often divided into four components (ax, ay, axy, ayx ) which de-
scribe individual subsystems (ax for X and ay for Y ) and their
couplings (axy for Y → X and ayx for X → Y ). For example,
if X and Y are damped oscillators, then ax and ay may in-
clude individual damping coefficients and natural frequencies,
while axy and ayx may include coefficients of a resistive or
any other coupling. Formally, axy = 0 means that X evolves
independently of Y , i.e., Xt does not depend on y0, ay and ayx,
given x0 and ax. Causality Y → X may then be characterized
via a response of Xt to a change of a, i.e., either of axy or
ay. Such a change is also an initial variation, but a parameter
variation in contrast to an initial condition variation. Let us
call a combination of the functional initial condition ρXY and
the parameter value a generalized initial condition and denote
it θ = {ρXY , a}. Then an initial variation in general is given
by the ordered pair (θ∗, θ∗∗) = ({ρ∗

XY , a∗}, {ρ∗∗
XY , a∗∗}) which

may include only an initial condition variation (if a∗ = a∗∗),
or only a parameter variation (if ρ∗

XY = ρ∗∗
XY ), or both.

One can be interested in characterizing effects of many
different initial condition variations (ρ∗

XY , ρ∗∗
XY ). Their initial

conditions may often be specified with a parameter vector
λ as (ρ∗

XY,λ, ρ
∗∗
XY,λ). For example, both initial conditions can

be Dirac δ’s where λ includes coordinates of their locations
λ = (x∗, y∗, y∗∗): ρ∗

XY,λ = δ(x0 − x∗
0 )δ(y0 − y∗

0 ) and ρ∗∗
XY,λ =

δ(x0 − x∗
0 )δ(y0 − y∗∗

0 ). Comparing evolutions from different
initial states is of interest since numerous states are encoun-
tered even in a single stationary time series. In general, one
may vary some components of a and include such components
of a∗ and a∗∗ into the vector λ, then a parameterized set of
initial variations (θ∗

λ , θ∗∗
λ ) describes both initial condition and

parameter variations. Let us call assemblage any procedure for
obtaining a single value quantifying the causal effect Y → X
from a set of elementary DCEs Y → X determined for various
λ ∈ �. Such an “assembled” value may be, e.g., a weighted
average of an elementary DCE over � (i.e., an “aggregate”
value) or a maximal value of an elementary DCE over �,
etc. Concerning parameter variations, one is often interested
in a single variation [29,49,79,80] to compare the dynamical
regimes established for t → ∞ at two different parameter
values a∗ and a∗∗, e.g., to assess thereby an “overall role” of
the coupling Y → X by comparing the dynamics of X in a
free regime (i.e., at a∗

xy = 0) and at a nonzero a∗∗
xy 	= 0. Below,

if one considers a single initial variation, the assemblage is
called trivial. In general, an assemblage is implemented via
any relevant functional of an elementary DCE defined over a
set �. Let us call it an assemblage functional and denote it
〈·〉� even though it is not compulsorily a certain average.

Note that the distinction functional may also be defined in
general so to depend on the parameters which are components
of the above vector λ or just some additional quantities. Let us
include any such parameters into the vector λ too and denote
such a parameter-dependent distinction explicitly as {·||·}λ.
An assemblage is to be performed over the parameters of the
distinction too.

Let us now define the general finite-time DCE via the above
three kinds of brackets as “triple brackets”

C (t )
Y →X = 〈{[Xt |θ∗

λ ] || [Xt |θ∗∗
λ ]}λ 〉�, (4)

where the distinction subscript λ may be omitted if the dis-
tinction functional does not depend on parameters. If either
the initial conditions, the distinction, or the assemblage do
not depend on certain component of λ, such a component
may be omitted in the respective subscript of Eq. (4) while
the other components are retained. If the temporal horizon
t is not too large as compared to any characteristic time
scale of the SDS S , the DCE (4) can be called short-term or
transient [29,79,80]. If time is continuous and t → 0, then the
DCE rate cY →X = dC (t )

Y →X /dt |t=0 represents the “very short-
term” DCE. Conversely, if t → ∞, the DCE can be called
asymptotic (stationary, equilibrium) or long-term [29,79,80].
Since the latter DCE can reflect long-term changes in dy-
namics under a parameter variation, e.g., under switching the
coupling Y → X on or off, it is often of interest in prac-
tice [79,80,94]. Finally, a distributed temporal horizon can be
defined as a vector t = (t1, . . . , tN ) with Xt = (Xt1 , . . . , XtN )
which implies a comparison of future segments, e.g., via
power spectral densities [49], and is briefly commented on
only in Sec. IV.

All the above definitions are given for the causal coupling
Y → X . Obviously, everything is the same for the DCE in the
direction X → Y . Further mathematical details of the defini-
tions are given in Appendix C 4.

To summarize the entire DCE definition, (1) one performs
an initial variation (θ∗

λ , θ∗∗
λ ), (2) the SDS evolution opera-

tor [·|θλ] produces an X response on a temporal horizon t ,
(3) the distinction functional {·||·}λ provides an elementary
DCE for the single initial variation, and (4) having results
for different initial variations, the assemblage functional 〈·〉�
gives a particular DCE. Any reasonable choice of all these
elements produces a concrete DCE as a meaningful causality
quantifier by construction. So the general DCE (4) includes
a variety of particular DCEs which are its realizations. This
infinite-dimensional realm of DCEs contains whole families
of quantifiers obtained through varying the above elements.
Some DCEs can be estimated directly from a passively
observed time series, while obtaining the others requires addi-
tional efforts and assumptions (see Sec. IV). Below, different
particular quantifiers are denoted with different letters in place
of C, such as T (t )

Y →X , L(t )
Y →X , etc., and similarly for the DCE

rates τY →X , lY →X , etc.
Many causality quantifiers have been suggested based on

different ideas during the last two or three decades (e.g., [1,5])
and many others are currently (say, during the last two or
three years) being suggested (e.g., [38]). An underlying re-
lation between each newly invented quantifier and the DCE
concept usually remains implicit. However, due to the general
character of the “variation-response” formalism, originating
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from the well-grounded concepts of interventional causality
and stochastic dynamical system, and a flavor of necessity
in its construction, I suppose that any quantity relevant as
a causality quantifier for processes can be expressed in the
form (4). If it is not yet expressed in that form, one should just
recognize the corresponding initial variations, distinction, and
assemblage. To apply this principle, the two information flows
are “dissected” and interrelated below.

III. APPLICATION

The TE and the LKIF are shown below to be exactly certain
DCEs. They are also related to each other and some other
DCEs. This case study confirms the potential role of the DCE
formalism as a general principle behind various causality
quantifiers. The main results are formulated as theorems just
to highlight their exact character.

A. Transfer entropy

The TE is an extremely popular quantifier studied and
applied in numerous works, e.g., in a recent monograph [50].
Both the original and the infinite-history versions of the TE
are investigated quantitatively and related to some DCEs in
Ref. [81]. The original TE was introduced from the perspec-
tive of stationary Markov process prediction [1] as the average
reduction of uncertainty in Xt if y0 becomes known, given
x0. So the TE T (t )

Y →X is the average difference of the Shannon
entropies of Xt conditioned on x∗

0 and on (x∗
0, y∗

0 ):

T (t )
Y →X =

∫∫
[H (Xt |x∗

0 ) − H (Xt |x∗
0, y∗

0 )]pst
XY (x∗

0, y∗
0 ) dx∗

0 dy∗
0,

(5)

where pst
XY (x, y) = pst

X (x)pst
Y |X (y|x) is a stationary PDF

and H (Xt |x∗
0, y∗

0 ) = − ∫
p(t )

X (x|x∗
0, y∗

0 ) ln p(t )
X (x|x∗

0, y∗
0 ) dx

is the Shannon entropy at time t of the ensemble
which starts from the reference initial condition
ρ∗

XY,λ = δ(x0 − x∗
0 )δ(y0 − y∗

0 ), i.e., the functionally
conditional Shannon entropy H[Xt |ρ∗

XY,λ]. Similarly,

H (Xt |x∗
0 ) = − ∫

p(t )
X (x|x∗

0 ) ln p(t )
X (x|x∗

0 ) dx is the Shannon
entropy of the ensemble which starts from the alternative
initial condition ρ∗∗

XY,λ = δ(x0 − x∗
0 )pst

Y |X (y0|x∗
0 ) where

y0 is freed to vary according to the conditional PDF
pst

Y |X (y0|x∗
0 ), i.e., this is H[Xt |ρ∗∗

XY,λ]. The assemblage
parameter is λ = (x∗

0, y∗
0 ). So the TE definition (5) is

recognized immediately as a finite-time DCE (4) with
the above initial condition variations, the distinction
H[Xt |ρ∗∗

XY,λ] − H[Xt |ρ∗
XY,λ], and the assemblage as the

weighted average with pst
XY (x∗

0, y∗
0 ). It proves the following

theorem.
Theorem 1. For any SDS S , the transfer entropy (5) is a

DCE (4) of the initial condition variations given by ρ∗
XY,λ =

δ(x0 − x∗
0 )δ(y0 − y∗

0 ) and ρ∗∗
XY,λ = δ(x0 − x∗

0 )pst
Y |X (y0|x∗

0 ) with
λ = (x∗

0, y∗
0 ) on a finite temporal horizon t with the distinc-

tion H[Xt |ρ∗∗
XY,λ] − H[Xt |ρ∗

XY,λ] and the assemblage 〈·〉� =∫ ∫
(·)pst

XY (x∗
0, y∗

0 ) dx∗
0 dy∗

0.
Note that the TE is formulated as a DCE exactly, in contrast

to the previous version of the formalism [29,81] where the
TE was shown to be only approximately equal to a certain

DCE of initial state variations. This is achieved due to the
generalized definition of the initial variation which includes
functional initial conditions instead of initial states.

The TE is often called “information flow” [50], but
sometimes “information transfer” [17] in contrast to the in-
formation flow of Ay and Polani [95]. Let us denote the latter
A(t )

Y →X . For a first-order Markov process, A(t )
Y →X corresponds

to the alternative initial condition with y0 freed to vary ac-
cording to its marginal stationary PDF pst

Y (y0), i.e., ρ∗∗
XY,λ =

δ(x0 − x∗
0 )pst

Y (y0), instead of the conditional PDF pst
Y |X (y0|x∗

0 )
used in the TE definition. If a stationary regime is close to
synchrony, e.g., to the identical synchronization xt ≈ yt [96],
the conditional PDF pst

Y |X (y0|x∗
0 ) is close to a Dirac δ. Then

variability of y0 according to pst
Y (y0) is much stronger than

that according to pst
Y |X (y0|x∗

0 ). Another difference of A(t )
Y →X is

that the assemblage is a weighted average with pst
X (x∗

0 )pst
Y (y∗

0 ),
i.e., over mutually independent x∗

0 and y∗
0, instead of the joint

PDF pst
XY (x∗

0, y∗
0 ) used in the TE definition. Let us call any PDF

of the kind f (x∗
0 )g(y∗

0 ) “randomized,” since it corresponds to
randomization of X0 and Y0 in statistical experiments, i.e., to
drawing the values of X0 and Y0 in each trial independently of
each other (see, e.g., [42]).

For regimes close to synchrony, A(t )
Y →X may strongly dif-

fer from T (t )
Y →X and be more sensitive to coupling changes

and more powerful for causal discovery [27,95]. However,
as quantifiers, these two DCEs have just different meanings
as effects of different initial variations. Indeed, a region of
nonzero values of pst

XY (xt , yt ) for the identical synchronization
is localized at xt = yt . Then the TE is zero since it does not in-
volve any nonzero variations of y0 relatively to x0. In contrast,
A(t )

Y →X can be quite large because nonzero variations of y0 are
involved and the coupling Y → X is nonzero and may be even
strong enough to provide stability of a synchronous regime.
This large A(t )

Y →X quantifies a short-term effect of initial varia-
tions of y0 about x0 performed independently of x0, while this
zero T (t )

Y →X shows a short-term effect of the (zero) variations
of y0 about x0 which occur in the synchronous regime. If one
is interested in studying transients from various initial states,
A(t )

Y →X is a more relevant quantifier since it characterizes a
wider region in the state space. If one is interested only in
what happens in an established regime (e.g., what electric
currents flow through the wires connecting two electric cir-
cuits X and Y and so what power dissipates in those wires in
an established regime), then A(t )

Y →X is irrelevant, while T (t )
Y →X

provides necessary information. So the DCE viewpoint just
explicates to what “variation-response” question a causality
quantifier answers. Its purpose does not reduce to finding a
better quantifier under some conditions. Any solution to the
latter problem is not generally applicable since it inevitably
relies on the choice of an external ad hoc criterion for what is
a good quantifier.

Note that both T (t )
Y →X and A(t )

Y →X are special cases of a
quantity I (t )

Y →X which is the TE in whose definition pst
XY is

replaced with an arbitrary PDF ρXY , i.e., the alternative initial
condition is ρ∗∗

XY,λ = δ(x0 − x∗
0 )ρY |X (y0|x∗

0 ) and the assem-

blage is a weighted average with ρXY (x∗
0, y∗

0 ). Let us call I (t )
Y →X

“extended TE” [Fig. 3(a)]. It is always nonnegative. Its ad-
vantageous feature is that its nonzero value for some ρXY and
t > 0 is a necessary and sufficient sign of the existence of the
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FIG. 3. Qualitative illustrations of the two DCEs which are information flows: (a) the extended TE rate, (b) the LKIF. The first (bottom)
row shows the pairs of initial conditions (i.e., the initial variations) with their marginal PDFs, the second row shows the responses to those
initial variations on a finite temporal horizon t , the third row shows the distinctions, and the fourth row shows the assemblages. The evolution
of PDFs in all columns qualitatively corresponds to the SDS (1) with both positive coupling coefficients.

coupling Y → X . The extended TE is well defined even for
an SDS without any stationary PDF, while T (t )

Y →X and A(t )
Y →X

are defined only if a stationary PDF exists. Very short-term

effects are characterized by the TE rate τY →X = dT (t )
Y →X
dt |t=0 and

the extended TE rate iY →X = dI (t )
Y →X
dt |t=0.

B. Liang-Kleeman information flow

As compared to the TE, the LKIF is a more theoretically
motivated, formalism-driven notion. It relies on the ideas from
mathematical physics and atmospheric science [5] and is well
grounded on a firm mathematical (Liouville equation) and
physical (hydrodynamics) basis. The LKIF has been system-
atically developed as a “rigorous notion ab initio” in Ref. [78].
Novel research often refers to this notion and conclusions as
well-established knowledge (e.g., [71,72]).

In continuous time, the LKIF relies on the Liouville
equation for a noise-free system [5] or the Fokker-Planck
equation for a noisy SDS [75] given by stochastic differen-
tial equations widely used in physics (e.g., [88]). The latter
equations in Itô’s sense read

dx = fx(x, y) dt + gxx(x, y) dwx,

dy = fy(x, y) dt + gyy(x, y) dwy, (6)

where Wx and Wy are mutually independent standard Wiener
processes. Each Wiener process enters only one equation,
so the noises in X and Y are mutually independent that
corresponds to zero terms gxy = gyx = 0 in Ref. [75]. This
is done here only for convenience, all derivations would
be the same for cross-correlated noises. Further, x and y
are one-dimensional as in Refs. [5,75], but arbitrary finite
dimensions can be considered in the same way. The PDF

p(t )
XY (xt , yt |x0, y0) is readily obtained via solving the Fokker-

Planck equation [97,98].
The basic idea of Ref. [5] is to compare the Shannon

entropy rate Ḣ (Xt ) at t = 0 for any given ρXY (x0, y0) to that
rate under an additional condition of “y frozen” [73,75]. As
the former rate, the authors take indeed the Shannon entropy
rate for the initial ensemble with some PDF ρXY , i.e., the func-
tionally conditional Ḣ [Xt |ρXY ] according to the terminology
suggested here. However, as the latter rate, the quantity Ḣ∗

X
is defined in Ref. [5] on the basis of formal similarity to the
Shannon entropy rate of the whole system Ḣ (Xt ,Yt ). For the
deterministic case gxx = gyy = 0, the rate Ḣ (Xt ,Yt ) reads

Ḣ (Xt ,Yt ) =
∫∫ (

∂ fx

∂x
+ ∂ fy

∂y

)
ρXY dx dy. (7)

The entropy rate of X “with y frozen” is defined [5] as

Ḣ∗
X =

∫∫
∂ fx

∂x
ρXY dx dy. (8)

The difference Ḣ (Xt ) − Ḣ∗
X is called the information flow

(LKIF) which then equals [5]

lY →X =
∫∫ (

−∂ (ρX fx )

∂x

)
ρY |X dx dy. (9)

The notation lY →X and others differ from the notations in
Ref. [5] because of a separate set of notations here.

With nonzero noises, Liang’s formula [75] reads

lY →X =
∫∫ (

−∂ (ρX fx )

∂x
+ 1

2

∂2
(
ρX g2

xx

)
∂x2

)
ρY |X dx dy. (10)

This more general form of the quantifier is still often called
the LKIF in the literature. Note that the LKIF can be negative
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as distinct from the TE. Its further peculiarity (and often a
disadvantage) is that lY →X = 0 for any randomized initial
PDF ρXY (x0, y0) = ρX (x0)ρY (y0) [76], even if the coupling
Y → X is arbitrarily strong in other respects, e.g., in terms
of the TE (see Sec. III D).

