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The heart rate in humans is regulated by the autonomic nervous system, which modulates the frequency of
heart contractions, resulting in heart rate variability (HRV). Therefore, to assess the activity of the autonomic
nervous system, which contains important information for medical diagnostics, methods based on the analysis
of interbeat interval variability are often used. This approach does not require the use of invasive methods for
measuring the signals of the autonomic nervous system, but its accuracy is an open question. Using mathematical
modeling, we investigate the possibility of extracting the signal of frequency modulation of the heartbeats from
the electrocardiogram (ECG) signal and conduct a detailed comparison of the extracted signal with the real
modulating signal. Since the quality of extraction of the signal of frequency modulation from the ECG depends
on the method of demodulation, we compare two different approaches. One is based on the detection of the
main oscillation rhythm and its bandpass filtering, and the other on the heterodyning technique. It is shown that
low-frequency (LF) and high-frequency (HF) oscillations in HRV associated, respectively, with sympathetic and
parasympathetic modulation by the autonomic nervous system, in the general case, significantly differ from the
signals of frequency modulation of the heart rate in shape, but have close similarity with them in the frequency
domain. We find that in model systems, the similarity of the LF component of HRV with sympathetic modulation
of the heart rate is higher than the similarity of the HF component of HRV with parasympathetic modulation.
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I. INTRODUCTION

The heart is a nonlinear nonautonomous self-oscillating
system. Its electrical activity is spontaneously generated by
the sinoatrial node, which sets the rhythm of the heart (about
60–90 beats per minute) and so is known as the heart’s natural
pacemaker [1]. However, the heart rate is not constant. It is
modulated by the autonomic nervous system that innervates
the sinoatrial node via both sympathetic and parasympathetic
tracts [2]. Such a modulation provides a quick and flexible
adaptation of a healthy heart to changes in the level of physi-
cal and emotional activity and environmental influences. The
regulation of the heart rate by the autonomic nervous system
leads to the appearance of heart rate variability (HRV), which
is understood as a variation of interbeat intervals [3]. Since
interbeat intervals are usually defined as the intervals between
the well-pronounced R peaks in an electrocardiogram (ECG),
they are often called RR intervals.

Spectral analysis of HRV allows one to study effects of
frequency modulation of the sinoatrial node by the nervous
system. In the power spectrum of RR intervals, low-frequency
(LF) and high-frequency (HF) components are distinguished.
The power and central frequency of these components may
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vary in relation to changes in autonomic modulations of the
heart rate [4]. It is generally accepted that in the power spec-
trum of RR intervals, the frequency range 0.04–0.15 Hz refers
to the LF component and the frequency range 0.15–0.4 Hz to
the HF component of HRV [3].

The main contribution to the HF component of HRV is
made by respiratory oscillations that modulate the heart rate.
The heart rate increases during inspiration and decreases dur-
ing expiration, resulting in respiratory sinus arrhythmia (RSA)
[5]. The intensity of RSA can be used to assess the vagal activ-
ity [6], whose value is important for the diagnostics of certain
diseases. For example, RSA analysis is used in psychiatry to
assess mental health [7–9]. Moreover, RSA is usually reduced
in heart failure, myocardial infarction, and stroke.

Various methods have been proposed for a quantitative
assessment of RSA [10,11]. Respiratory-associated oscilla-
tions in HRV can be extracted using the decomposition
of the spectrum [12], bandpass filtering [13], empirical
mode decomposition [14,15], or wavelet analysis [16]. In
Refs. [17,18], a method was proposed for extracting the
respiratory-related component of HRV using the reconstruc-
tion of the phase dynamics of the cardiac and respiratory
systems from simultaneous measurements of ECG and res-
piratory flow.

The origin of LF oscillations in HRV is still a subject
of controversy [19,20]. It is believed that LF oscillations in
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heart rate are a marker of sympathetic modulation by the
autonomic nervous system [21–23]. However, a number of
authors assume that arterial baroreceptors are also involved in
the generation of LF oscillations [24–26]. Since sympathetic
activity is well established to be elevated in heart failure [27]
and coronary artery disease [28] and may be associated with
the initiation of hypertension [29,30], a quantitative assess-
ment of autonomic tone is of great importance for medical
diagnostics.