The LKIF is fruitfully used in the whole line of causality
research [5,67,71–78]. However, its formal reasoning [75]
does not show in what kind of experiments the LKIF equals
the difference of Ḣ (Xt ) for any two ensembles of time real-
izations of the SDS (6). The meaning of lY →X has remained
enigmatic in this sense, despite some efforts [73,74,78] to
provide its clear interpretation beyond the formal beauty and
some reasonable properties such as lY →X = 0 for the absent
coupling Y → X .

To apply the general DCE principle of interpreting any
existing causality quantifier, one must find a particular DCE
which is equivalent to lY →X or, in other words, to express
lY →X in the form (4). This task can be solved, first, by noting
that the reasoning of Eq. (10) in Ref. [75] is based on the
evolution equation for the quantity hx∗

0
(Xt ) = − ln p(t )

X (x∗
0 ).

The latter can be called local entropy since the Shannon en-
tropy of a random variable Xt with a PDF p(t )

X reads H (Xt ) =∫
p(t )

X (x∗
0 )hx∗

0
(Xt ) dx∗

0 , i.e., equals the local entropy hx∗
0

av-

eraged with the weight function p(t )
X (x∗

0 ). Then, after some
derivations (Appendix D 2), one can show that the LKIF is the
difference of local entropy rates ḣx∗

0
[Xt |ρ∗∗

XY ] − ḣx∗
0
[Xt |ρ∗

XY ] for
the reference initial condition ρ∗

XY,y∗
0
(x0, y0) = ρX (x0)δ(y0 −

y∗
0 ) and the alternative ρ∗∗

XY (x0, y0) = ρX (x0)ρY |X (y0|x0) av-
eraged over (x∗

0, y∗
0 ) with ρXY (x∗

0, y∗
0 ). The difference of the

local entropies turns out to be a specific distinction functional
depending on x∗

0 as a parameter. So the LKIF is the rate of
the corresponding DCE L(t )

Y →X illustrated in Fig. 3(b). This
leads to the next theorem whose detailed proof is given in
Appendix D 2.

Theorem 2. For the SDS (6), the LKIF (10) is
the rate of the DCE (4) of the initial condition
variations given by ρ∗

XY,y∗
0
(x0, y0) = ρX (x0)δ(y0 − y∗

0 )
and ρ∗∗

XY (x0, y0) = ρXY (x0, y0) with the distinction
{· || ·}x∗

0
= hx∗

0
[Xt |ρ∗∗

XY ] − hx∗
0
[Xt |ρ∗

XY,y∗
0
] and the assemblage

〈·〉� = ∫∫
(·)ρXY (x∗

0, y∗
0 ) dx∗

0 dy∗
0.

Thus, the DCE formalism deciphers that the LKIF quan-
tifies how strongly the functionally conditional local entropy
rate ḣx∗

0
(Xt ) changes on average if y0 is freed to vary according

to ρY |X (y0|x0) as compared to δ(y0 − y∗
0 ), given ρX (x0). This

DCE can not be reduced to the difference of the Shannon
entropy rates for any two ensembles, since for each x∗

0 the
quantity ḣx∗

0
[Xt |ρ∗

XY,y∗
0
] is averaged over y∗

0 with a separate
weighting function ρY |X (y∗

0|x∗
0 ) and so there is no averaging

over x∗
0 in the form

∫
p(x∗

0 ) ln p(x∗
0 ) dx∗

0 . This circumstance
has not been revealed previously, since the authors focused on
deriving formulas for the specific class of SDS (6) instead of
taking the general SDS and DCE viewpoint.

It can be shown that Theorem 2 is valid for a discrete-time
SDS of Refs. [73,74]: One should just replace the DCE rate
with the finite-time DCE on the temporal horizon t = 1 and
the Fokker-Planck equation with the Frobenius-Perron opera-
tor. It is straightforward to confirm the validity of the Theorem
2 for vector-valued variables Xt and Yt of arbitrary dimensions.
Moreover, if the formulation of the LKIF as a DCE is taken as

the definition of the LKIF, this quantifier readily applies to any
SDS including discrete-state Markov processes and Markov
chains where no explicit functions ( fx, gxx, fy, gyy) are de-
fined, but only transition probabilities are given. The previous
works [5,75] have not studied such systems since they rely on
the explicit SDS equations (6). Such broadening of the LKIF
applicability confirms the conceptual and practical usefulness
of the DCE viewpoint.

C. Interrelation

Let us compare the extended TE rate iY →X and the
LKIF lY →X for the same arbitrary initial PDF ρXY =
ρX ρY |X . It is more convenient to compare their finite-time
counterparts—the extended TE I (t )

Y →X and the finite-time LKIF
L(t )

Y →X . Note that the TE involves the localized marginal
PDF ρ∗

X,x∗
0
= ρ∗∗

X,x∗
0
= δ(x0 − x∗

0 ), while the LKIF involves
the full PDF ρ∗

X = ρ∗∗
X = ρX (x0). Conversely, the distinction

functional for the TE involves the full Shannon entropies
H (Xt ), i.e., hx(Xt ) weighted with p(t )

X (x) over the entire
real axis, while the distinction functional for the LKIF
involves only the local entropies, i.e., hx(Xt ) “weighted”
with δ(x − x∗

0 ) (Fig. 3). The conditional PDFs in the ref-
erence and alternative initial conditions are defined in the
same way for both quantifiers: ρ∗

Y |X,y∗
0
(y0|x0) = δ(y0 − y∗

0 )
and ρ∗∗

Y |X (y0|x0) = ρY |X (y0|x0). The assemblage functionals
are also the same average over (x∗

0, y∗
0 ) with ρXY (x∗

0, y∗
0 ). So

the two quantifiers in the direction Y → X differ only by their
distinction functionals and by the marginal PDFs of X0 in their
initial condition variations.

To find a closer link, let us relate the two quantifiers
smoothly within a family of DCEs (4). Define a DCE
Q(t )

Y →X involving the marginal PDF ρX (x0) = ρ̃X (x0) which is
nonzero only in an interval (x∗

0 − �i, x∗
0 + �i ) as

ρ̃X (x0) = ρX (x0)∫ x∗
0+�i

x∗
0−�i

ρX (x) dx

and ρ̃X (x0) = 0 outside that interval. Let the tilde imply that
dependence of ρX on x∗

0 and �i, so ρ̃X is just a shorter nota-
tion for the parameter-dependent ρX,x∗

0 ,�i . The reference initial
condition reads

ρ∗
XY,x∗

0 ,�i,y∗
0
≡ ρ̃∗

XY = ρ̃X (x0)δ(y0 − y∗
0 ),

and the alternative initial condition is

ρ∗∗
XY,x∗

0 ,�i
≡ ρ̃∗∗

XY = ρ̃X (x0)ρY |X (y0|x0).

Define the distinction functional as the difference of the
“window” entropies H̃ (Xt ) where the weighting function is
nonzero only within an interval (x∗

0 − �d , x∗
0 + �d ), i.e., for

a random variable U with a PDF pU the window entropy in an
interval (x∗

0 − �d , x∗
0 + �d ) reads

H̃ (U ) =
−∫ x∗

0+�d

x∗
0−�d

pU (u) ln pU (u) du∫ x∗
0+�d

x∗
0−�d

pU (u) du
.

The tilde over H implies the dependence on parameters x∗
0 and

�d , so H̃ is a shorter notation for Hx∗
0 ,�d . So the distinction
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FIG. 4. Qualitative illustrations to Theorem 3, i.e., to the param-
eterized DCE linking the TE and the LKIF (see Fig. 3). Meanings of
the rows are the same as in Fig. 3.

functional reads

{[Xt |ρ̃∗
XY ]||[Xt |ρ̃∗∗

XY ]}x∗
0 ,�d = H̃[Xt |ρ̃∗∗

XY ] − H̃ [Xt |ρ̃∗
XY ].

As the assemblage, define the average over y∗
0 (which is a pa-

rameter of the reference initial condition only) and x∗
0 (which

is a parameter of the distinction and both initial conditions)
with ρXY (x∗

0, y∗
0 ). Thereby, one arrives at the finite-time DCE

Q(t )
Y →X (�i,�d ) (see Fig. 4) given by

Q(t )
Y →X (�i,�d )

=
∫ ∞

−∞
(H̃ [Xt |ρ̃∗∗

XY ] − H̃ [Xt |ρ̃∗
XY ])ρXY (x∗

0, y∗
0 ) dx∗

0 dy∗
0. (11)

Define its rate qY →X (�i,�d ) as

qY →X (�i,�d ) = dQ(t )
Y →X (�i,�d )

dt

∣∣∣∣
t=0

. (12)

For �i → 0, one gets

ρ̃X → δ(x0 − x∗
0 ),

ρ̃∗
XY → δ(x0 − x∗

0 )δ(y0 − y∗
0 ),

ρ̃∗∗
XY → δ(x0 − x∗

0 )ρY |X (y0|x0).

For �d → ∞, the distinction functional becomes

{U ∗||U ∗∗}x∗
0 ,�d → H (U ∗∗) − H (U ∗),

i.e., the difference of the Shannon entropies, while x∗
0 is a

parameter of the initial conditions, not of the distinction. So

one gets the extended TE rate iY →X = qY →X (0,∞) which
equals τY →X = qY →X (0,∞) if ρXY = pst

XY .
For �i → ∞ one gets

ρ̃X → ρX (x0),

ρ̃∗
XY → ρX (x0)δ(y0 − y∗

0 ),

ρ̃∗∗
XY → ρX (x0)ρY |X (y0|x0).

For �d → 0, the distinction functional becomes

{U ∗||U ∗∗}x∗
0 ,�d → hx∗

0
(U ∗∗) − hx∗

0
(U ∗),

i.e., the difference of the local entropies, while x∗
0 is a pa-

rameter of the distinction, but not of the initial conditions. So
one gets the LKIF lY →X = qY →X (∞, 0). These considerations
prove the following theorem.

Theorem 3. For an SDS S , a two-parameter family of DCE
rates qY →X (�i,�d ) defined by Eqs. (11) and (12) contains the
extended TE rate and the LKIF as its mutually opposite limit
cases: qY →X (0,∞) = iY →X and qY →X (∞, 0) = lY →X .

So the TE rate and the LKIF in the direction Y → X differ
not as “a data-driven” and “a rigorous ab initio” quantifier,
which circumstance depends on a researcher’s view. Their ob-
jective difference is the opposite character of their distinction
functionals and marginal PDFs of X0 in their initial variations
under the same assemblage and the same conditional PDFs of
Y0 in their respective initial conditions. Theorem 3 applies to
Xt and Yt of arbitrary dimensions and to a discrete-time SDS.

This seemingly qualitative difference of the two quantifiers
as the opposite limit cases does not always lead to a strong
quantitative difference, since the entire family qY →X (�i,�d )
may exhibit the same or very close values for some systems
or at some values of the parameter a. For other systems, the
values of the two quantifiers may differ arbitrarily strongly.
A numerical example below serves to explicate and illustrate
those typical cases.

D. Numerical example

Consider again the SDS (1) which is just the SDS (6)
with constant noise intensities g2

xx = �xx, g2
yy = �yy, and linear

drift terms fx = −axx and fy = −ayy. A nonzero coupling
coefficient axy provides the stationary variance different from
the “free” variance σ 2

X 	= σ 2
X,0. The respective relative change

of variance under “switching the coupling Y → X on” is an
asymptotic DCE SY →X = (σ 2

X − σ 2
X,0)/σ 2

X,0 [79–81]. It is of-
ten of interest in practice (e.g., [94]) and used here for a fuller
understanding of the TE-LKIF relation. This DCE involves
the coupling parameter variation (a∗

xy, a∗∗
xy ) = (0, axy), the in-

finite horizon t → ∞, the distinction as the relative difference
of variances {U ∗||U ∗∗} = (σ 2

U ∗∗ − σ 2
U ∗ )/σ 2

U ∗ , and the trivial
assemblage. The initial conditions ρ∗

XY and ρ∗∗
XY are arbitrary

since the stationary PDF reached at t → ∞ is unique. By
solving algebraic equations for the second statistical moments
(see [79,81] and Appendix E), one gets

SY →X = β2
xy + mxyβxyβyx

(1 + mxy)(1 − βxyβyx )
. (13)

Both the TE rate and the LKIF for the initial PDF
ρXY (x0, y0) = pst

XY (x0, y0) can be derived analytically from
the DCE definition (4) after finding explicitly the stationary
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PDF pst
XY and the transition PDFs which are all Gaussian

(see [29] and Appendix E).
Taking into account that the LKIF for the SDS (1) is given

by Eq. (3), some further algebra within the DCE framework
(see Appendix E) leads to a surprisingly simple exact relation-
ship

lY →X tx = SY →X

1 + SY →X
= σ 2

X − σ 2
X,0

σ 2
X

, (14)

which holds true for any parameter values which provide
stationarity of the process (1), i.e., for βxyβyx < 1. So the
LKIF lY →X tx measured in “nats per recipient relaxation time”
simply relates to the asymptotic DCE SY →X and equals the
“relative contribution” of the coupling Y → X to the recipient
variance σ 2

X . This relationship has not yet been known since
the LKIF was not considered from the DCE viewpoint. It
deserves to be fixed as a final theorem.

Theorem 4. For the SDS (1) with a stationary PDF pst
XY , the

LKIF (10) defined with the PDF ρXY = pst
XY and multiplied by

the recipient relaxation time tx relates to the asymptotic DCE
on variance SY →X through Eq. (14) and so equals the relative
contribution of the coupling Y → X to the recipient variance,
i.e., lY →X tx = σ 2

X /σ 2
X,0 − 1.

The TE rate reads (see [81] and Appendix E)

τY →X = axβ
2
xy

(
1 − r2

st

)
(1 + SX→Y )/4, (15)

where rst is the stationary zero-lag cross-correlation rst =
σXY /(σX σY ). Under the conditions of |βxy/βyx| � mxy (called
the relatively predominant coupling Y → X [81]) and weak
couplings β2

xy  1, β2
yx  1, it holds true that

τY →X tmin ≈ SY →X /4, (16)

where tmin = min{tx, ty} is the minimum of the two relaxation
times of the system (1). So τY →X tmin is the TE rate measured
in “nats per minimal relaxation time” which simply relates to
the long-term DCE. Equations (14) and (16) show that “nats
per time unit” for τY →X generally differ from those for lY →X .
Under the above conditions for Eq. (16), the two quantifiers
are related as

τY →X /lY →X ≈ (1 + ay/ax )/4. (17)

In particular, those conditions are met for a unidirectional
coupling Y → X which is weak enough (β2

xy  1). Let us
consider this case and note that numerical values (i.e., “nats
per time unit”) of the two quantifiers may be either strongly
different as τY →X � lY →X if the coupling source is much
faster (ay � ax; see Fig. 5 at mxy � 1), or quite similar as
lY →X = 4τY →X if the coupling source is much slower (ay 
ax; see Fig. 5 at mxy  1). The difference between the TE rate
and the LKIF increases with SY →X [cf. Figs. 5(a) and 5(b)]:
lY →X saturates under the increase of SY →X while τY →X in-
creases unboundedly.

Why is lY →X  τY →X for a unidirectional coupling from
the fast source, but not for that from the slow source? In the
former case, the cross-correlation coefficient is small rst �
1/

√
mxy  1 for an arbitrarily strong coupling [81], while in

the latter case rst gets close to unity for a strong coupling.
Further, rst enters linearly the expression for the LKIF (3), not
the expression for the TE rate (15). To see the role of the small

0.1 1 10

mxy

0

0.1

0.2

0.3

0.4
DCE(Y X ) l

(a)

0.1 1 10

mxy

0

0.4

0.8

1.2

1.6
DCE(Y X )

(b)

FIG. 5. Three DCEs for the SDS (1) with unidirectional coupling
(ayx = 0), β2

xy is computed from Eq. (13) for each mxy to provide
a given SY →X and the respective τY →X and lY →X : (a) SY →X = 0.2;
(b) SY →X = 1. Solid lines show SY →X , dotted lines 4τY →X tmin, and
dashed lines lY →X tmin.

cross-correlation more clearly, consider the extended TE rate
iY →X and the LKIF for a randomized initial PDF ρXY = ρX ρY ,
where the cross-correlation r of X0 and Y0 is necessarily r = 0.
For definiteness, take ρXY = pst

X pst
Y . Then iY →X equals the Ay-

Polani information flow and reads iY →X = τY →X /(1 − r2
st ),

i.e., iY →X � τY →X . For a unidirectional coupling Y → X , it
takes an especially simple form iY →X = axβ

2
xy/4 and gets ar-

bitrarily large for β2
xy � 1. In contrast, lY →X is exactly zero for

any randomized ρXY , independently of the coupling parameter
β2

xy, of the extended TE rate, and of the asymptotic DCE SY →X

which may all be arbitrarily large.
The stationary PDF is itself a randomized PDF for

βxy/βyx = −mxy and it is very close to a randomized PDF in
a vicinity of such parameter values. So a robust situation is
that the TE rate is arbitrarily large, while the LKIF is simul-
taneously arbitrarily small. Such a drastic difference between
the two quantifiers is met in the case of negative feedback; see
negative axy in Figs. 6 and 7. Then SY →X > 0 if |βxy/βyx| >

mxy (i.e., the coupling Y → X is relatively predominant [81])
and simultaneously SX→Y < 0 since |βyx/βxy| < myx (the cou-
pling X → Y is relatively deficient [81]). For the boundary
situation of relatively equivalent couplings |βxy/βyx| = mxy

(see the red arrows in Fig. 6 and the value of axy = −10

-1.5 -1 -0.5 0 0.5

axy /a

0

0.4

0.8

1.2
DCE(Y X )

(a)

-1.5 -1 -0.5 0 0.5

axy /a

0

0.4

0.8

1.2
DCE(X Y)

(b)

FIG. 6. Three DCEs for the SDS (1) with bidirectional coupling
for ax = ay = a and ayx = a/

√
2 with red arrow indicating the “point

of drastic difference” between τ∗→∗ and l∗→∗: (a) for the direction
Y → X ; (b) for the direction X → Y . The relaxation times are tx =
ty = tmin = 1/a. Solid lines show S∗→∗, dotted lines 2τ∗→∗/a, and
dashed lines l∗→∗/a.
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FIG. 7. Three DCEs for the SDS (1) with bidirectional coupling
for ax = ay = a and ayx = 10a: (a) for the direction Y → X ; (b) for
the direction X → Y . The relaxation times are tx = ty = tmin = 1/a.
Solid lines show S∗→∗, dotted lines 2τ∗→∗/a, and dashed lines
l∗→∗/a.

in Fig. 7), the stationary PDF is randomized and so rst = 0
and SY →X = SX→Y = 0, even though the coupling parameters
β2

xy and β2
yx may be arbitrarily large. Speaking more phys-

ically, even large couplings of this type do not change the
stationary variances of Xt and Yt as compared to the uncou-
pled processes, i.e., such couplings do not change the integral
powers of the signals xt and yt since the variance equals the
integral of the power spectral density. However, they change
the power spectral densities, e.g., a strong peak arises at the
frequency ω ≈ √|axyayx| for |axyayx| � axay [Fig. 8(b), solid
line] instead of the “free” red noise spectra [Fig. 8(b), dashed
line] [49]. One can also easily see an oscillatory character
of the coupled processes as compared to a more irregular
character of the uncoupled ones from their time realizations
in Figs. 1(a) and 1(b). In this spectral sense, an “information
flow” due to the nonzero coupling Y → X is great. The corre-
sponding arbitrarily large TE rate τY →X = axβ

2
xy/4 adequately

reflects this circumstance. In contrast, the LKIF lY →X = 0 is
not sensitive to this coupling which is often a disadvantage.
So the LKIF is an information flow in a very restricted sense.

Figure 7 presents the three DCEs versus negative axy for
a stronger coupling ayx = 10a to be compared to Fig. 6 for
ayx = a/

√
2. The value axy/a = −10 in Fig. 7(1) corresponds

to a randomized stationary PDF. This strong coupling is well
reflected by the relative TE rate whose value τY →X /a = 25

(a) (b)
0 2 4 6

ω/a

0

0.2

0.4

0.6

0.8

1

WX (ω)/WX,0(0)

0 4 8 12 16 20

ω/a

0

0.2

0.4

0.6

0.8

1

WX (ω)/WX,0(0)

FIG. 8. Power spectral densities WX (ω) of X for the SDS (1)
in the uncoupled regime axy = 0 (dashed lines) and for a bidirec-
tional coupling ayx = −axy (solid lines) which maintains the same
integral power of X as for the uncoupled regime: (a) ayx = −axy =
a/

√
2; (b) ayx = −axy = 10a. The densities are divided by the zero-

frequency value of the power spectral density of the uncoupled
process WX,0(0) = �xx/(2πa2).

nats should be regarded as very large, since τX→Y /a ≈ 12
nats for the unidirectional coupling X → Y [axy/a = 0 in
Fig. 7(b)] corresponds to a huge SX→Y = 50, i.e., the variance
of Y is multiplied by 51 due to switching the coupling on.
The respective large short-term future responses to different
initial condition variations are shown in Fig. 2: for single
initial states [Fig. 2(a)], for the initial variation used in the
TE [Fig. 2(b)], and for the initial variation used in the LKIF
[Fig. 2(c)]. The LKIF is zero for axy/a = −10. However,
this seemingly strange zero “causal strength” of the strong
coupling can be further understood as an advantageous feature
of the LKIF from the DCE viewpoint. Namely, since the
variances σ 2

X and σ 2
Y do not differ here from their free values

σ 2
X,0 and σ 2

Y,0, the Shannon entropies of the marginal stationary
PDFs of X and Y do not differ from their free values too. So
lY →X and lX→Y correctly claim that the Shannon entropy of the
stationary PDF does not change, i.e., there is no “information
flow” in that sense. Note from Eq. (14) that the sign of the
LKIF is the same as the sign of SY →X , and so it shows whether
the variance σ 2

X increases or decreases due to switching the
coupling Y → X on (see also Figs. 6 and 7). This character-
ization is provided by the LKIF, but not by the TE which is
nonnegative by definition.

For a further discussion, note that Ref. [76] considers the
value of lY →X = 0 for mutually independent X0 and Y0 as
a deep fact concerning causality and claims that “causation
implies correlation … resolving the continuing debate” ([76],
p. 9) or “obviously, two uncorrelated events (r = 0) must
be noncausal” ([76], p. 3). This conclusion is often repeated
(e.g., [71]). However, a nonzero correlation of the simultane-
ous states of X and Y is not at all necessary for the existence of
a causal coupling as the above example clearly shows. Rather,
this feature of the LKIF is often its weakness, since the LKIF
turns out to be insensitive even to strong couplings of a certain
type (or with certain initial variations), while the TE readily
reveals them. On the other hand, lY →X can show that a cou-
pling does not change the variance σ 2

X , and a coupling effect
is absent in this sense, which is not reflected by the TE. If one
is interested only in the integral power and its changes, the TE
appears to be inappropriate despite its other advantages, while
lY →X is then quite relevant. So each of the two quantifiers
gives a meaningful description of causal effects, and none of
them is necessarily suitable in any situation. Since a coupling
can manifest itself in diverse properties of dynamics, multiple
DCEs (4) are needed to capture this diversity. Which quanti-
fier is most appropriate in practice depends on the question of
interest.

The DCE framework should help a researcher to consider
any causality quantifier in a critical way, formulate concrete
questions about its meaning, explicate its properties, and ei-
ther purposefully apply it to the problem at hand or replace
it with another, more appropriate quantifier. Even the above
comparison of the TE and the LKIF may help a researcher to
decide whether to prefer a quantifier based on the Shannon
entropies and sensitive to any coupling (TE) or a quantifier
based on local entropies, possibly zero for some kind of strong
couplings, and reflecting the sign of the asymptotic effect on
variance (LKIF). This is already a more informed decision
than an abstract consideration of the TE as a “data-driven”
quantifier and the LKIF as a “rigorous ab initio” one. A
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further study can provide more concrete recommendations
on their advantages for some classes of systems. There can
be no universal “algorithm” to select a causality quantifier
suitable for any practical problem and question as it is clear
from the whole realm (4) of quantifiers capturing different
causal effects. A researcher should explicate which particular
question about a system under study a causality quantifier
must answer. It inevitably depends on the problem at hand,
and so a critical attitude to any preselected quantifier can be
useful. In this essential sense, the DCE viewpoint should help
one to navigate among numerous quantifiers and obtain their
dynamical and physical interpretations, such as the LKIF and
the TE as indicators of an integral power change versus any
power spectral density change in the above example of the
overdamped oscillators.

IV. PERSPECTIVES

The previous classification of DCEs [29] was based on the
division of the initial variations into the initial state variations
and the parameter variations and the division of the temporal
horizons into the short and long (infinite) ones. The DCE for-
malism suggested here is more flexible. It allows us to arrange
causality quantifiers into a complex structure resembling a
“tree” whose root is the general DCE (4) and “branches”
represent different degrees of its concretization.

It is worth noting a useful kind of DCEs which involve
a distributed temporal horizon, i.e., where t is a vector
(t1, . . . , tN ) and Xt = (Xt1 , . . . , XtN ). If all ti → ∞ and N →
∞ with diminishing ti+1 − ti, the horizon becomes effectively
continuous, so one has a long time realization as the future
Xt . If the distinction functional compares power spectral den-
sities, one gets spectral DCEs as introduced in Ref. [49] to
continue the discussion of Refs. [45–48]. In particular, the
widely used Granger-Geweke spectrum [61,99] appears to be
a DCE Y → X of a parameter variation (switching the noise
�yy on) [49] with the trivial assemblage and the distinction
equal to the relative difference of power spectral densities.
However, the Granger-Geweke spectrum is no longer such
a DCE in the case of more than two interacting subsys-
tems [49,100]. The spectral DCEs and about two dozen other
causality quantifiers are presented in a single table in the
Supplemental Material [90] in order to illustrate how Eq. (4)
“generates” various quantifiers and to confirm the generality
of the DCE concept.

If a quantifier cannot be exactly reduced to any DCE,
it may be numerically close to a DCE under some condi-
tions. The famous Wiener-Granger causality [51,52] defined
via mean-squared prediction improvement based on the in-
finite past is not exactly a DCE, but it is often close to a
DCE [79] of initial condition variations on a finite temporal
horizon with the distinction equal to the relative difference
of variances and the assemblage equal to the average with
a stationary PDF. Conditioning on the infinite past in the
Wiener-Granger causality serves as a substitute for the condi-
tioning on the (often unobserved) initial states in a DCE. Such
approaches as convergent cross-mapping [20] and similar
techniques [16,33] efficiently detect unidirectional couplings
between deterministic dynamical systems and are often used
in practice (e.g., [56]). However, they are not formulated as

responses to any variations (interventions) and so are not easy
to interpret as any “causality strength.” Relating them to some
DCEs seems to be of interest, in particular, to understand
better their dynamical (and sometimes even physical) causal
meaning beyond being a sign of the coupling existence.

More than two subsystems are often present and must be
taken into account in a practical situation. Then the other
processes interacting with X and Y may be represented as
a third subsystem Z . The DCE formalism readily extends to
such a situation via including initial states and parameters of Z
into the generalized initial condition θ = {ρ(x, y, z), a} where
the parameter vector includes more components to describe
three individual dynamics and different pairwise couplings as
a = (ax, ay, az, axy, ayx, axz, azx, ayz, azy ). All definitions are
exactly the same as in the case of two subsystems with the
states of Z entering the set of conditioning variables; see
Appendix F 1 for a concrete example.

Concerning an inverse problem, a DCE can be estimated
from a time series directly (in a nonparametric way) if it is a
DCE of initial condition variations and full state vectors of an
SDS are observed. However, the problems of confounders and
unvisited states generally become relevant. Then one should
either perform appropriate interventions (e.g., [6,19,57]) or
identify a parameterized model SDS (e.g., [101,102]) and
apply Eq. (4) to the obtained model (see Appendix F 2).

It should be noted that estimation of any causality quan-
tifier from a passively observed time series is not per se a
tool for causal discovery. Such a discovery can be performed
only in combination with another assumption. Namely, causal
relations are assumed in an underlying SDS, and the DCE
viewpoint makes this assumption explicit, exactly as structural
causal models in Ref. [42] do. Such an SDS may be speci-
fied in a less detailed way, e.g., the assumption that certain
vectors x and y constitute a full state of the entire SDS [i.e.,
there are no confounders of (x0, y0) and (xt , yt ) at t > 0] also
specifies that SDS. For a causal analysis, it is always desirable
to formulate such assumptions explicitly, in agreement with
Pearl’s effort and advice “to explicate slippery concepts” [42].
Still, one often prefers seemingly more universal model-free
characteristics of interdependence between observed signals
xt and yt , e.g., the convergent cross-mapping, or the Wiener-
Granger causality, or the Granger-Geweke spectra, or the
infinite-history TE. However, to interpret any such quantity
unambiguously as a causality quantifier, one should anyway
imply some variations and responses to agree with well-
developed causality formalism of Refs. [42,43]. The SDS is
just a universal tool to express such relations for processes: its
Markovianity provides a “closure” of the problem (to define
DCEs nonambiguously despite the noise influence) and can
be relaxed under further assumptions (Appendix F 2). So the
SDS and DCE concepts just represent closely the “flow of
causation from past into future” [103]. Therefore, I expect
that the DCE concept will be suitable to formulate a variety of
causality quantifiers in the same manner and arrange them into
a single picture. As arguments in favor of such a role, note the
relation between the TE and the LKIF revealed here, relations
between the two TE versions and several long-term DCEs in
Ref. [81], relations between the phase-dynamic causalities in
Ref. [82], interpretations of the spectral causalities in Ref. [49]
contributing to their previous discussion [45,47], and many
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quantifiers expressed as DCEs in Tables I and II of the Sup-
plemental Material [90]. Explicit usage of the DCE formalism
can make a coupling analysis in practice more reliable, e.g.,
via including additional quantifiers to check important con-
clusions about most influential causal couplings such as those
for nuclear reactor systems [54].

V. CONCLUSIONS

Dozens of causality quantifiers are used to study irregular
processes of different origin. Some of them were suggested
a long time ago (from the 1950s to the 1990s) in the
fields of applied mathematics and econometrics, e.g., the
Wiener-Granger causality [51,52] and the Granger-Geweke
spectrum [99]. Others have arisen in the last two decades
(the TE [1], the LKIF [5], etc.) and new ones are still being
actively suggested (e.g., [38,39]) in the fields of nonlinear
dynamics and information theory. Some of them are similar
to each other and differ by their normalization like various
spectral causalities (e.g., [60]) or by conditioning variables
like different versions of the TE (e.g., [22,23,81]). Others are
obtained from apparently completely different ideas, e.g., the
phase-dynamics modeling [3,4,104–108] and the convergent
cross-mapping [20]. To navigate in this variety of quantifiers
and perform a purposeful choice, a researcher needs a uni-
fying viewpoint and formalism which would allow one to
arrange numerous quantifiers into a single picture and formu-
late exactly their common features and essential differences.
The formalism of dynamical causal effects developed here on
the basis of the previous studies [29,49,79–81] is a promising
tool to address those issues. The main results of this work can
be summarized as follows.

It is shown that many causality quantifiers for processes
can be derived as realizations of the general DCE (4), i.e.,
the latter can serve as a first principle. The DCE formal-
ism provides a flexible language to describe such quantifiers
in a precise and unified manner using the notions of initial
variation (an ordered pair of the reference and alternative ini-
tial conditions), single-point or distributed temporal horizon,
distinction functional, and assemblage functional. The initial
variation is generalized here to include the functional initial
conditions which are the distributions of the initial states
rather than the single initial states. Due to this generalization,
the transfer entropy is shown to be exactly a DCE with specific
functional initial conditions, rather than an approximation to a
DCE with single-state variations [29,81]. The Liang-Kleeman
information flow is also shown to be exactly a DCE. More-
over, it is shown that the LKIF compares local entropies
of the ensembles with specific functional initial conditions,
rather than the Shannon entropies of any ensembles as it has
been always thought previously. The two information flows
are related here as opposite limit cases in a specific DCE
family, their “nats per time unit” are shown to differ from each
other essentially and to describe different manifestations of a
directional coupling in dynamics. Thus, for a two-dimensional
linear stochastic system, the TE is sensitive to any nonzero
coupling, including such a coupling which changes power
spectral density of the coupling recipient without changing its
integral power, while the LKIF is not sensitive to the latter
coupling.

Being defined precisely through “intervention-effect” ex-
periments with a stochastic dynamical system, the DCE
concept provides an unambiguous dynamical interpretation of
a causality quantifier. From a physical viewpoint, this is an
advantageous feature as compared to a widespread arbitrary
understanding of any formal causality quantifier in use as a
quantity whose nonzero value characterizes a causal coupling
in the way most interesting to a researcher in a concrete field.
For example, one might be ready to think that a greater spec-
tral causality represents a coupling which is most responsible
for an anomaly in nuclear reactor systems [54]. However,
such conclusions are not supported by solid arguments and
a quantifier in use may not describe the quantitative aspect
of interest. In contrast, the well-defined dynamical causal
meaning of the DCE gives us an opportunity to reach its
further physical interpretation for a concrete physical system
through relating state variables and parameters of a model
SDS to physical quantities. In studies of temporally evolving
systems, the dynamical interpretation of a causality quantifier
provided by the DCE viewpoint seems to be a necessary
step to revealing its physical meaning and avoiding arbitrary
interpretations.

This study seems to provide enough arguments to expect
that, under further development, the DCE formalism can read-
ily become the core of a rich and general theory of causality
quantifiers for processes. Then apart from serving for the
theoretical underpinning of different causality quantifiers, it
should be also helpful for their practical purposeful choice for
concrete problems.
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APPENDIX A: INTERDISCIPLINARY CONTEXT

On the one hand, the present work shows how the the-
ory of oscillations can systematically look at the entire
field of causality quantification for processes. The theory
of oscillations is understood here as a general physical the-
ory (e.g., [84,109–111]) whose mathematical form is given
by the dynamical systems theory (e.g., [83,85,86]). On the
other hand, this work shows how structural causal modeling
(e.g., [42]) can be fully realized to quantify causal couplings
for processes within dynamical systems framework. This Ap-
pendix presents the author’s view on such an interface of
disciplines and an interdisciplinary character of the present
work.