LF variation of heart rate is associated with Mayer waves
of blood pressure and usually has a frequency of about
0.1 Hz [25,26,31,32]. The index of synchronization between
0.1-Hz oscillations in the heart rate and blood pressure is
an important factor for diagnostics of the functional state
of the cardiovascular system [33–35]. It is used in cardiac
surgery [36], gynecology [37], and personalized therapy of
patients after myocardial infarction [38]. To extract the LF
component of HRV, one can use the above-mentioned meth-
ods [12–16], employed for extracting the HF component
of HRV.

Thus, acting on the sinoatrial node, the autonomic nervous
system carries out frequency modulation of the heart rate in
the LF and HF ranges. Modulating signals reflecting sym-
pathetic activity and parasympathetic (vagal) activity contain
important information, both for studying the physiology of the
cardiovascular system and for medical diagnostics. However,
a direct measurement of signals from the autonomic nervous
system requires the use of invasive methods [39–41] that
limits their application. Therefore, to obtain information about
the activity of the autonomic nervous system, methods based
on the analysis of ECG and RR intervals are widely used. This
brings up the following legitimate question: How accurate is
this approach and what are its limitations [42]?

In this paper, we investigate the possibility of extracting
the signal of frequency modulation from the ECG signal and
conduct a detailed comparison of the extracted signal with the
real modulating signal. This allows us to understand how ac-
curately the interbeat interval variability reflects the frequency
modulation of the heart rate by the autonomic nervous system.
Since the possibilities of carrying out a detailed physiological
experiment involving invasive signal measurements are very
limited, we present here a study on mathematical modeling.
Three types of frequency modulation of the basic rhythm of
the model system are considered: harmonic, two-frequency,
and broadband. Two approaches are used to extract the signal
of frequency modulation. The first approach is based on the
detection of the main oscillation rhythm and its bandpass
filtering. The second approach is based on the heterodyning
technique, which is widely used in radio receivers and com-
munication systems [43]. Note that both of these approaches
use only a frequency-modulated signal for the analysis and,
in contrast to the method [18], do not require a record of the
modulating signal.

The paper is organized as follows. In Sec. II, we describe
the mathematical models used to study how accurately the
interbeat interval variability reflects the frequency modula-
tion of the heart rate. Section III contains the description
of methods of demodulation. In Sec. IV, we compare the
time series and power spectra of modulating signals with the
time series and power spectra of signals extracted from the

frequency-modulated signals of model oscillators. The results
are summarized in Sec. V.

II. MODEL SYSTEMS

The isolated human heart contracts due to the self-
oscillating activity of the sinoatrial node and generates almost
periodic oscillations. In the human body, the regulation of the
heart rate is carried out by the autonomic nervous system,
which adjusts the frequency of heartbeats to the needs of the
organism. To illustrate the process of frequency modulation of
self-oscillations, let us first consider the simplest case, when
an autonomous oscillator generates a harmonic signal

u(t ) = A cos (2π fht ), (1)

where A and fh are the amplitude and frequency of oscilla-
tions, respectively. If fh is modulated with the signal m(t),
then the frequency-modulated signal can be written as fol-
lows:

h(t ) = A cos

(
2π fht + 2π f�

∫ t

0
m(τ )dτ

)
, (2)

where f� is the frequency deviation. In the simplest case, the
modulating signal is harmonic:

m(t ) = cos (2π fmt ), (3)

where fm is the frequency of modulation. In this case, Eq. (2)
takes the form

h(t ) = A cos [2π fht + B sin (2π fmt )], (4)

where B = f�/ fm is the modulation index.
Using the expansion of the signal h(t) in the Fourier series,

Eq. (4) can be rewritten as

h(t ) = A
∞∑

k=−∞
Jk (B) cos [2π ( fh + k fm)t], (5)

where Jk (B) is the Bessel function and k ∈ Z is the order of
the Bessel function. From Eq. (5) it follows that the power
spectrum of h(t) contains an infinite number of sidebands that
are symmetric with respect to fh and their power decreases
with increasing |k|.