1. Statistics and causality

Detection and quantification of relations between observed
variables have long been important tasks in mathematical
statistics with correlation and partial correlation, regres-
sion and multiple regression as the most popular tools
(e.g., [112,113]). Yet researchers often tried to achieve a
more ambitious goal of inferring causal couplings on the
basis of statistical analysis. Numerous attempts to inter-
pret correlation-like (associative) quantities as measures of
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causal couplings (the famous question of “correlation versus
causation”) led to frequent controversies and debates as sum-
marized, in particular, in Pearl’s monograph [42] used here as
one of the bases.

Results of those efforts were such fruitful approaches as
structural equation modeling (SEM) [114,115] and potential-
outcome model [116,117], the former being much more
widely known and “adopted by economists and social scien-
tists” [42] (p. 134). SEM also used regression equations (u =
βv + ε as a simple one-dimensional example), but distin-
guished between causal variables (v) and effects (u) via
placing them on the corresponding side in each equation. The
right-hand side was often used for causes and the left-hand
side for effects. Then such an equation represented an “au-
tonomous causal mechanism.” The name structural equation
was coined because positions of the variables on one or an-
other side reflected the causal structure of the entire system
under study.

As stressed in Ref. [42], such a causal meaning was not
fixed in any formal notation or an explicit term. So, in the
course of subsequent applications, many practitioners tended
to consider a structural equation as a usual regression equa-
tion forgetting that a causal meaning is assumed, not inferred
from passive observations. “Econometric textbooks invariably
devote most of their analysis to estimating structural param-
eters, but they rarely discuss the role of these parameters in
policy evaluation” [42] (p. 136). In other words, many authors
focused on “how to estimate” and made “what to estimate”
implicit and sometimes misunderstood. As a result, typical
statements of leading scientists in that field in 1980s and
1990s became “It would be very healthy if more researchers
abandoned thinking of and using terms such as cause and
effect” or “The only meaning I have ever determined for such
an equation is that it is a shorthand way of describing the
conditional distribution of y given x” as cited in Ref. [42]
(p. 137). Many SEM practitioners forgot that “assumptions
needed for drawing causal conclusions from parameters are
communicated to us by the scientist who declared the equa-
tion structural; they are already encoded in the syntax of the
equation” [42] (p. 137). Pearl summarizes why the causal con-
tent of SEM escaped from the consciousness of practitioners:
“1. SEM practitioners have sought to gain respectability for
SEM by keeping causal assumptions implicit, since statisti-
cians, the arbiters of respectability, abhor assumptions that
are not directly testable. 2. The algebraic language that has
dominated SEM lacks the notational facility needed to make
causal assumptions, as distinct from statistical assumptions,
explicit. By failing to equip causal relations with precise
mathematical notation, the founding fathers in fact committed
the causal foundations of SEM to oblivion” [42] (p. 138).
He stresses: “Ironically, we are witnessing one of the most
bizarre circles in the history of science: causality in search
of language and, simultaneously, the language of causality in
search of its meaning” [42] (p. 135).

2. Structural causal modeling

As an important clarifying and correcting step, Pearl has
introduced explicitly the concept of interventions and ef-
fects and the respective formalism (do-calculus) [42] which

distinguishes between passively observed (i.e., ordinary) con-
ditional distribution (PDF) and interventional conditional
PDF. The latter is a PDF of a variable U under the condition
that a variable V is actively imposed to take on a value v.
It is denoted p(u|do(v)). This formalism removes uncertain-
ties underlying many previous controversies and errors and
gives rise to the modern development of the field of struc-
tural causal modeling (SCM). This name is taken from the
previous SEM with the clarification that the equality sign is
not an algebraic equality, but works more like “an assignment
symbol in programming languages” [42] (p. 138). The result
is that “causality has undergone a major transformation: from
a concept shrouded in mystery into a mathematical object
with well-defined semantics and well-founded logic. Para-
doxes and controversies have been resolved, slippery concepts
have been explicated, and practical problems relying on causal
information that long were regarded as either metaphysical
or unmanageable can now be solved using elementary mathe-
matics. Put simply, causality has been mathematized” [42] (p.
xiii). SCM is fruitfully used in sociology, epidemiology, and
other fields (e.g., a monograph [118] relies on [42] in a de-
tailed study of the mediation phenomenon and some others),
but remains almost unknown to physicists.

SCM is most interested in causal discovery, i.e., detec-
tion of direct and indirect causal couplings, in a possibly
large set of variables. If causalities are reliably detected, i.e.
causal structure is revealed, estimation of their quantifiers is
not considered as too problematic and such measures as the
average causal effect (ACE) and similar ones often appear
sufficient [42,118]. Some works in the field of SCM consider
causal couplings between processes, but with the same focus:
either causal discovery (e.g., [119–122]) or finding a single
widely applicable quantifier somewhat generalizing the ACE
(e.g., [27]). So causality quantification has not arisen there as
a separate field, as a rich and complicated problem requiring
its own concepts (language) and theory for a fuller realization
of the interventional causality ideas.

3. Stochastic processes and time series analysis

Analysis of couplings between processes is to a signif-
icant extent a separate field which have been considered
within mathematical statistics as an inverse problem of
the stochastic processes theory, e.g., [123–125]. The most
well-developed formalisms are cross-correlations and cross-
spectra with multiple applications which constitute a good
deal of time series analysis techniques, e.g., [126,127].
The problem of revealing causal couplings between pro-
cesses has been raised in the works of Wiener [51] and
Granger [52] (Wiener-Granger causality) and continued to
Granger-Geweke causality spectra [99,100], directed infor-
mation transfer [128], partial directed coherence [129], and
multiple elaborations on these approaches, e.g., advanced
methods suggested in Refs. [10,60]. All such characteristics
are estimated from passive observations. They are associative,
no causal assumptions are most often expressed in their defini-
tions, but in many cases (with toy models) such quantifiers are
shown to provide reasonable characterization of causal influ-
ences. As a result, there are many attempts to interpret them in
practice as causality quantifiers without further justifications.
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The reasons for multiple spurious conclusions are analyzed,
e.g., in Ref. [130].

A recent example of fierce debates concerns the Granger-
Geweke causality spectra which represent “information flow”
in the sense of Wiener-Granger causality (or of the infinite-
history transfer entropy [15]). Their applications constitute
already a large field of research in neuroscience; e.g., Ref. [61]
provides a review. A recent PNAS paper [45] has still
criticized them for disagreement with “intuitive notion of
causality” and suggested switching to the system identifi-
cation perspective. The replies [46,47] have defended those
quantifiers and clarified the estimation issues. Concerning
causal interpretations, Ref. [47] indicates that Granger-
Geweke causality is “data-driven and ‘data-agnostic’ (it
makes few assumptions about the generative process …) …
and as such is well-suited to exploratory analyses. It delivers
an information-theoretic interpretation … which also stands
as an effect size for directed information flow between com-
ponents of the system.” Then these quantifiers are in fact
understood only as asymmetric associative characteristics ex-
pressed with information-theoretic tools. Attempts of causal
interpretation in the “intervention-effect” sense are not re-
spectable. This is cautious and accurate. But if we just stop
at this point, doesn’t it get similar to the above situation in
statistics described as “causality in search of language and,
simultaneously, the language of causality in search of its
meaning”?

4. Dynamical systems and theory of oscillations

The theory of oscillations can be understood as a phys-
ical interpretation of the “pure” theory of dynamical sys-
tems [83,85,86]. This is how it is understood by the “Russian
school” (called thus, e.g., in Ref. [85]) in nonlinear oscilla-
tions theory [84,109]. Initially, this discipline relied on the
concept of deterministic dynamical system [84–86] speci-
fied, e.g., by ordinary differential equations (ODEs) ẋt =
fx(xt , yt ), ẏt = fy(xt , yt ), which was then generalized to the
concept of stochastic dynamical system (SDS) specified, e.g.,
by stochastic differential equations (SDEs) [87,88,131] ẋt =
fx(xt , yt ) + ξx,t , ẏt = fy(xt , yt ) + ξy,t . With ODEs, the basic
problem setting is the initial-value (Cauchy) problem, where
one specifies an initial state (x0, y0) and obtains a unique fu-
ture time realization as a particular solution. With SDEs, one
similarly specifies an ensemble of initial states (i.e., a PDF,
Dirac δ is a special case) as an initial condition for the Fokker-
Planck equation (e.g., [97,98]) and finds the PDF of future
time realizations. So an evolution equation specifies causal
relations between an initial condition and a future (e.g., [103]).
Physicists naturally deal with initial-value problems and such
causal relations, so they do not need to discuss the term
“cause” since they have no difficulties with it: all assumptions
are explicit. Then evolution equations of an SDS encode a
causal meaning in their syntax like structural equations in
SCM: a dependence of the left-hand side (which is a state
temporal derivative in differential equations or a future state
in difference equations) on the right-hand side (which is a
function of an initial state and noise) is often derived from
certain physical laws and considerations.

Relations between an initial state (x0, y0) and a future
state (xt , yt ) at a concrete t are not per se of interest to the
theory of oscillations which studies an oscillatory (or any
complex) behavior as a whole contrary to “previous dynam-
ics” interested in finding concrete values at concrete times as
stressed in the foundational monographs [84,109] (see also
Ref. [111]). Therefore, a coupling role within the theory of
oscillations is adequately characterized by studying how a
dynamical regime changes when a nonzero coupling between
subsystems (say, Y → X ) is introduced, i.e., whether synchro-
nization is established or not, etc. Therefore, in time series
analysis, the “dynamical systems community” readily used
cross-correlations and cross-spectra as tools to characterize
dynamics as a whole, but was long not interested in such
details as prediction improvement for the near future (as given
by the Wiener-Granger causality) or detection of a depen-
dence of a given variable at a concrete time t > t0 on different
variables at initial time t0 (as studied in SCM).

Starting from the works [1,2] (from the side of information
theory and nonlinear dynamical systems) and [3] (from the
side of the theory of oscillations itself), the problem of reveal-
ing causal (also called there directional) couplings between
oscillators from time series (i.e., an inverse problem) has at-
tracted considerable attention in that community as well. Due
to richness of possible dynamical characterization, different
groups have suggested numerous techniques to detect causal
couplings and developed various quantifiers. They have been
published along with their applications in many hundreds
of papers, selected works are cited here as Refs. [1–41].
So causality quantification for processes has become even
larger and more diverse field than previously. However, a
large number of various approaches has still been lacking
a unifying oscillation-theoretic viewpoint to derive different
causality quantifiers from a single principle and, therefore,
does not make a united discipline. Many authors develop their
ideas implying an underlying SDS, but they often try to make
the respective time series estimation techniques universally
applicable, i.e., free of any model assumptions. Thereby, a
natural underpinning for causality quantifiers coming from the
dynamical systems perspective often remains implicit and so
tends to disappear from subsequent applied works.

For example, the transfer entropy has been suggested [1]
with the premise of a Markov process and conditioning on
an initial state. It is related in essence to the assumption of
an SDS and initial condition variations explicitly formulated
here. However, in many subsequent works (e.g., [15,26,27])
it has been understood from a stochastic process viewpoint
as allowing an infinite-history conditioning (discussed, e.g.,
in a monograph [50]). Currently, it is often claimed to mean
only “information flow” in the sense of associative charac-
teristic, e.g., one says that the TE does not measure “causal
mechanism,” but only “causal effect” [132] which can then be
understood as an effect of taking the data from one process
into account when predicting the future of another. Many
other useful quantifiers are also considered independently of
each other as being related only to specific time series analysis
ideas. Doesn’t it remind one of a possible “escape of a causal
content” from the currently used causality (or directional
coupling) quantifiers for processes? Then, rephrasing Pearl’s
formulation, we need to transform those causality quanti-
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fiers into a mathematical object with well-defined semantics
and well-founded logic, to resolve controversies, to explicate
slippery concepts, etc. For that, the firm basis of the explicit
interventionist viewpoint and the paradigm of a stochastic
dynamical system can naturally be used.

5. Contribution of this work

This work originates from the theory of oscillations and
is inspired by the SCM’s “explication spirit” in combination
with the (stochastic) dynamical systems perspective. It devel-
ops a formalism which allows us to derive various causality
quantifiers for processes from a single principle making the
entire field intrinsically united and providing a basis for the
development of a formal theory of causality quantifiers for
processes. It seems that the problem is posed in such a gener-
ality for the first time.

This work focusses on the basic setting of two subsystems
X and Y constituting an SDS. The entire SDS and so the
causal structure are taken here to be fully known, i.e., causal
inference is not needed. So the problem of causality quan-
tification is a direct problem, not an inverse one. This work
takes into account quantifiers used in SCM and aims at a fuller
realization of the SCM ideas in the field of dynamical systems
which has almost not been explored by SCM explicitly.

Concerning the connection of this work to previous works
on causality quantifiers for processes, it aims at arranging
those quantifiers into a united system. It allows us to reveal
interrelations between existing quantifiers and shows how
novel quantifiers can be produced. This work does not suggest
any quantifier instead of or in addition to previously known
quantifiers: It shows their deep common roots and tries to cre-
ate a united discipline from a large set of previously disjoint,
independent approaches.

6. Level of mathematical rigor

The theory of oscillations is a physical theory which ab-
stracts from a concrete physical origin of a system under study
as formulated in [110]. It is not a (purely) mathematical theory
since it deals with such physical (though abstract) notions as
initial state and phase orbit of an oscillatory system, constant
parameter of a system, amplitude of oscillations, resonance,
synchronization, changes of dynamics under parameter vari-
ations, and others, which readily get filled with a concrete
physical content (mechanical, electrical, etc.). Thus, a state
x may be a vector containing the coordinate and velocity of
a mechanical oscillator X , an individual parameter ay may be
the natural frequency of a system Y , a coupling parameter axy

may represent a physical coupling Y → X as a spring constant
for mechanical oscillators, etc.

The theory of oscillations studies such dynamical (oscil-
latory) phenomena as, e.g., coherent or stochastic resonance,
synchronization as mutual adjustment of oscillation rhythms,
etc. It uses mathematical formalism of the theory of dynamical
systems. However, the pure theory of dynamical systems (ei-
ther deterministic [86] or random [83] ones) as a mathematical
discipline does not often refer to resonance, synchronization,
etc., but deals with rigorous conditions for existence and
uniqueness of solutions, attractors, etc. The theory of oscil-
lations is interested in such rigorous questions in the second

turn, as soon as they relate more closely to some physical
situations.

In the same sense, the present work provides a “physi-
cal” formalism. All the notions involved (initial states, future
response, long-term changes of dynamics under parameter
variations, etc.) can readily be applied to describe such os-
cillatory phenomena as resonance, synchronization, etc. Even
though some rigorous details are given here, such mathemati-
cal issues as exact conditions for the existence of certain limits
and integrals are beyond the scope of this work. However,
all notions are introduced in a completely operational way
and can be easily proven to exist at least in the examples
studied here and in a wide range of basic SDSs often used
in modeling of various physical processes, e.g., for stochastic
linear (and low-dimensional nonlinear) damped oscillators,
stationary linear SDS of arbitrary dimension, and finite-state
Markov chains.

APPENDIX B: PRELIMINARIES

This Appendix recapitulates well-grounded concepts of
causality and dynamical systems which form the basis of the
DCE formalism. This is the concept of interventional causal-
ity (Appendix B 1) combined with the stochastic dynamical
systems viewpoint (Appendix B 2).

1. Causality and interventions

Let us return to the example of a random variable U
affected by another variable V mentioned in Sec. II B,
where one compares the interventional PDFs p(u|do(v∗)) and
p(u|do(v∗∗)) to characterize a causal effect V → U , e.g., as
the ACE E (U |do(v∗∗)) − E (U |do(v∗)). Obviously, a condi-
tional PDF p(u|v) in passive observations may well differ
from the interventional PDF p(u|do(v)). Statistical depen-
dence between U and V , i.e., different PDFs p(u|v∗) and
p(u|v∗∗) for some v∗ and v∗∗, may arise also due to the
influence U → V or due to the influences of a hidden third
factor W called common driver or confounder: W → U and
W → V . If both these situations are excluded, then the ob-
servational PDF p(u|v) reflects the causal coupling V → U .
If, moreover, an intervention do(v) does not change “the
mechanism” underlying the coupling V → U , then p(u|v) =
p(u|do(v)). Under these assumptions, the PDF p(u|do(v)) and
any effect V → U can be recovered from passive observations
of (U,V ).

As an explicit functional form for such causal relations,
one often uses the structural causal model (e.g., [42]) which
states that the value of the variable U in each trial is generated
via a certain function u = �(v, ξ ) where ξ is the value of a
random variable independent of V (an exogenous variable). In
contrast, imposing U = u does not affect V : the inverse (with
respect to u) function v = �−1

u (u, ξ ) has no causal meaning.
The function � represents “the mechanism” of the influence
V → U . This is what should be preserved during an interven-
tion for the observational and interventional conditional PDFs
p(u|v) and p(u|do(v)) to coincide.

If a third factor W is present and its value can also
be imposed, then an effect V → U not mediated by W is
defined via comparison of the PDFs p(u|do(w∗), do(v∗))
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and p(u|do(w∗), do(v∗∗)). If W contains all potential con-
founders, the discovery of the coupling V → U from passive
observations of (U,V,W ) is possible, while it may be im-
possible from passive observations of (U,V ). The large field
of causal inference often based on structural causal model-
ing is strongly interested in causal discovery in large sets
of variables [42,43,118]. In particular, the mediation phe-
nomena are quite important both conceptually and practically
(e.g., [66,118]). Estimation of “causal strengths” is also a
part of causal inference, but quantifiers in use remain mostly
simple, e.g., the ACE often suffices to characterize relations
between variables (see Appendix A 2). Even when one deals
with time-varying quantities, e.g., [27,40,57,95,119–122,133–
135], a purposeful choice of a causality quantifier from a
multitude of characteristics and their interrelations are usually
not the subject of any attention.

2. Dynamical systems

The above concept of interventional causality is ubiquitous
also in the fields of mathematical modeling and dynamical
systems, but that word is rarely used there. Consider an au-
tonomous deterministic dynamical system characterized with
a state vector xt ∈ Rn at time t . Its evolution from any initial
state x0 to a future state xt (t > 0) is specified with a deter-
ministic evolution operator �det

t as xt = �det
t (x0). The latter

may result from integration of differential equations over an
interval (0, t ) starting from a given initial state, which is the
usual initial value problem in mathematical physics. Then, in-
stead of saying that the value x0 is given, one can equivalently
say that it is imposed. The conditional PDF p(xt |do(x0)) is
given by the Dirac δp(xt |do(x0)) = δ[xt − �det

t (x0)]. The pair
(X0, Xt ) corresponds to the above pair (V,U ), and there is a
causal coupling X0 → Xt in accordance with the above termi-
nology: any influence Xt → X0 is excluded by the meaning of
a dynamical system as a model of physical processes with the
arrow of time, while any third factor is absent by definition. If
some value xt ′ = x∗ is encountered in a passively observed
time series at any time instant t ′, the future is exactly the
same as after imposing the value x∗ at t = 0. So the “inter-
ventional” PDF p(xt |do(x0)) coincides with the observational
PDF p(xt |x0). Physicists rarely use the term “causality” since
under the dynamical systems setting there are no problems
with understanding causality and distinguishing it from the
ordinary correlation. Still, they sometimes do so; e.g., such
famous researchers as Kalman et al. [103] found it relevant
to claim that the evolution equations of a dynamical system
determine “the flow of causation from past into future” [103]
(p. 5).

An important generalization of the deterministic dynamical
system is the stochastic dynamical system (SDS), where xt at
t > 0 depends also on a random event ξ(0,t ) which acts on X
over an interval (0, t ) and is independent of x0 and any previ-
ous random events ξ(t ′,0) with t ′ < 0, e.g., [97,125]. Widely
known examples of the SDS and ξ(0,t ) are (1) stochastic
difference equations or autoregressive processes (e.g., [136])
where ξ(0,t ) is a finite sequence of values of independent
identically distributed (i.i.d.) random variables; (2) stochas-
tic differential equations (driven by white noise; e.g., [88])
where ξ(0,t ) can be approximated with a finite i.i.d. sequence;

and (3) Markov chains where ξ(0,t ) is an abstract random
event. A full evolution operator of an SDS can be writ-
ten as xt = �sto

t (x0, ξ(0,t ) ) with �sto
t : Rn × �(0,t ) → Rn where

ξ(0,t ) ∈ �(0,t ) in the respective probability space (see Ap-
pendix C 1). This is a particular case of the structural causal
model where the causal meaning takes place due to the arrow
of time. Given x0, the random variable Xt is a specific function
of a random event ξ(0,t ) and so is characterized with a respec-
tive PDF p(xt |do(x0)). This PDF is also called transition PDF.
So an SDS produces a future random variable Xt for a given
initial state x0, i.e., performs a mapping Xt = �t (x0) with
�t : Rn → Vn(�(0,t ) ) where Vn(�(0,t ) ) denotes the space of n-
dimensional random variables X (ξ(0,t ) ) which are functions of
ξ(0,t ) ∈ �(0,t ). The PDF p(xt |do(x0)) is no longer a Dirac δ in
general, but is still uniquely determined by the imposed initial
state x0 and can be obtained, e.g., via solving an initial value
problem for the Fokker-Planck equation [97,98] in the case
of stochastic differential equations. An SDS’s evolution is a
(first-order) Markovian stochastic process Xt because ξ(t,t+τ )

is independent of Xt and any previous ξ(t ′,t ) with t ′ < t (there
are no confounders of X0 and Xt ). Therefore, the transition
PDF p(xt |x0) for passive observations coincides with the in-
terventional PDF p(xt |do(x0)).

The SDS is a particular case of random dynamical sys-
tem (RDS) which is called Markovian RDS; see Ref. [83],
pp. 105–107, and Appendix C 2 below. A general RDS may
involve, e.g., nonwhite noises and so the interventional and
passively observed transition PDFs may not coincide. That
case is not considered in this work, but may be addressed
similarly to SDS and requires additional assumptions when
one turns to estimation of causality quantifiers from a time
series (see Appendix F 2).

APPENDIX C: TERMS AND NOTATIONS

This Appendix provides technical details for the DCE for-
malism: the suggested novel terms and notations are justified
in Appendixes C 1, C 2, and C 3, while full mathematical
definitions of all elements of the general DCE are given in
Appendix C 4.

1. Functional conditioning

Consider a random vector-valued variable consisting of
two components (U,V ) (each is a finite-dimensional vector)
which is function of a random event ω defined on some
probability space; e.g., [137–140]. The latter is a triple which
includes a space � of elementary events ω, a σ -algebra B
of its subsets called events, and a probability measure P on
{�, B}. One sometimes calls {�, B} field of events [140].
Denote PDF of (U,V ) as pUV (u, v) which can be a gener-
alized function with Dirac δ components. Denote functionals
of a random variable U with parentheses: expectation E (U ),
variance var(U ) (sometimes σ 2

U ), and (differential) Shannon
entropy H (U ).

Conditional PDF of U under the condition V = v is
pU |V (u|v) = pUV (u, v)/pV (v) where pV (v) is marginal PDF
of V . In statistical sense, the joint PDF pUV (u, v) describes
an infinite ensemble of realizations (u, v) called an indepen-
dent sample. Then pU |V (u|v∗) describes an infinite ensemble
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of trials with such realizations (u, v) that v = v∗, i.e., with
marginal PDF of V equal to δ(v − v∗), which can be selected
from the above original ensemble. By construction, the ran-
dom vector (U,V ) with v = v∗ is defined on the same field
of events {�, B}, but with a probability measure different (in
general) from the original measure P.

Let us create another infinite ensemble via selecting real-
izations (u, v) from the original ensemble of all realizations
so that the relative number of realizations with the value of
V within an interval (v, v + dv) equals ρV (v) dv. Then the
function ρV (v) is a new marginal PDF of V . The resulting
vector (U,V ) is defined on the same field of events {�, B},
but with yet another probability measure. The resulting vari-
able U is called here functionally conditional because the
condition is given by the probability density function of V
in contrast to a single value V = v∗ used in the ordinary
conditioning. Let us denote this variable itself and its PDF
with the square brackets as [U |ρV ] and pU [u|ρV ], notice
pU [u|δ(v − v∗)] = pU |V (u|v∗). The functionally conditional
PDF equals pU [u|ρV ] = ∫

pU |V (u|v)ρV (v) dv. Let us denote
its functionals as var[U |ρV ] and H[U |ρV ]. Note that the no-
tation H (U ) implies some probability measure for the full
vector (U,V ) but does not show it explicitly, so the meaning
of H (U ) depends on the context in this respect.

In a practical setting, a dependence between U and V
described with pU |V (u|v) may well be determined not only
by the influence V → U , but also by the influence U → V
or the influence of a hidden third variable (confounder) on
U and V . To reveal the influence (causal coupling) V → U ,
it is important to distinguish between (passive) selection of
trials with V = v from the original ensemble and performing
trials by imposing V = do(v) which is a different condi-
tion [42]. In do-calculus [42], an intervention do(v) means
that “causal mechanisms” responsible for any influences on
V are blocked, while all other “causal mechanisms” remain
unchanged. These mechanisms are not given explicitly in the
definition of the original probability space {�, B, P}. Hence,
they are defined additionally when one introduces the concept
of intervention V = do(v). In other words, even the field of
events corresponding to a variable with imposed values V =
do(v) differs from the original field of events {�, B} since
the latter corresponds to a (passive) selection of trials from
the original ensemble with pV (v). Denote the interventional
conditional PDF pU |V (u|do(v)). The PDF pU |V (u|do(v)) may
well differ from the original PDF pU |V (u|v) [42]. Despite the
same notation pU |V , the difference of the two functions is
encoded in the notation do(v). The PDF of imposed values
ρV (do(v)) can be selected arbitrarily. Then the interven-
tional functionally conditional PDF reads p[u|ρV (do(·))] =∫

pU |V (u|do(v))ρV (do(v)) dv.
If pU |V (u|v) = pU |V (u|do(v)), then imposition and (pas-

sive) selection of V = v are equivalent in terms of the
resulting conditional PDF of U . As an example, take a ran-
dom variable U with realizations generated by a function
u = U (v, ω) whose domain is Cartesian product of two prob-
ability spaces with elementary events V = v and ω, where
the events ω are described with a probability measure P and
independent of V . If the imposition of V = do(v) maintains
the function U (v, ω) and the measure P unchanged, then the
ordinary conditional PDF pU |V (u|v) = pU |V (u|do(v)) and so

describes “an autonomous causal mechanism V → U .” Then
also p[u|ρV ] = p[u|ρV (do(·))]. Such U may be a future state
of an SDS at t > 0, V is its present state at t = 0, and ω is
a random event (noise) acting during an interval (0, t ). In that
case, neither U nor ω can affect V , so there are no confounders
of U and V . Imposing an initial state (and looking at the
future) and passively selecting it from an observed time series
(and tracing the continuation) provide the same conditional
PDF of the future. Then the field of events explicitly includes
what is “an autonomous causal mechanism V → U retained
under V = do(v)”: this is an evolution operator of the SDS.

2. Stochastic dynamical system

An SDS is understood here as a system whose initial state
uniquely determines all future PDFs, i.e., whose evolution is a
(first-order) Markov process Zt : given an initial state z0, a PDF
of any future Zt (t > 0) does not depend on the past states zt

(with t < 0); e.g., [97]. Concerning the term, the foundational
monograph [83] uses the name “random dynamical system”
(RDS) which is, roughly speaking, a dynamical system under
the influence of any stationary noise. Evolution of its variables
may not be a Markov process. In continuous time, such an
RDS can be specified, e.g., with a “random differential equa-
tion” (RDE; see [83], pp. 57–58), i.e., an ordinary differential
equation driven by noise whose realizations can be integrated
in a usual sense. “Stochastic differential equation” (SDE) is
the name for a differential equation driven by white noise
([83], pp. 68–71). Its solution is a Markov process, and the
respective RDS is a particular case of Markovian RDS ([83],
pp. 105–106). Since such systems are especially relevant here,
the term SDS is used for convenience to denote any Marko-
vian RDS, including SDEs, discrete-time and discrete-state
systems, etc. Many works understand the term SDS in this
sense. In the same spirit, the monograph [141] calls a dynam-
ical system generated with an SDE “stochastic differential
system.” The term SDS is also often used in a more general
sense close to the RDS, e.g., in Refs. [88,89,131,142,143], but
even there an SDS is more often related to Markov processes.
A similar notion widely used in time series analysis is “state
space model”; e.g., [101].

3. Distinction functional

To quantify the difference between any two vectors of
a metric space, in particular, between random variables U ∗
and U ∗∗, one can use such notions as metrics, distance, and
divergence; see, e.g., a comment in Ref. [38]. Any of these
characteristics is zero if U ∗ = U ∗∗ in a relevant probabilis-
tic sense (e.g., almost surely or in the mean square sense).
“Metrics” as the most strict notion [38] is nonnegative and
symmetric, and implies the triangle inequality. The mean-
squared difference is an example of metrics. “Distance” is
often used as a synonym of metrics, but sometimes [38] with
possible violation of the triangle inequality. “Divergence”
is nonnegative, but not necessarily symmetric. In partic-
ular, the widely used Kullback-Leibler divergence (KLD)
is a divergence of distributions given as DKL(pU ∗ ||pU ∗∗ ) =∫

pU ∗ (u) ln[pU ∗ (u)/pU ∗∗ (u)] du. One can use quantifiers of
difference which are not necessarily nonnegative, e.g., the
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difference of expectations E (U ∗∗) − E (U ∗) defines the av-
erage causal effect (ACE) [42]. Similarly, the difference of
the logarithms of the generalized variances (i.e., the determi-
nants of covariance matrix) of certain vectors ln |�(U ∗∗)| −
ln |�(U ∗)| defines the Wiener-Granger causality [15,144], and
the difference of the Shannon entropies H (U ∗∗) − H (U ∗) of
certain vectors defines the transfer entropy.

To include all these possibilities, distinction functional
{U ∗||U ∗∗} or just distinction is defined here as any continuous
functional of the pair (U ∗,U ∗∗) which is equal to zero if
U ∗ = U ∗∗ in a relevant probabilistic sense. The two vertical
lines in the notation remind the KLD which is asymmetric in
respect of its arguments. Combination of this delimiter with
the figure brackets shows that it is not generally the KLD,
but can be any functional, since different kinds of brackets
often denote different functionals not even restricted to take on
positive values only. Thus, the suggested notation {U ∗||U ∗∗}
vividly reminds three aspects of the distinction: a functional,
possibly asymmetric, possibly taking on negative values.

4. Definitions

Consider an SDS S consisting of two subsystems X and
Y with a full state vector (xt , yt ) ∈ Rn+m where xt ∈ Rn

and yt ∈ Rm. Let its operator �t : Rn+m → Vn+m(�(0,t ) ) be
well defined for any t > 0 producing a random future state
(Xt ,Yt ) = �t (x0, y0) where the space Vn(�(0,t ) ) is defined
in Appendix B 2. Its X projection is given by the operator
�X

t : Rn+m → Vn(�(0,t ) ) which maps an initial state to a ran-
dom variable Xt = �X

t (x0, y0). Similarly, the other projection
operator is �Y

t : Rn+m → Vm(�(0,t ) ). Both the time t and the
state vector can be either continuous or discrete.

The operator �t is well defined for a wide range of
physically interesting SDSs, e.g., for any Markov chains and
difference equations (discrete-time systems) or stochastic dif-
ferential equations (6) with sufficiently smooth (satisfying
Lipschitz’s condition; e.g., [145], p. 181) functions on their
right-hand side. Below the future state is assumed to possess a
sufficiently regular PDF for a distinction functional of interest
(e.g., the difference of the Shannon entropies) to exist. For
some DCEs to be well defined, a stationary PDF must also
exist (e.g., for the TE) and the respective conditions are easily
formulated for Markov chains and linear systems. In this
work, all such mathematical conditions are implied to be met
when a particular DCE is defined. Their more exact and rigor-
ous formulations are not the subject of this work and relate to
the properties of a concrete SDS, not specifically to a DCE.
At the physical level of rigor, it suffices that all quantities
under study exist for a wide range of paradigmatic SDS (linear
stochastic differential equations, some low-dimensional non-
linear oscillators, Markov chains, etc.) and are defined in a
completely constructive manner to be numerically estimated
from ensembles of realizations for any SDS whose evolution
can be observed from any initial state and for any parameter
value of interest.

Let us specify an ensemble of initial states with a
PDF ρXY (x0, y0) = ρX (x0)ρY |X (y0|x0) and call it a (func-
tional) initial condition. Let us denote [Xt |ρXY ] = �̃X

t (ρXY )
the functionally conditional random variable Xt obtained
under the condition ρXY through the operator �̃X

t : Lρ →

Vn(X0,Y0, �(0,t ) ), where Lρ is the space of PDFs (nonnegative
with unit integral) and Vn(X0,Y0, �(0,t ) ) is the space of random
variables X (x0, y0, ξ(0,t ) ) defined over the respective probabil-
ity space. Let us denote the PDF of [Xt |ρXY ] as p(t )

X [xt |ρXY ].
The operators �̃t , �̃X

t , and �̃Y
t are defined in a completely

operational way. If an SDS’ evolution is well defined over an
interval (0, t ), one can compute or observe a future value xt

given an initial state (x0, y0) and a particular event ξ(0,t ). This
future is given through some operator xt = �sto

t (x0, y0, ξ(0,t ) ).
Such an xt is a realization of the functionally conditional vari-
able [Xt |ρXY ] where one randomly draws (x0, y0) according to
the PDF ρXY (x0, y0) and independently draws ξ(0,t ) according
to its own probability measure. The PDF p(t )

X [xt |ρXY ] can be
estimated if one performs many independent trials and obtains
a set of values of xt .

Definition 1. Call any ordered pair of functional initial con-
ditions (ρ∗

XY , ρ∗∗
XY ) an initial condition variation in an SDS S .

Call ρ∗
XY a reference initial condition and ρ∗∗

XY an alternative
initial condition.

To quantify a coupling Y → X , consider (ρ∗
XY , ρ∗∗

XY ) with
the same marginal PDF ρ∗

X (x0) = ρ∗∗
X (x0) and generally dif-

ferent ρ∗
Y |X (y0|x0) and ρ∗∗

Y |X (y0|x0).
Definition 2. For an SDS S , call the ordered pair

([Xt |ρ∗
XY ], [Xt |ρ∗∗

XY ]) produced by the operator �̃X
t the future

response of X on the temporal horizon t > 0 to the initial
condition variation (ρ∗

XY , ρ∗∗
XY ).