Figure 1 schematically illustrates the case of frequency
modulation of a harmonic signal u(t) having the frequency
fh = 1 Hz by a harmonic modulating signal m(t) with fm =
0.1 Hz. As a result, we obtain a frequency-modulated sig-
nal h(t), whose power spectrum Sh has a main peak at fh

and peaks at the frequencies fh ± n fm, where n is a positive
integer.

Of course, the self-oscillations of the real sinoatrial node
are not harmonic as well as the signals of the autonomic
nervous system that modulate them. Therefore, the frequency-
modulated signal of the heart activity will have a more
complicated spectrum than the signal (5). Real physiological
signals are very complex and it is not possible to obtain strict
analytical expressions for their spectra.

We used two mathematical models to study the possibil-
ity of extracting the signal of frequency modulation from a
frequency-modulated signal. As the first paradigmatic model,

042404-2



INTERBEAT INTERVAL VARIABILITY VERSUS … PHYSICAL REVIEW E 103, 042404 (2021)

FIG. 1. Scheme of the simplest case of frequency modulation. u(t) is a harmonic signal with the frequency fh = 1 Hz, m(t) is a harmonic
modulating signal with the frequency fm = 0.1 Hz, h(t) is a frequency-modulated signal, and Sh its power spectrum.

we chose the frequency-modulated Van der Pol oscillator:

ḧ(t ) − μ
[
1 − h2(t )

]
ḣ(t ) + {2π [ fh + m(t )]}2h(t ) = 0, (6)

where μ is the parameter of nonlinearity. Note that for uni-
formity, we used the same notation for the dynamical variable
h(t) and the modulating signal m(t) as in Eqs. (2) and (3), re-
spectively. The base frequency of the oscillator was set to fh =
1 Hz, and μ = 0.2. The Van der Pol oscillator was chosen
because it is a standard nonlinear oscillator that demonstrates
periodic self-sustained oscillations, the frequency of which
can be matched to the frequency fh of the main heart rhythm.
Moreover, it is rather easy to understand and explain the
results obtained for this oscillator.

Equation (6) was integrated numerically using a fourth-
order Runge-Kutta method with a fixed time step �t =
0.004 s. This integration step corresponds to the typical sam-
pling time of experimental ECG signals.

As the second model, we chose a mathematical model [44],
which is capable of generating realistic synthetic ECG signals,
and added a modulating signal m(t) into it. The model is
described by the following equations:

ẋ(t ) = (
1 −

√
x2(t ) + y2(t )

)
x(t ) − 2π [ fh + m(t )]y(t ),

ẏ(t ) = (
1 −

√
x2(t ) + y2(t )

)
y(t ) − 2π [ fh + m(t )]x(t ),

ḣ(t ) =
5∑

j=1
a jF (θ j, b j ) − h(t ),

(7)

where the function F is

F (θ j, b j ) = −z exp

(
− z2

2b2
j

)
(8)

with

z =
[
arctan

(y

x

)
− θ j

]
mod 2π. (9)

The values of the function (8) are close to zero most of
the time, and only at the moments of time corresponding
to P, Q, R, S, and T peaks and troughs of the ECG wave
form, they increase in absolute value, providing impulse dis-
turbance of the trajectory [44]. We used the same set of
parameters as in Ref. [44]: a1 = 1.2, b1 = 0.25, θ1 = −π/3,
a2 = −5, b2 = 0.1, θ2 = −π/12, a3 = 30, b3 = 0.1, θ3 = 0,
a4 = −7.5, b4 = 0.1, θ4 = π/12, a5 = 0.75, b5 = 0.4, and
θ5 = π/2. The base frequency of self-oscillations was set to
fh = 1 Hz. Equations (7) were integrated numerically using a
fourth-order Runge-Kutta method also with a fixed time step
�t = 0.004 s.

We considered three types of modulating signals m(t) in
Eqs. (6) and (7) with increasing complexity. The first and
simplest case is the harmonic form of m(t). There, m(t) is
described by Eq. (3). We considered two characteristic fre-
quencies of modulation, fm = 0.1 Hz and fm = 0.29 Hz. The
first of them simulates the sympathetic modulation of the heart
rate by the autonomic nervous system, and the second one
simulates the parasympathetic modulation.

The second of the considered signals m(t) corresponds to
the two-frequency modulation:

m(t ) = A1 cos (2π fm1t ) + A2 cos (2π fm2t ), (10)

where A1 = 1, fm1 = 0.1 Hz, A2 = 0.16, and fm2 = 0.29 Hz.
In model studies, the frequency fm2 corresponding to the
frequency of respiration is often set to 0.25 or 0.3 Hz. We
chose fm2 = 0.29 Hz to avoid a simple multiple frequency
ratio n1 fm1 = n2 fm2, where n1 and n2 are positive integers.
The ratio of amplitudes A1/A2 was chosen in such a way
as to provide the LF/HF ratio of HRV components typi-
cal for the spectrum of observed RR intervals of a healthy
subject.

Real signals of the autonomic nervous system that regulate
the heart rate are broadband and noisy. As the third type of
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frequency modulation, we therefore consider the modulation
of fh by a broadband signal m(t), whose spectrum is similar
to that of experimental sequences of RR intervals and is de-
scribed by the equation

S( f ) = σ 2
1√

2πc2
1

exp

(
− ( f − f1)2

2c2
1

)
+ σ 2

2√
2πc2

2

× exp

(
− ( f − f2)2

2c2
2

)
+ c3

f + f3
, (11)

where f1 = 0.1 Hz, f2 = 0.29 Hz, f3 = 1 Hz, c1 = c2 =
c3 = 0.022, σ1 = 0.225, and σ2 = 0.135. The time series and
power spectrum of the broadband modulating signal m(t) are
shown in Sec. IV.

Figure 2 shows the time series and power spectra of the
frequency-modulated Van der Pol oscillator (6) and the model
of ECG signal (7). Figures 2(a) and 2(b) correspond to the
case of harmonic modulation of the oscillator frequency fh

by the signal (3) with fm = 0.1 Hz. As seen in Fig. 2(a), the
characteristic period of oscillations of both oscillators varies
in time. The power spectra in Fig. 2(b) have the main peak
at fh = 1 Hz and peaks at the frequencies fh ± n fm, where
n is a positive integer. In the power spectrum of the model
of ECG signal, there are also peaks at the frequencies n fm

and 2 fh − n fm, Fig. 2(b). Figures 2(c) and 2(d) correspond to
the case of harmonic modulation of fh by the signal (3) with
fm = 0.29 Hz. They have the same features as Figs. 2(a) and
2(b). Figures 2(e) and 2(f) show the case of two-frequency
modulation of fh by the signal (10) with fm1 = 0.1 Hz and
fm2 = 0.29 Hz. The power spectra of h(t) are rather complex
and have peaks at the frequencies fh, fh ± n fm1, and fh ±
n fm2, Fig. 2(f). The case of modulation of fh by a broadband
signal, whose spectrum is described by Eq. (11), is shown
in Figs. 2(g) and 2(h). In the power spectra, the peak at the
frequency fh is most pronounced, Fig. 2(h).

III. METHODS

We compare two methods of extracting the modulating
signal m(t) from the signal h(t) of a frequency-modulated
oscillator. The first method is the most common in the study
of HRV and is as follows. First, the main oscillation rhythm is
detected in the signal h(t). In the case of an ECG signal, the R
peak is usually detected as the most pronounced [3]. For other
signals, it is possible to determine, for example, the moment in
time when the trajectory crosses a certain section plane, which
is chosen in such a way that its crossing occurs once during a
characteristic period of oscillations. Then the duration of time
intervals between two successive R peaks (crossings of the
section plane) is determined and a sequence of RR intervals
(characteristic periods of oscillations) is obtained. The points
of this sequence are not equidistant in time. To obtain an
equidistant time series, the sequence is interpolated and the
points are sampled with a constant sampling frequency for
further analysis [14]. To extract the LF and HF components
of HRV, the above-mentioned methods [12–18] are often ap-
plied. In the present paper, we use bandpass filtering in the
0.04–0.4-Hz band. This method of extracting the signal m(t),
based on the analysis of the characteristic periods of oscilla-

tions, we will call for brevity the ACP method (abbreviation
for the analysis of characteristic periods). We denoted the
modulating signal extracted via ACP as m̂(t ).