To quantify the “strength” of this response with a scalar,
one can select any continuous functional of the two futures
which should take on zero value if these futures are equal
to each other for any random event (x0, y0, ξ0,t ), but may
well be nonzero for a less strict coincidence. Indeed, real-
izations of [Xt |ρ∗

XY ] and [Xt |ρ∗∗
XY ] can be generated jointly,

i.e., in the same trial: for example, one can generate the two
futures in each single trial with the same noise realization for
both of them. If, moreover, both initial conditions are Dirac
δ’s, then one compares just two particular time realizations
of an SDS starting from different initial states and driven
with the same noise realization. This is similar, e.g., to the
definition of the conditional Lyapunov exponents. Under any
kind of mutually dependent joint generation, the joint PDF
p([Xt |ρ∗

XY ], [Xt |ρ∗∗
XY ]) is not the product of the two marginal

PDFs and its mixed momenta can be used to characterize
the difference between [Xt |ρ∗

XY ] and [Xt |ρ∗∗
XY ]. In case of the

independent generation of of [Xt |ρ∗
XY ] and [Xt |ρ∗∗

XY ] (i.e., inde-
pendent evolutions of the two ensembles), one compares the
marginal PDFs of [Xt |ρ∗

XY ] and [Xt |ρ∗∗
XY ] as is most often the

case. Let us call the functional selected to compare the two
futures distinction functional (or just distinction) and denote
it with another kind of brackets with a delimiter {·||·}.

Definition 3. Call the distinction functional such a continu-
ous functional of the future response ([Xt |ρ∗

XY ], [Xt |ρ∗∗
XY ])

which is zero at least if [Xt |ρ∗
XY ] = [Xt |ρ∗∗

XY ] for any
realization and can be nonzero otherwise. Denote it
{[Xt |ρ∗

XY ]||[Xt |ρ∗∗
XY ]} where {·||·}: Vn(X0,Y0, �(0,t ) ) ×

Vn(X0,Y0, �(0,t ) ) → R.
Examples of distinction functionals are diverse. Thus, for

an initial variation given by two Dirac δ initial conditions and
joint generation of Xt with the same particular noise realiza-
tion ξ ∗

(0,t ), the two futures are just usual nonrandom vectors
x∗

t and x∗∗
t and their distinction can be just the Euclidean
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norm of their difference. Such a distinction functional makes
use of its “access” to the detailed generation mechanism
�sto

t (x0, y0, ξ(0,t ) ) and evaluates Xt for each single noise re-
alization. Further, one can be interested in taking expectation
of such a noise-resolved distinction over various ξ(0,t ). Then
the distinction is a mean-squared difference 〈([Xt |ρ∗

XY ] −
[Xt |ρ∗∗

XY ])2〉 over the joint PDF of the future response; i.e.,
only this joint PDF should be known, not an evolution for each
individual noise realization. In even less detail, one can quan-
tify the difference between marginal PDFs p(t )

X [Xt |ρ∗
XY ] and

p(t )
X [Xt |ρ∗∗

XY ] which is called comparison of random variables
in probability. Only the latter version is used in Sec. III. The
distinction is not necessarily a distance, may be asymmetric,
and may take on negative values (see also Appendix C 3).

Definition 4. Call the value of the distinction functional
{[Xt |ρ∗

XY ]||[Xt |ρ∗∗
XY ]} for a single initial variation (ρ∗

XY , ρ∗∗
XY )

an elementary dynamical causal effect (DCE) in the direction
Y → X .

To introduce a DCE for a set of initial variations, one
should somehow assemble the elementary DCEs. Let us
parametrize all initial conditions with a vector λ and denote
them (ρ∗

XY,λ, ρ
∗∗
XY,λ). In particular, for Dirac δ initial conditions

located at (x∗
0, y∗

0 ) and (x∗
0, y∗∗

0 ), the assemblage parameter
reads λ = (x∗

0, y∗
0, y∗∗

0 ). Denote the elementary DCE as

C (t )
Y →X,λ = {[Xt |ρ∗

XY,λ] || [Xt |ρ∗∗
XY,λ]}. (C1)

Assemblage may be the average over some assemblage set �

with some weighting function p�(λ). It can be a maximal
value of C (t )

Y →X,λ over � or any other functional acting on

C (t )
Y →X,λ which is a function of λ ∈ �.

Definition 5. Call any continuous functional acting on the
elementary DCE C (t )

Y →X,λ (as a function of λ ∈ �) an as-

semblage functional and denote it 〈C (t )
Y →X,λ〉�, where 〈·〉�:

L(�) → R and L(�) is the space of scalar-valued functions
f (λ) with the domain �.

The angle brackets are used because it is often some
average (aggregation). The simplest example is the triv-
ial assemblage, i.e., taking a single initial variation
as is often done with parameter variations [29,49,79–
81]. Another example is Dirac δ initial conditions with
the average of the elementary DCEs over their loca-
tions p�(x∗

0, y∗
0, y∗∗

0 ) = ρX (x∗
0 )ρY |X (y∗

0|x∗
0 )ρY |X (y∗∗

0 |x∗
0 ) sug-

gested for a specific causality quantifier in Ref. [29]. In
Appendix D, let us also take the convention that in the case
of averaging, the assemblage may be equivalently denoted as
〈·〉� ≡ 〈·〉p�

.
The distinction may in general also depend on its own

parameters. For example, it can compare the two functionally
conditional future PDFs at a given point x∗

0 , rather than over
the entire domain. The latter case arises in Sec. III B for the
LKIF interpreted as a DCE. Let us include parameters of
the distinction into the assemblage parameter λ and write the
elementary DCE {[Xt |ρ∗

XY,λ] || [Xt |ρ∗∗
XY,λ]}λ. The initial condi-

tions and the distinction may depend on the same parameters
and/or each of them on its own parameters. The assemblage
may be performed over all parameters included into λ or over
some of them.

Definition 6. Call the value of any assemblage functional
〈C (t )

Y →X,λ〉� the dynamical causal effect Y → X of initial con-

dition variations in an SDS S:

C (t )
Y →X = 〈{[Xt |ρ∗

XY,λ] || [Xt |ρ∗∗
XY,λ]}λ〉�. (C2)

Recall that Eq. (C2) is obtained for a fixed value of a
parameter vector a = (ax, ay, axy, ayx ) in S . A coupling pa-
rameter axy = 0 means that X evolves independently of Y and
any DCE Y → X (C2) then equals zero. To describe initial
variations of a and their effects, let us consider that the DCE
Y → X can quantify also a change of the future Xt in response
to a change of a (either axy or ay) which is a parameter
variation (a∗, a∗∗).

Definition 7. Call the combination of the functional initial
condition ρXY and the parameter value a the generalized initial
condition θλ = {ρXY,λ, a}.

Let the parameter λ include (a∗, a∗∗). Define the reference
generalized initial condition as θ∗

λ = {ρ∗
XY,λ, a∗} and the al-

ternative as θ∗∗
λ = {ρ∗∗

XY,λ, a∗∗}. The initial variation (θ∗
λ , θ∗∗

λ )
may be just an initial condition variation (if a∗ = a∗∗), or only
a parameter variation (if ρ∗

XY,λ = ρ∗∗
XY,λ), or a mixed one. After

the assemblage over such an extended λ, one gets the general
DCE in the resulting form (4) which is just the final definition.

Definition 8. Call the value of any assemblage functional
〈C (t )

Y →X,λ〉� given by Eq. (4) the general dynamical causal
effect Y → X in an SDS S .

APPENDIX D: DERIVATIONS FOR LKIF

In the starting work [5], the authors claimed that their
quantifier “is consistent with Schreiber’s transfer entropy. The
transfer entropy is a Kullback entropy-like quantity. …The
essence of this philosophy is reflected in our formalism. …
However, our formalism differs quantitatively. … The major
difference lies in that A and B [two terms in the expression
for TE, D.S.] are not strictly in a form of entropy increase,
while entropy increase forms the building blocks for our for-
malism. This difference might lead to different results with
the same problem.” This consideration is based mainly on
the formal similarity of the two quantifiers. Even after the
further works [73–75], it has remained unclear how strongly
the values of the two quantifiers can differ and why.

Below, the formulas are first given for ldir
Y →X which directly

implements the condition “Y is frozen” in the DCE formal-
ism (Appendix D 1). Second, the LKIF lY →X is derived as a
particular DCE to prove Theorem 2 (Appendix D 2). Third,
the difference from the original derivation [75] of lY →X is
explained (Appendix D 3).

1. Implementation of “Y frozen”

In the general case of nonzero noises, the Fokker-Planck
equation for the system (6) reads

∂ p(t )
XY

∂t
= −∂

(
fx p(t )

XY

)
∂x

− ∂
(

fy p(t )
XY

)
∂y

+ 1

2

∂2
(
g2

xx p(t )
XY

)
∂x2

+ 1

2

∂2
(
g2

yy p(t )
XY

)
∂y2

(D1)

and describes the evolution of the PDF p(t )
XY (x, y) starting from

some initial condition p(0)
XY (x0, y0) = ρXY (x0, y0). Hence, the

PDF p(t )
XY (x, y) is functionally conditional on ρXY (x0, y0); i.e.,
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in our full notation it reads p(t )
XY (x, y) = p(t )

XY [x, y|ρXY ]. The
quantities derived below are also functionally conditional, but
the notation [·|ρXY ] is often omitted for compactness as in
Eq. (D1).

Denote a all parameters which may enter Eq. (6), e.g.,
parameters of the functions fx, gxx, etc. Select an arbi-
trary initial condition ρXY (x0, y0) = ρX (x0)ρY |X (y0|x0). In the
DCE language, the corresponding marginal Shannon entropy
rate Ḣ (Xt ) at t = 0 describes the evolution from the initial
condition ρ∗∗

XY = ρXY , i.e., from θ∗∗ = {ρXY , a}. Then the
condition of “Y frozen” must correspond to the initial PDF
ρ∗

XY (x0, y0) = ρX (x0)δ(y0 − y∗
0 ) and to the parameter values

specified so to “freeze” the dynamics of Y as fy = gyy = 0.
To provide the latter, let us introduce an auxiliary parameter
iY as a multiplier before the entire right-hand side of the equa-
tion for dy in Eq. (6): that right-hand side then equals iY ( fy +
gyy dwy). Setting iY = 0 makes Yt equal to the reference initial
state y∗

0 at any t (i.e., frozen). The alternative initial condition
θ∗∗ includes iY = 1. So let us define a mixed initial varia-
tion with the reference θ∗ = (ρX (x0)δ(y0 − y∗

0 ), iY = 0) and
the alternative θ∗∗ = (ρX (x0)ρY |X (y0|x0), iY = 1), set t → 0,
the distinction as the difference of the Shannon entropies
{U ∗||U ∗∗} = [H (U ∗∗) − H (U ∗)]/t , and the assemblage as the
average over y∗

0 with ρY (y∗
0 ). Let us denote the resulting DCE

ldir
Y →X and consider it below.

Let us follow Ref. [75] to derive the functionally condi-
tional Ḣ (Xt ) under the condition θ∗∗. First, integrate both
sides of Eq. (D1) over y to get the evolution equation for (the
functionally conditional) p(t )

X (x):

∂ p(t )
X (x)

∂t
= −

∫
∂
(

fx p(t )
XY

)
∂x

dy + 1

2

∫
∂2

(
g2

xx p(t )
XY

)
∂x2

dy. (D2)

All integrals here and below are taken from −∞ to ∞. Two
integrals of the derivatives ∂ (·)/∂y have diminished since they
equal the differences of some terms at ±∞, which are zero
since p(t )

XY and its derivatives are assumed to quickly decay to
zero at infinities. Via multiplying both sides of (D2) by −[1 +
ln p(t )

X (x)], one gets

−∂
(
p(t )

X ln p(t )
X

)
∂t

=
∫ (

1 + ln p(t )
X

)∂
(

fx p(t )
XY

)
∂x

dy

−1

2

∫ (
1 + ln p(t )

X

)∂2
(
g2

xx p(t )
XY

)
∂x2

dy. (D3)

Via integrating (D3) over x, one obtains

Ḣ (Xt ) =
∫∫

ln p(t )
X

∂
(

fx p(t )
XY

)
∂x

dx dy

−1

2

∫∫
ln p(t )

X

∂2
(
g2

xx p(t )
XY

)
∂x2

dx dy. (D4)

Via integrating (D4) by parts, one gets equivalently

Ḣ (Xt ) = −
∫∫

fx
∂ ln p(t )

X

∂x
p(t )

XY dx dy

−1

2

∫∫
g2

xx

∂2 ln p(t )
X

∂x2
p(t )

XY dx dy. (D5)

For t = 0, it becomes

Ḣ [Xt |θ∗∗] = −
∫∫

fx
d ln ρX

dx0
ρXY dx0 dy0

− 1

2

∫∫
g2

xx

d2 ln ρX

dx2
0

ρXY dx0 dy0. (D6)

Here fx, gxx, ρX , ρXY are functions of x0 and y0 as distinct
from Eqs. (D1)–(D5) where they are functions of x and y. The
arguments are the same as the integration variables and are not
explicitly shown for compactness. Noticing that 1

ρX

∂ ( fxρX )
∂x0

=
fx

d ln ρX

dx0
+ ∂ fx

∂x0
, one can finally rewrite (D6) as

Ḣ [Xt |θ∗∗] = −
∫∫

∂ ( fxρX )

∂x0
ρY |X dx0 dy0

+
∫∫ (

∂ fx

∂x0
− g2

xx

2

d2 ln ρX

dx2
0

)
ρXY dx0 dy0.

(D7)

Under the reference θ∗, let us substitute ρ∗
XY = ρX δ(y0 −

y∗
0 ) for ρXY into Eq. (D6) and get the y∗

0-dependent Shannon
entropy rate at t = 0 as

Ḣ [Xt |θ∗] = −
∫

fx(x0, y∗
0 )

d ln ρX

dx0
ρX dx0

−1

2

∫
g2

xx(x0, y∗
0 )

d2 ln ρX

dx2
0

ρX dx0. (D8)

Note that in obtaining this equation through Eqs. (D2)–(D6),
the two terms with ∂ (·)/∂y diminish due to iY = 0. But even
if iY 	= 0, these two terms would diminish in Eq. (D2) just due
to the decay of the PDF p(t )

XY and its derivatives at infinities.
Therefore, due to t → 0, the mixed initial variation (θ∗, θ∗∗)
can be equivalently replaced here with the initial condition
variation (ρ∗

XY , ρ∗∗
XY ) and iY = 1 in both θ∗ and θ∗∗. The en-

tropy H[Xt |θ∗] for the initial condition with iY = 0 differs
from that for the same initial condition with iY = 1 only if
t is finite. As well, the higher-order temporal derivatives of
H[Xt |θ∗] at t = 0 depend on iY , but not the first derivative
under consideration. So the DCE ldir

Y →X can be equivalently
defined as the DCE involving just the initial condition varia-
tions (ρ∗

XY , ρ∗∗
XY ).

The entropy rate in Eq. (D8) depends on the chosen y∗
0. Let

us multiply both sides of Eq. (D8) by ρY (y∗
0 ) and integrate

over y∗
0 to get the average quantity

〈Ḣ [Xt |ρ∗
XY ]〉ρY (y∗

0 ) = −
∫∫

fx
d ln ρX

dx0
ρX ρY dx0 dy0

−1

2

∫∫
g2

xx

d2 ln ρX

dx2
0

ρX ρY dx0 dy0,

(D9)

where the notation y∗
0 on the right-hand side is changed to

y0 just for convenience of further comparisons. Similarly to
Eq. (D7), let us rewrite Eq. (D9) as
〈Ḣ [Xt |ρ∗

XY ]〉ρY (y∗
0 )

= −
∫∫

∂ ( fxρX )

∂x0
ρY dx0 dy0 +

∫∫ (
∂ fx

∂x0
− g2

xx

2

d2 ln ρX

dx2
0

)

× ρX ρY dx0 dy0, (D10)
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where the first term on the right-hand side diminishes (just
integrate first over x0 to see that) that gives

〈Ḣ [Xt |ρ∗
XY ]〉ρY (y∗

0 )

=
∫∫ (

∂ fx

∂x0
− g2

xx

2

d2 ln ρX

dx2
0

)
ρX ρY dx0 dy0. (D11)

The DCE ldir
Y →X is the difference between (D7) and (D11)

which equals

ldir
Y →X = −

∫∫
∂ ( fxρX )

∂x0
ρY |X dx0 dy0

+
∫∫ (

∂ fx

∂x0
− g2

xx

2

d2 ln ρX

dx2
0

)
(ρXY − ρX ρY ) dx0 dy0.

(D12)

Again, all functions under the integrals in Eq. (D12) have
the arguments x0 and y0. If the PDF ρXY is randomized (i.e.,
ρXY = ρX ρY ) or the coupling Y → X is absent (i.e., both
fx and gxx do not depend on y), then ldir

Y →X = lY →X = 0. In
general, ldir

Y →X differs from the LKIF lY →X (10). Note that the
Shannon entropy rate conditioned on ρ∗

XY (D11) and entering
ldir
Y →X (D12) is obtained via averaging with ρX (x0) in Eq. (D8)
to provide the Shannon entropy of the ensemble, with the
result independent of any x0 or x∗

0 . After that, averaging over
y∗

0 gives such a term in Eq. (D12) which is the average with
ρX ρY . Such an average is absent from the LKIF lY →X by its
definition.