It should be emphasized that when analyzing experimental
ECG signals, the ACP method is equivalent to the standard
method of extracting and analyzing the sequence of RR inter-
vals recommended in Ref. [3]. The method allows one to pass
from the study of a continuous ECG signal to the study of
a discrete sequence of RR intervals, from which information
on continuous signals of the autonomic nervous system that
modulates the heart rate is extracted. The question of the
validity and accuracy of this approach remains open.

In order to prove the validity of using the ACP method for
extracting the signal of frequency modulation, we compared
it with the standard demodulation method—the heterodyning
method, which is mathematically well grounded for narrow-
band modulating signals. Heterodyning, also called frequency
conversion, is used very widely in radio receivers and com-
munication systems [43], but it is typically not applied to
physiological signals. The procedure of this method is shown
in Fig. 3.

The signal h(t) can be written as

h(t ) =
∫ ∞

−∞
Ŝ( f )ei2π f t df , (12)

where Ŝ( f ) are complex coefficients of the Fourier transform.
As explained before, the power spectrum Sh of the frequency-
modulated signal h(t) has a peak at the basic frequency fh

and peaks at the frequencies fh ± n fm, Fig. 3. Let us filter the
signal h(t) with a high-pass filter with a cutoff frequency f1 >

fh. For an ideal filter, all harmonics with the frequencies f �
f1 have zero power. Then the signal at the filter output can be
written as

h̃(t ) =
∫ ∞

f1

Ŝ( f )ei2π f t df . (13)

Since we know the frequency fh, we can take the local
oscillator generating a harmonic signal

g(t ) = cos(2π fht ) = 1
2 (ei2π fht + e−i2π fht ). (14)

Using a signal multiplier, we multiply h̃(t ) and g(t):

m̃(t ) = h̃(t )g(t ) = 1

2

∫ ∞

f1

Ŝ( f )ei2π ( f + fh )t df

+ 1

2

∫ ∞

f1

Ŝ( f )ei2π ( f − fh )t df . (15)

Next, we introduce a new variable r using the change
of variables f = r + fh. Then df /dr = 1 and df = dr, and
Eq. (15) can be rewritten as follows:

m̃(t ) = 1

2

∫ ∞

f1− fh

Ŝ(r + fh)ei2π (r+2 fh )t dr

+ 1

2

∫ ∞

f1− fh

Ŝ(r + fh)ei2πrt dr. (16)

The power spectrum of the signal m̃(t ) has peaks at the
frequencies 2 fh + n fm and n fm, Fig. 3. We filter the signal
m̃(t ) with a low-pass filter with a cutoff frequency f2 < fh. At
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FIG. 2. Time series (left column) and power spectra (right column) of the signals h(t) of the Van der Pol oscillator (6) (dotted red line)
and the model of ECG signal (7) (blue line). (a), (b) The case of harmonic modulating signal with fm = 0.1 Hz; (с), (d) the case of harmonic
modulating signal with fm = 0.29 Hz; (e), (f) the case of two-frequency modulating signal with fm1 = 0.1 Hz and fm2 = 0.29 Hz; (g), (h) the
case of broadband modulating signal.
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FIG. 3. Scheme of extracting the signal of frequency modulation using the heterodyning technique. h(t) is a frequency-modulated signal,
Sh is the power spectrum of h(t), h̃(t ) is the filtered signal h(t), g(t) is a local oscillator signal, � is a signal multiplier, m̃(t ) = h̃(t )g(t ), Sm̃ is
the power spectrum of m̃(t ), and m̂(t ) is the filtered signal m̃(t ).

the output of the filter, we get the signal

m̂(t ) = 1

2

∫ f2

f1− fh

Ŝ(r + fh)ei2π (r+2 fh )t dr

+ 1

2

∫ f2

f1− fh

Ŝ(r + fh)ei2πrt dr. (17)

Since f2 < fh (see Fig. 3), the first term of Eq. (17) is
always zero due to filtering. Then Eq. (17) can be written as

m̂(t ) = 1

2

∫ f2

f1− fh

Ŝ(r + fh)ei2πrt dr. (18)

Thus, heterodyning allows one to shift one frequency
range into another, a new frequency range, and can be used
for demodulation [43]. In the simplest case, if r = fm, then
f = fh + fm, and as a result of heterodyning, we obtain a
difference frequency ( f − fh) = fm, which is the frequency
of modulation.

To study the quality of extraction of the modulating sig-
nal m(t) from the frequency-modulated signal h(t) using the
methods of ACP and heterodyning, we carried out a frequency
response analysis. To calculate the amplitude response (AR)
and phase response (PR) of the studied systems, we varied the
frequency of the harmonic modulating signal (3) with a step
of 0.01 Hz and, at each step, found the amplitude ratio and
phase difference of the signals m̂(t ) and m(t), respectively.
The AR and PR curves plotted for both studied oscillators for
both cases of extracting the signal m̂(t ) using ACP method or
heterodyning technique are shown in Sec. IV.

IV. RESULTS

We compare the time series and power spectra of modu-
lating signals m(t) with the time series and power spectra of
signals m̂(t ) extracted from the frequency-modulated signals
h(t) of the Van der Pol oscillator (6) and the model of ECG
signal (7) using the methods of ACP and heterodyning. The
obtained results are presented below for the three different
types of modulating signals m(t).

Figure 4 illustrates the case of harmonic signal m(t), which
is described by Eq. (3) and has the frequency fm = 0.1 Hz.
Figure 4(a) shows the time series of the signals m̂(t ) extracted
from the signal h(t) of the Van der Pol oscillator using either
the ACP method or the heterodyning technique. The signals
m̂(t ) are close to periodic. Their period coincides with the
period of the signal m(t), but the amplitude is slightly less
than that of m(t). In the power spectra of the signals m̂(t ),
the main peak is observed at f = fm = 0.1 Hz, Fig. 4(b). In
addition to the main peak, the spectra of m̂(t ) have peaks at
higher harmonics, which appear due to the nonlinearity of
the oscillator. Qualitatively similar results are obtained for the
model of ECG signal, Figs. 4(c) and 4(d).

The case of the harmonic modulating signal m(t) with the
frequency fm = 0.29 Hz is presented in Fig. 5. The signals
m̂(t ) in Figs. 5(a) and 5(c) differ more from the signal m(t)
than at fm = 0.1 Hz [see Figs. 4(a) and 4(c)]. The period of
the signals m̂(t ) is the same as the period of m(t), but the
amplitude is noticeably smaller. The main peak in the power
spectra of m̂(t ) is observed at f = fm = 0.29 Hz, Figs. 5(b)
and 5(d). In addition to the main peak, the spectra of m̂(t ) have
a subharmonic peak. Thus, in the case of harmonic modulation
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FIG. 4. Time series (left column) and power spectra (right column) of the harmonic modulating signal m(t) with the frequency fm = 0.1 Hz
(bold black line), the signal m̂(t ) extracted using the ACP approach (dotted red line), and the signal m̂(t ) extracted using the heterodyning
technique (thin blue line). (a), (b) The signals m̂(t ) are extracted from the signal h(t) of the Van der Pol oscillator. (c), (d) The signals m̂(t ) are
extracted from the signal h(t) of the model of ECG signal.

of the oscillator frequency, it is possible to extract the mod-
ulating signal from the observed frequency-modulated signal
with good accuracy. With simple model examples of harmonic
modulation of the oscillator frequency, the ACP method has
shown results that are similar to those of the mathematically
well grounded heterodyning method, Figs. 4 and 5, which
indicate that the ACP method is an effective method of de-
modulation.