2. Proof of Theorem 2: LKIF is a DCE

To show that the LKIF lY →X (14) is a DCE, let us
consider the evolution of hx(Xt ) = − ln p(t )

X (x) as it is also
used in Ref. [75]. The quantity hx(Xt ) is the local entropy
since the Shannon entropy is its weighted average H (Xt ) =∫

p(t )
X (x)hx(Xt ) dx. Let us multiply both sides of Eq. (D2) by

−1/p(t )
X (x) and get

∂hx(Xt )

∂t
=

∫
1

p(t )
X

∂
(

fx p(t )
XY

)
∂x

dy − 1

2

∫
1

p(t )
X

∂2
(
g2

xx p(t )
XY

)
∂x2

dy.

(D13)
Recall the initial condition ρXY = ρX ρY |X and observe that
hx(Xt ) at any x = x∗

0 is the functionally conditional quantity
hx∗

0
[Xt |ρXY ] which depends on the parameter x∗

0 . Let us denote
its rate ḣx∗

0
[Xt |ρXY ] and rewrite Eq. (D13) for t = 0 and the

initial condition ρ∗∗
XY (x0, y0) = ρX (x0)ρY |X (y0|x0) as

ḣx∗
0
[Xt |ρ∗∗

XY ] =
∫

1

ρX (x∗
0 )

∂[ fx(x∗
0, y0)ρXY (x∗

0, y0)]

∂x∗
0

dy0

−1

2

∫
1

ρX (x∗
0 )

∂2
[
g2

xx(x∗
0, y0)ρXY (x∗

0, y0)
]

∂x∗
0

2 dy0.

(D14)

Under the reference initial condition ρ∗
XY,y∗

0
=

ρX (x0)δ(y0 − y∗
0 ), Eq. (D14) becomes

ḣx∗
0
[Xt |ρ∗

XY,y∗
0
] = 1

ρX (x∗
0 )

∂[ fx(x∗
0, y∗

0 )ρX (x∗
0 )]

∂x∗
0

− 1

2ρX (x∗
0 )

∂2
[
g2

xx(x∗
0, y∗

0 )ρX (x∗
0 )

]
∂x∗

0
2 . (D15)

Let us define the distinction functional depending on the
parameter x∗

0 as

{[Xt |ρ∗
XY,y∗

0
] || [Xt |ρ∗∗

XY ]}x∗
0

= hx∗
0
[Xt |ρ∗∗

XY ] − hx∗
0
[Xt |ρ∗

XY,y∗
0
].

(D16)

So {[Xt |ρ∗
XY,y∗

0
] || [Xt |ρ∗∗

XY ]}x∗
0

compares the local entropies
hx∗

0
(Xt ) under the conditions of y0 distributed with δ(y0 − y∗

0 )
and with ρY |X (y0|x0). The value of this functional depends also
on y∗

0 as a parameter of the reference initial condition ρ∗
XY,y∗

0
.

Let us assemble this distinction over y∗
0 via averaging with

ρY |X (y∗
0|x∗

0 ) and get the DCE depending on the parameter x∗
0

as
〈{[

Xt |ρ∗
XY,y∗

0

] || [Xt |ρ∗∗
XY ]

}
x∗

0

〉
ρY |X (y∗

0 |x∗
0 )

=
∫ (

hx∗
0
[Xt |ρ∗∗

XY ] − hx∗
0

[
Xt |ρ∗

XY,y∗
0

])
ρY |X (y∗

0|x∗
0 ) dy∗

0.

(D17)

Now, let us assemble it as the average over x∗
0 with ρX (x∗

0 ) and
get

〈{[
Xt |ρ∗

XY,y∗
0

] || [Xt |ρ∗∗
XY ]

}
x∗

0

〉
ρXY (x∗

0 ,y∗
0 )

=
∫∫ (

hx∗
0
[Xt |ρ∗∗

XY ] − hx∗
0

[
Xt |ρ∗

XY,y∗
0

])
ρXY dx∗

0 dy∗
0.

(D18)

Dividing Eq. (E20) by t and taking the limit t → 0, one gets
finally

lim
t→0

〈[
Xt |ρ∗

XY,y∗
0

] || [Xt |ρ∗∗
XY ]

}
x∗

0

〉
ρXY (x∗

0 ,y∗
0 )

t

=
∫∫ (

ḣx∗
0
[Xt |ρ∗∗

XY ] − ḣx∗
0

[
Xt |ρ∗

XY,y∗
0

]
)ρXY dx∗

0 dy∗
0.

(D19)

The difference of Eq. (D19) from ldir
Y →X is that ldir

Y →X involves
the term (D11) where the integration is done with the random-
ized ρX ρY because the full Shannon entropy (D8) is first found
as the quantity functionally conditional on ρX (x0)δ(y0 − y∗

0 )
and independent of any x∗

0 , and then the average over y∗
0 is

computed without an opportunity to include any dependence
on x∗

0 .
To find explicitly the right-hand side of Eq. (D19), note

that it consists of the two terms (D14) and (D15) multiplied
by ρX (x∗

0 )ρY |X (y∗
0|x∗

0 ) and integrated over x∗
0 and y∗

0. The
term (D14) does not depend on y∗

0, so only multiplication by
ρX (x∗

0 ) and the integration over x∗
0 remain:

∫
ḣx∗

0
[Xt |ρ∗∗

XY ]ρX (x∗
0 ) dx∗

0

=
∫∫ (

∂ (ρXY fx )

∂x∗
0

− 1

2

∂2
(
ρXY g2

xx

)
∂x∗

0
2

)
dy0 dx∗

0, (D20)

where all functions under the integral sign are functions of
(x∗

0, y0). This quantity is equal to zero since the derivatives
with respect to x∗

0 are integrated over x∗
0 . The term (D15) after
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multiplication and integration becomes

∫∫
ḣx∗

0

[
Xt |ρ∗

XY,y∗
0

]
ρXY (x∗

0, y∗
0 ) dx∗

0 dy∗
0

=
∫∫ (

∂ (ρX fx )

∂x∗
0

− 1

2

∂2
(
ρX g2

xx

)
∂x∗

0
2

)
ρY |X dx∗

0 dy∗
0,

(D21)

where all functions under the integral sign are functions of
(x∗

0, y∗
0 ). In such a form, it is clear that via subtracting (D21)

from zero (D20) to get the DCE (D19), one gets the right-hand
side of Eq. (14) for the information flow lY →X . So the latter
(LKIF) reads

lY →X = lim
t→0

〈{[
Xt |ρ∗

XY,y∗
0

]||[Xt |ρ∗∗
XY ]

}
x∗

0

〉
ρXY (x∗

0 ,y∗
0 )

t
. (D22)

This proves Theorem 2 showing that lY →X is a DCE equal to
the difference of the local entropy rates at x∗

0 (which is the pa-
rameter of the distinction) averaged over y∗

0 with ρY |X (y∗
0|x∗

0 )
and over x∗

0 with ρX (x∗
0 ).

3. Matching with original derivation of LKIF

To obtain Eq. (14), the author of [75] finds Ḣ (Xt ) from the
equation for the marginal PDF of Xt (D2) and gets it both in
the forms (D6) and (D7). So it is the rate of the functionally
conditional Shannon entropy H (Xt ) = H[Xt |ρ∗∗

XY ] under the
condition ρ∗∗

XY = ρXY . However, to define the quantity Ḣ∗
X , the

author does not consider the Fokker-Planck equation with any
initial condition as an initial value problem for an evolving
ensemble, but uses another formal consideration.

Still, the Fokker-Planck equation for p(t )
X is used in

Ref. [75] with y = y∗ considered as a constant parameter, i.e.,
Eq. (D2) with p(t )

XY (x, y) = p(t )
X (x)δ(y − y∗):

∂ p(t )
X (x)

∂t
= −∂

[
fx(x, y∗)p(t )

X (x)
]

∂x
+ 1

2

∂2
[
g2

xx(x, y∗)p(t )
X (x)

]
∂x2

.

(D23)
This is given as Eq. (11) in Ref. [75], only the notations here
somewhat differ. Further, the author claims that the entropy
rate of interest Ḣ∗

X “cannot be obtained from the Fokker-
Planck equation (D23), where the dynamics is consistent
through time” (the words before Eq. (9) in Ref. [75]) and sug-
gests to return to the definition of the derivative of a stochastic
process. It looks like a heuristic reasoning, and the motivation
is not explained in more detail. So the author transforms
Eq. (D23) into the equation for − ln p(t )

X (x) and gets the above
Eq. (D15) [the formula after Eq. (12) in Ref. [75]]. Let us
rewrite it here for t = 0 as

−∂ ln p(t )
X (x)

∂t

∣∣∣∣
t=0

= 1

ρX (x)

∂[ fx(x, y∗)ρX (x)]

∂x

− 1

2ρX (x)

∂2
[
g2

xx(x, y∗)ρX (x)
]

∂x2
. (D24)

Then the author goes to a finite difference on the left-hand
side of (D24) via the approximation ∂ ln p(t )

X (x)/∂t |t=0 ≈

[ln p(�t )
X (x) − ln ρX (x)]/�t getting

− ln p(�t )
X (x) + ln ρX (x) = �t

ρX (x)

∂[ fx(x, y∗)ρX (x)]

∂x

− �t

2ρX (x)

∂2
[
g2

xx(x, y∗)ρX (x)
]

∂x2
.

(D25)

After that, a stochastic realization x�t occurred after the
present value x0 is substituted into Eq. (D25) instead of x. In
the term ln ρ(x�t ) on the left-hand side, the argument x�t is
replaced with x�t = x0 + fx(x0, y∗)�t + gxx(x0, y∗) dwx and
the resulting term ln ρX [x0 + fx(x0, y∗)�t + gxx(x0, y∗) dwx]
is expanded into the Taylor series in �t and dwx at x0. The
argument x�t on the right-hand side is replaced in the same
way, but finally x�t appears to be just replaced with x0 after
retaining only the lowest-order terms. It gives

− ln p(�t )
X (x�t ) + ln ρX (x0) − A

= �t

ρX (x0)

∂[ fx(x0, y∗)ρX (x0)]

∂x0

− �t

2ρX (x0)

∂2[gxx(x0, y∗)ρX (x0)]

∂x2
0

, (D26)

where A = − ∂ ln ρX (x0 )
∂x0

[ fx�t + gxx(x0, y∗) dwx] −
1
2

∂2 ln ρX (x0 )
∂x2

0
[ fx�t + gxx(x0, y∗) dwx]2. Then the author

takes expectations of both sides of (D26), i.e., averages
over an ensemble of realizations (x0, y∗, dwx ) [whether
y∗ is fixed as in Eq. (D23) or not is considered below].
The average −〈ln p(�t )

X (x�t )〉 is further assumed to
give the entropy H (X�t ) “as if Y is frozen,” while
−〈ln ρ(x0)〉 to give the entropy H (X0). If so, one writes
Ḣ∗

X = (−〈ln p(�t )
X (x�t )〉 + 〈ln ρ(x0)〉)/�t . It is further

derived [75] that 〈A〉/�t = Ḣ [Xt |ρ∗∗
XY ] with Ḣ [Xt |ρ∗∗

XY ] in
the above form (D6). It results in

Ḣ∗
X = Ḣ [Xt |ρ∗∗

XY ]

+
∫∫

ρXY (x0, y∗)

ρX (x0)

∂[ fx(x0, y∗)ρX (x0)]

∂x0
dx0 dy∗

−
∫∫

ρXY (x0, y∗)

2ρX (x0)

∂2
[
g2

xx(x0, y∗)ρX (x0)
]

∂x2
0

dx0 dy∗.

(D27)

Subtracting the right-hand side of Eq. (D27) from
Ḣ [Xt |ρ∗∗

XY ] (D6), the author gets lY →X in the form (14).
The obstacle is that the average −〈ln p(�t )

X (x�t )〉 would
be the Shannon entropy only if one used the relevant en-
semble [i.e., the PDF of stochastic realizations (x0, y∗)] over
which this average is done. If this ensemble is described with
ρ∗

XY,y∗ = ρX (x0)δ(y − y∗), then −〈ln p(�t )
X (x�t )〉 is indeed the

Shannon entropy at a given y∗ as in ldir
Y →X . The subsequent

average with ρY (y∗) would give the Shannon entropy, and
the weighting function ρX (x0)ρY (y∗) would enter the right-
hand side of Eq. (D27) instead of ρXY (x0, y∗) resulting in
the above ldir

Y →X . However, the author [75] averages with the
PDF ρXY (x0, y∗) in Eq. (D27) violating the condition of fixed
y∗ (“Y frozen”), so the general Eq. (D2) should be used
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instead of Eq. (D23) to obtain the Shannon entropy H (Xt )
of the ensemble starting from ρ∗∗

XY = ρXY (x0, y0), since the
violated condition was the condition for the applicability of
Eq. (D23). Then −〈ln p(�t )

X (x�t )〉 would equal H[Xt |ρ∗∗
XY ] giv-

ing Ḣ∗
X = Ḣ [Xt |ρ∗∗

XY ]. So the only possible understanding is
that the author averages over realizations (x0, y∗) distributed
with ρXY (x0, y∗) but using the simpler FPE corresponding to
the frozen y = y∗. Hence, −〈ln p(�t )

X (x�t )〉 is not the Shannon
entropy of any ensemble of time realizations of the system (6)
starting from some initial condition for the relevant FPE and
taken at �t , but a mix (over various x∗

0) of the local en-
tropy rates at x∗

0 for the ensembles starting from ρ∗
XY,y∗ =

ρX (x0)δ(y0 − y∗) with different y∗. This is not even the av-
erage of any Shannon entropies due to such “mixing”: at each
x∗

0 the local entropy rates for the ensembles with different y∗
enter the aggregate quantity with different weights distributed
as ρY |X (y∗|x∗

0 ). So it follows from Eqs. (D27) and (D20) that

Ḣ∗
X = 〈

ḣx∗
0
[Xt |ρX (x0)δ(y0 − y∗]

〉
ρXY (x∗

0 ,y∗ ) + Ḣ [Xt |ρ∗∗
XY ].

(D28)

Hence, the author first averages the local entropy hx∗
0
(Xt ) at

each x∗
0 over a set of y∗ distributed as ρY |X (y∗|x∗

0 ) and then
averages the result over x∗

0 with ρX (x∗
0 ), plus the addendum

〈A〉 summing the small terms in the expansion of ln p(�t )
X (x�t )

in Taylor series at x0 and averaged over x0, y∗, dwx. This is
exactly the derivation performed within the DCE framework
in Appendix D 2 above.

So Ḣ∗
X is not the Shannon entropy rate of any ensemble for

the SDS (6). From Eq. (D28) one immediately sees lY →X =
Ḣ [Xt |ρ∗∗

XY ] − Ḣ∗
X = 0 − 〈ḣx∗

0
[Xt |ρX (x0)δ(y0 − y∗]〉ρXY (x∗

0 ,y∗ ) as
in Appendix D 2. Therefore, the efforts with stochastic re-
alizations in Ref. [75] are unnecessary, the FPE with an
appropriate initial condition applies consistently, and the DCE
viewpoint reveals the meaning of Ḣ∗

X . Interestingly, the author
of Ref. [75] has found the nice and useful formula (14) even
semi-intuitively: the intuitive basis was noted by the authors
in their previous work [5]. The explicating DCE viewpoint
“deciphers” the meaning of this result as a concrete DCE and,
thereby, provides its further theoretical underpinning.

APPENDIX E: DETAILS OF THE NUMERICAL EXAMPLE

This Appendix provides analytic expressions for the DCEs
in the example of overdamped oscillators (1).