Figure 6 shows the results of extraction of the signals
m̂(t ) for the case of two-frequency modulating signal m(t)
described by Eq. (10) with A1 = 1, fm1 = 0.1 Hz, A2 = 0.16,
and fm2 = 0.29 Hz. The time series of the signals m̂(t ) ex-
tracted by both methods differ from the time series of m(t),
Figs. 6(a) and 6(c). However, the power spectra of the signals
m̂(t ) show peaks at the frequencies of 0.1 and 0.29 Hz, which
coincide with the frequencies of the signal m(t), Figs. 6(b) and
6(d). In the spectra of the signals m̂(t ), there are also peaks at
higher harmonics and at combination frequencies.

Figure 7 illustrates the case of a broadband modulating
signal m(t), the time series of which is nonperiodic. The time
series of m(t) and m̂(t ) are not similar to each other, Figs. 7(a)
and 7(c). Nevertheless, the ACP method allows us to obtain
the signal m̂(t ), whose power spectrum is similar to that of the
modulating signal m(t), Figs. 7(b) and 7(d). The spectra are
particularly similar in the LF range, while in the HF range,
the power of the signal m̂(t ) is slightly underestimated. Note
that the heterodyning technique did not allow us to obtain the
signal m̂(t ), the spectrum of which is similar to the spectrum
of the signal m(t).

It follows from our results that time series of the modu-
lating signal can be reconstructed quite accurately from the
frequency-modulated signal h(t) only if the modulating signal
m(t) is harmonic. However, spectral properties of the signal
m(t) can be evaluated from the signal h(t) even in the case
of complex modulating signals. In the case of two-frequency
modulation, the ACP method provides a better assessment of
the signal m(t) spectrum than the heterodyning technique. In
the case of broadband modulation, the heterodyning technique
was not suitable for assessing the spectrum of the modulating
signal m(t), since this method is intended for narrow-band
modulating signals.

In the case of broadband frequency modulation of
the signal h(t), the multiplication of signals in Eq. (15) and
subsequent filtering lead to the absence of pronounced peaks
in the power spectrum of the signal m̂(t ) extracted using the
heterodyning technique, Figs. 7(b) and 7(d). In contrast to the
heterodyning method, which works with continuous signals,
the ACP method extracts a discrete sequence of oscillation
period values from the frequency-modulated signal h(t). A
subsequent interpolation of this sequence and bandpass filter-
ing of the obtained signal allows one to assess the spectral
properties of even a broadband modulating signal. Thus, for
the ACP method, the broadband frequency modulation is less
critical than for the heterodyning technique.

As noted above, the signals of the autonomic nervous sys-
tem that regulate the heart rate are broadband. Based on our
numerical model studies, it can be concluded that the LF and
HF components of HRV, which are typically obtained from
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FIG. 5. Time series (left column) and power spectra (right column) of the harmonic modulating signal m(t) with the frequency fm =
0.29 Hz (bold black line), the signal m̂(t ) extracted using the ACP approach (dotted red line), and the signal m̂(t ) extracted using the
heterodyning technique (thin blue line). (a), (b) The signals m̂(t ) are extracted from the signal h(t) of the Van der Pol oscillator. (c), (d)
The signals m̂(t ) are extracted from the signal h(t) of the model of ECG signal.

ECG using the analysis of RR intervals (i.e., by the ACP
method), can differ strongly from the signals of frequency
modulation of the heart rate in shape, but have close similarity
with them in the frequency domain. The characteristics of RR
intervals in the time domain are widely used in medicine and
have proven diagnostic value. The results of our study indicate
only that the time series of LF and HF oscillations in HRV,
in the general case, significantly differ from the time series
of modulating signals reflecting the activity of the autonomic
nervous system.