To find the stationary second-order moments σ 2
X , σ 2

Y , and
σXY (zero-lag covariance) for a linear SDS ż = Az + ξ (t ), one
solves a linear matrix equation (e.g., [29])

ACzz + CzzAT + � = 0, (E1)

where Czz is the stationary cross-covariance matrix of the state
vector z, T denotes transposition, and � is the noise intensity
matrix. In our case, the state vector is two-dimensional z =
(x, y) and Eq. (E1) becomes

−2axσ
2
X + 2axyσXY + �xx = 0,

−2ayσ
2
Y + 2ayxσXY + �yy = 0,

ayxσ
2
X + axyσ

2
Y − (ax + ay)σXY = 0, (E2)

By solving it explicitly, one finds the stationary moments
as [79]

σ 2
X = �xx

2ax
+ axa2

xy�yy + ayaxyayx�xx

2ax(ax + ay)(axay − axyayx )
,

σ 2
Y = �yy

2ay
+ aya2

yx�xx + axaxyayx�yy

2ay(ax + ay)(axay − axyayx )
,

σXY = ayayx�xx + ayayx�xx

2(ax + ay)(axay − axyayx )
. (E3)

Recalling the notations βxy = axyσY,0/(axσX,0), βyx =
ayxσX,0/(ayσY,0), and rst = σXY /(σX σY ), one finds SY →X

from the first equation of (E3) as

SY →X = β2
xy + βxyβyx

(1 − βxyβyx )(1 + mxy)
. (E4)

Let us consider several simpler quantifiers (see also Sec. I
of Ref. [90]) as steps to finding the TE. Note that a future state
of the SDS (1) relates to an initial state as

Xt = α
(t )
X X0 + α

(t )
XY Y0 + ε

(t )
X ,

Yt = α
(t )
Y Y0 + α

(t )
Y X X0 + ε

(t )
Y , (E5)

where all α’s are found via solving ordinary differential equa-
tions for the conditional expectations

dE (Xt |x0, y0)

dt
= −axE (Xt |x0, y0) + axyE (Yt |x0, y0),

dE (Yt |x0, y0)

dt
= −ayE (Yt |x0, y0) + ayxE (Xt |x0, y0), (E6)

starting from the initial state (x0, y0) at t = 0. The solution to
these ODEs reads

E (Xt |x0, y0) = α
(t )
X x0 + α

(t )
XY y0,

E (Yt |x0, y0) = α
(t )
Y y0 + α

(t )
Y X x0, (E7)

where all α’s do not depend on x0 and y0, being analytically
expressed via (ax, axy, ay, ayx, t ). Their explicit formulas are
needed further only in a simple version for the infinitesimal
t . Then the path coefficient [90] α

(t )
X describing the influence

Y → X reads

α
(t )
X = axyt, (E8)

up to an error of the order O(t2). The ACE of the Dirac δ initial
condition variation [δ(x0 − x∗

0 )δ(y0 − y∗
0 ), δ(x0 − x∗

0 )δ(y0 −
y∗∗

0 )] is

E (t )
Y →X (x∗

0, y∗
0, y∗∗

0 ) = axy(y∗
0 − y∗∗

0 )t . (E9)

The contribution of Y0 to the variance of Xt , given X0 = x∗
0 ,

is obtained using linearity of the system and the conditional
distribution pY |X (y0|x∗

0 ) as in Eq. (E7) and reads

γ
(t )

Y →X = α
(t )2
X σ 2

Y |X = a2
xyσ

2
Y |X t2. (E10)

Let us denote the variances and covariance of the noise
(ε(t )

X , ε
(t )
Y ) in Eq. (E5) as σ

(t )2
X , σ

(t )2
Y , and σ

(t )
XY , since they are

just conditional variances and covariance of the vector (Xt ,Yt )
given any initial state (x0, y0). They are found from the linear
ordinary differential equations (e.g., [29])

Ċzz = ACzz + CzzAT + �, (E11)
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which read for the SDS (1)

dσ
(t )2
X

dt
= −2axσ

(t )2
X + 2axyσ

(t )
XY + �xx,

dσ
(t )2

Y

dt
= −2ayσ

(t )2
Y + 2ayxσ

(t )
XY + �yy,

dσ
(t )
XY

dt
= ayxσ

(t )2
X + axyσ

(t )2
Y − (ax + ay)σ (t )

XY , (E12)

starting from the initial state (0,0,0) at t = 0. They are solved
exactly, and one gets for the infinitesimally small t and a
nonzero �xx

σ
(t )2
X = var

(
ε

(t )
X

) = �xxt, (E13)

up to an error of the order O(t2). Then the relative contribution
of the initial state Y0 to the variance of Xt , given X0 = x∗

0 , reads

κ
(t )
Y →X = a2

xyσ
2
Y |X t

�xx
, (E14)

up to an error of the order O(t2). Its rate at t = 0 is

κY →X = a2
xyσ

2
Y |X

�xx
. (E15)

It equals the double TE rate κY →X = 2τY →X ; see, e.g., [15,81]
or Sec. I in Ref. [90]. Note that σ 2

Y |X = σ 2
Y (1 − r2

st ) and use
σ 2

Y = σ 2
Y,0(1 + SX→Y ) to get

τY →X = axβ
2
xy

(
1 − r2

st

)
(1 + SX→Y )

4
. (E16)

The LKIF can be found directly from Eq. (14). It has been
done in Ref. [76], which gives

lY →X = axyσXY

σ 2
X

. (E17)

To relate this expression to the asymptotic DCE SY →X , note
that the left-hand side of Eq. (D6) Ḣ [Xt |ρ∗∗

XY ] is zero for
ρ∗∗

XY = pst
XY and recall that pst

XY is a two-dimensional Gaus-
sian PDF with zero expectations and second-order moments
σ 2

X , σ 2
Y , and σXY = rstσX σY . Substituting fx = −axx, g2

xx =
�xx, d ln ρX /dx = −x/σ 2

X , and d2 ln ρX /dx2 = −1/σ 2
X into

the right-hand side of Eq. (D6), one gets

−ax + axyσXY

σ 2
X

+ �xx

2σ 2
X

= 0. (E18)

Using �xx = 2axσ
2
X,0, one further gets

lY →X = axyσXY

σ 2
X

= ax − �xx

2σ 2
X

= ax
σ 2

X − σ 2
X,0

σ 2
X

= axSY →X

1 + SY →X
. (E19)

Thereby, Theorem 4 is proven. Alternatively, this relationship
can be checked by directly expressing the covariance from
Eq. (E2) as

σXY = σX,0σY,0(βxy + mxyβyx )

(1 + mxy)(1 − βxyβyx )
, (E20)

substituting it into Eq. (E17) and using Eq. (E4) and the
definition of βxy.

APPENDIX F: EXTENSIONS

This Appendix discusses extensions of the DCE formalism
to the case of more than two subsystems and the inverse
problems of DCE estimation and causal discovery.

1. More than two subsystems

Consider the case when three subsystems constitute the
entire SDS. Ref. [30] has generalized the TE TY →X to cau-
sation entropy taking into account the state of Z as TY →X |Z .
A similar approach is used in [95] where the initial states
are specified by intervention on the basis of the randomized
stationary PDF. A similar concept of complete TE [13,17]
takes into account the state of a third subsystem, while the
bivariate TE is called then an apparent TE [13,17]. There are
many studies with partial or conditional characteristics, e.g.,
the conditional Granger causality [146] and the conditional
Granger-Geweke spectra [100,147].

The general rule of how to define the three-subsystems
DCE C (t )

Y →X |Z based on the two-subsystems DCE C (t )
Y →X (4)

may also be readily formulated as follows: (1) in the
initial conditions, replace x0 with the vector (x0, z0)
to get ρ∗(x0, y0, z0) = ρXZ (x0, z0)ρ∗

Y |XZ (y0|x0, z0) and
ρ∗∗(x0, y0, z0) = ρXZ (x0, z0)ρ∗∗

Y |XZ (y0|x0, z0); (2) a possible
parameter variation is again that of ay and/or axy; (3) define
the distinction only in respect of Xt as {[Xt |ρ∗]||[Xt |ρ∗∗]},
rather than in respect of (Xt , Zt ), i.e., z0 is only a conditioning
variable required to control confounders; and (iv) the
assemblage parameter λ may involve parameters determining
the initial PDF of Z0, e.g., the location of the Dirac δ,
δ(z0 − z∗

0 ).
As an example, consider how the causation entropy [30] is

naturally produced as a generalization of the TE within the
DCE formalism. Consider an arbitrary PDF ρ(x0, y0, z0) =
ρXZ (x0, z0)ρY |XZ (y0|x0, z0) (in particular, it can be a stationary
PDF pst

XY Z (x, y, z) of an SDS under study) to define both
the initial conditions and the assemblage. Take the refer-
ence initial condition ρ∗

x∗
0 ,y∗

0 ,z
∗
0
= δ(x0 − x∗

0 )δ(z0 − z∗
0 )δ(y0 −

y∗
0 ), where y0 is fixed to y∗

0 as in the extended TE
I (t )
Y →X . Take the alternative initial condition ρ∗∗

x∗
0 ,y∗

0
= δ(x0 −

x∗
0 )δ(z0 − z∗

0 )ρY |XZ (y0|x∗
0, z∗

0 ), i.e., y0 is distributed according
to the conditional PDF as in I (t )

Y →X , but with an additional
condition z0 = z∗

0. The response of X on a finite horizon t is
([Xt |ρ∗

x∗
0 ,y∗

0,z
∗
0
], [Xt |ρ∗∗

x∗
0 ,y∗

0
]) exactly as in I (t )

Y →X , only the initial
conditions here depend also on the third vector z0, i.e., on
all confounders. The distinction functional is again the dif-
ference of the Shannon entropies {[Xt |ρ∗

x∗
0 ,y∗

0 ,z
∗
0
]||[Xt |ρ∗∗

x∗
0 ,y∗

0
]} =

H[Xt |ρ∗∗
x∗

0 ,y∗
0
] − H[Xt |ρ∗

x∗
0 ,y∗

0,z
∗
0
]. The assemblage is the average

over (x∗
0, y∗

0, z∗
0 ) with ρ(x∗

0, y∗
0, z∗

0 ) similarly to I (t )
Y →X , but

with an additional variable z∗
0. Thereby, one gets the three-

subsystem extended TE I (t )
Y →X |Z as

I (t )
Y →X |Z = 〈

H
[
Xt |ρ∗∗

x∗
0 ,y∗

0

] − H
[
Xt |ρ∗

x∗
0 ,y∗

0 ,z
∗
0

]〉
ρ(x∗

0 ,y∗
0 ,z

∗
0 ). (F1)

If one sets ρ = pst
XY Z , Eq. (F1) gives the three-subsystems

TE T (t )
Y →X |Z . Selecting t = 1, one gets the quantity T (1)

Y →X |Z
which exactly coincides with the causation entropy suggested
by Sun and Bollt and given by Eq. (32) in Ref. [30] where
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Z and Y are interchanged as compared to Eq. (F1) here. To
see that coincidence, just notice that Eq. (32) uses Eq. (10) in
Ref. [30].

If the knowledge about an SDS involves other factors be-
yond initial states of X and Y , one can include it into the
generalized initial conditions of the DCE in a formal way
similar to how it is done for the third subsystem. Such ad-
ditional factors can be (1) an influence of a temporal segment
Y(0,t ) over an interval (0, t ) on Xt relevant for a unidirectional
coupling Y → X ; (2) an influence of a temporal segment
(X(−�,0),Y(−�,0)) (i.e., a longer past) on Xt relevant for time-
delayed systems and couplings; and (3) an influence of a
noise realization segment ξy,(−�,0) on Xt relevant to describe
separate influences of “unique events” in the subsystem Y
at different past instants as formalized with momentary in-
formation transfer [22] which is a fruitful and actively used
causality quantifier [66]. These considerations will readily
apply to studying couplings in larger ensembles of dynamical
systems which problem is the subject of a huge number of
works, e.g., [6,40,66,148,149].

2. Inverse problems

a. Estimation

Estimation of DCEs from time series is a practically im-
portant issue when one must answer the question “How to
compute?” It should be studied as an inverse problem sepa-
rately from the direct problem of defining a DCE for a given
SDS which addresses the question “What to compute?” The
estimation essentially uses the solution to the direct problem,
since one must clearly understand “what to compute” before
“how to compute.” This work is devoted to the former ques-
tion, while the latter one is briefly commented on below.

If an SDS under study is indeed fully available, one can
perform sufficiently many experiments starting from different
initial states and parameters, observing future responses, com-
puting distinctions, and assembling elementary DCEs. The
difference from the theoretical computation of DCE (4) is only
in a finite number of experiments contrary to infinite number
of experiments implied by the expectations typically used in
the definition (4).

However, one often has only a single time series for a given
parameter value a without possibilities to perform desired
experiments (interventions). Then quite strict conditions must
be satisfied to apply the definition of a DCE directly: (i) an
SDS under study is ergodic, (ii) a DCE of interest involves
only initial condition variations, (iii) full state vectors (xt , yt )
of the SDS are observed, and (iv) the observed time realiza-
tion is long enough, i.e., it returns (within a small enough
distance) to any state (x∗

0, y∗
0 ) relevant to determine the DCE of

interest sufficiently many times separated by significant time
intervals to assure that the evolutions after each return are
mutually independent. Then one creates the ensembles ρ∗

XY
and ρ∗∗

XY from the observed states and compares the respective
futures.

Any of the four conditions may be violated. As a violation
of (iv), not all relevant states may be visited. Then one should
have an opportunity to perform interventions and impose ini-
tial states absent from (or not well represented in) a time series
at hand. Then the observed responses to such interventions

together with the original time series can be used to estimate
a DCE according to its general definition. Such interventions
are used, e.g., in Ref. [19] to estimate phase dynamics-based
quantifiers of causal couplings and in dynamical causal mod-
eling [57] to estimate causal coupling coefficients.

As a violation of (iii), a parameter variation may be in-
volved in a DCE while a time series is recorded at a single
parameter value. Then one should have an opportunity to
perform a parameter intervention imposing an alternative pa-
rameter value, observe an SDS response, and use again the
DCE definition (4). Such time series recorded at different
parameter values were used in Ref. [6] to reconstruct causal
structure of an ensemble of phase oscillators from stationary
phase shifts between oscillators observed at different fre-
quency mismatches.

As a violation of (i), an SDS may not be ergodic. Then a
single time series is generally insufficient to estimate a DCE.
A direct solution of this problem requires an opportunity to
perform interventions and impose necessary initial states to
create ensembles ρ∗

XY and ρ∗∗
XY (approximately) and observe

responses of the SDS under study.
As a violation of (ii) and (iii), only some components of

a state vector may be observed (so an observed process is
non-Markovian) or one may not possess a time series for
the alternative parameter value. Then the DCE is not directly
estimable, but two indirect ways are possible. First, for a
DCE of a parameter variation (e.g., SY →X ), its relations to
more available quantifiers (e.g., τY →X and lY →X ) for a class
of SDS (as in Sec. III D) can be used. Second, a parametrized
model can be identified (e.g., [101,102]) with the subsequent
use of the definition (4). In more detail, one assumes a state
space model (a model SDS) which includes full states and
parameters and constructs such a model from a time series,
e.g., [101,102]. Then the DCE is defined for the obtained
model via the definition (4). The model-based approach is
universal and can be applied in the case of any of the above
violations. However, the causal information is encoded in the
model structure (a parametrized set of models [101]) selected
for the identification. If the model structure is not adequate,
the causality quantifier may not be a meaningful characteris-
tic, i.e., any nonzero causality quantifier (4) is not per se a
reliable basis for causal discovery.

In agreement with this perspective, Stokes and Purdon [45]
suggest to focus on model identification and criticize the
causality spectra for their disagreement with “intuitive notion
of causality,” which is further discussed in [49]. Identification
of coupled systems is used in the dynamical causal model-
ing [57] and the coupling function analysis [44] for concrete
research purposes.

If a system under study is not a Markovian RDS, but a
general RDS, then the interventional and passively observed
PDFs p(Xt |do(x0, y0)) and p(Xt |x0, y0) generally differ due
to different PDFs of hidden factors (confounders). To define
a DCE, one should either perform real interventions or to
specify a parametrized model for a full system under study
either in the form of an SDS with a higher-dimensional full
state vector (reducing this case to the previous ones) or in the
form of an SDS coupled to some non-Markovian process (see
also Sec. III in Ref. [90]). In practice, the latter implies further
assumptions about a system under study.

034209-26



GENERATIVE FORMALISM OF CAUSALITY QUANTIFIERS … PHYSICAL REVIEW E 105, 034209 (2022)

Diverse DCEs differ from each other in their availability.
Easier estimable DCEs have practical advantages. Knowing
relations between DCEs, one can also compute a desired DCE
(e.g., an asymptotic DCE of a parameter variation SY →X ) from
an estimate of a more available DCE (e.g., a short-term DCE
of initial condition variations τY →X ) for a certain class of SDS,
e.g., linear overdamped stochastic oscillators (1). Concrete
ways to compute DCE estimates may strongly differ depend-
ing on the class of SDS under study, a DCE of interest, and
data at hand. Many techniques have already been suggested
for estimation of the TE and other quantifiers; see, e.g., Refs.
[1–41]. Others may well represent an avenue for a further
research within the DCE framework.

b. Causal discovery

Since a full SDS is known a priori in all above considera-
tions, causal discovery has not been needed. In a more general
setting where the causal structure must be discovered from
data, one needs the full machinery of the SCM techniques,
which is a focus of many works, e.g., Refs. [27,40,119–122].
This issue belongs to the field of inverse problems and identi-
fiability.

The result of causal discovery relevant for the problems
of causality quantification considered here is a plausible SDS

describing processes under study. Such an SDS may also be
formulated from some conceptual considerations. Anyway,
such a model (inferred) SDS can then be used to compute a
desired DCE directly from the general definition (4). Since
such an SDS is itself only a model (approximation) for a
system under study, an obtained DCE value is an estimate of
a desired DCE.

If one does not desire to formulate explicitly any SDS
as a basic model, then possibilities to correctly and pre-
cisely define DCEs are strongly limited and anyway depend
on the assumptions about the system under study. If such
assumptions remain implicit, then no causal statements can
be justified: no quantifier can itself be a sufficient basis for
causal statements, it must anyway rely on an explicitly stated
SDS, exactly as such causal statements are required to rely
explicitly on a structural causal model in Ref. [42]. Indeed,
Pearl [42] stresses that it is the very syntax of a structural
causal model (i.e., the fact that an author declares that model
as “structural”) that encodes its causal content, but not the
data analysis which maintains model assumptions implicit.
In the field of processes, an SDS is a general structural
causal model encoding the causal content due to the arrow
of time, i.e., due to the “flow of causation from past into
future” [103].
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