Figure 8 shows the amplitude response (AR) curves and
phase response (PR) curves for both studied oscillators, which
were plotted using the ACP and heterodyning methods for
the extraction of harmonic modulating signal. For the Van
der Pol oscillator and the model of ECG signal, we obtained
qualitatively similar AR and PR curves using the ACP method
for extracting the signal m̂(t ), Figs. 8(a) and 8(c). In both
plots, the AR curves monotonically decrease with increasing
frequency. Such AR is typical for a low-pass low-order filter.
The PR curves are linear in both plots, Figs. 8(a) and 8(c).
According to these results, the ACP method allows one to
more accurately extract the LF modulating signals than the HF
modulating signals. This is in good agreement with Figs. 4(a),
4(c), 5(a), and 5(c). Figures 8(b) and 8(d) show the AR and
PR curves for the case of the signal m(t) extraction using
the heterodyning technique. These curves indicate that the
heterodyning technique significantly distorts the signal m̂(t )
in comparison with m(t), especially at higher frequencies.
Compared to the ACP method, the heterodyning technique

turns out to be less accurate in extracting the signal of fre-
quency modulation in the considered examples. Note that, by
construction, the frequency response curves in Fig. 8 allow us
to analyze only the case of harmonic modulation.

As seen from Fig. 8, when extracting the modulating sig-
nal from the frequency-modulated signal using the ACP and
heterodyning methods, both the amplitude and the phase of
the signal are distorted. As a result, the amplitude and phase
of the extracted signal m̂(t ) differ from the amplitude and
phase of the modulating signal m(t). Therefore, in Figs. 7(a)
and 7(c), the time series differ from each other. However,
the power spectra of the signal m(t) and the signal m̂(t )
extracted using the ACP approach are similar in Figs. 7(b)
and 7(d). In Ref. [45] it was shown that signals can have
the same power spectra, despite the difference in their time
series.

The considered frequency-modulated Van der Pol oscilla-
tor (6) certainly does not pretend to describe the electrical
activity of the human heart. Even the dynamical model of
ECG signal (7), which is capable of replicating many of the
important features of the human ECG, is still only an approx-
imation of real ECG signals. Real signals that modulate the
heart rate are also more complex in shape than the model
signals m(t) that we have considered. For these reasons, the
signals m̂(t ) extracted from the experimental ECG and repre-
senting the sequence of RR intervals differ from the signals
m̂(t ) plotted in Figs. 4–7 using the model data. The power
spectra of signals m̂(t ) extracted from experimental and model
frequency-modulated signals also differ.

042404-8



INTERBEAT INTERVAL VARIABILITY VERSUS … PHYSICAL REVIEW E 103, 042404 (2021)

FIG. 6. Time series (left column) and power spectra (right column) of the two-frequency modulating signal m(t) with the frequencies
fm1 = 0.1 Hz and fm2 = 0.29 Hz, and the amplitudes A1 = 1 and A2 = 0.16 (bold black line), the signal m̂(t ) extracted using the ACP approach
(dotted red line), and the signal m̂(t ) extracted using the heterodyning technique (thin blue line). (a), (b) The signals m̂(t ) are extracted from
the signal h(t) of the Van der Pol oscillator. (c), (d) The signals m̂(t ) are extracted from the signal h(t) of the model of ECG signal.

We studied ten healthy subjects (five males and five fe-
males) aged 20–25 years. All subjects gave written consent to
participate in the study. ECG signals were recorded in a supine
resting condition under spontaneous breathing. The duration
of each record was 2 h. The signals were recorded with a
14-bit resolution and sampling frequency of 250 Hz, which
corresponds to a sampling time of 0.004 s equal to the integra-
tion step �t used in the numerical study of oscillators (6) and
(7). Figure 9(a) shows typical time series of the signals m̂(t )
extracted from the experimental ECG of a healthy subject
using either the ACP method or the heterodyning technique.
Figure 9(b) shows the power spectra of these signals. In fact,
the dotted red line in Fig. 9(b) depicts the power spectrum of
a real sequence of RR intervals obtained in a standard way
[3] from the experimental ECG signal. Figure 9(c) shows the
power spectra of the signals m̂(t ) averaged over the entire
group of ten subjects.

Figure 9 is most similar to Fig. 7, plotted for the case of
broadband modulation of model oscillators. When analyzing
real ECG signals, the heterodyning method turned out to be
ineffective. However, it can be expected to be effective when
ECG signals have narrower and higher peaks in the LF and
HF ranges. In contrast to the heterodyning technique, the
ACP method allowed us to obtain characteristic peaks in the
HRV power spectrum in Fig. 9(b) associated with sympathetic
and parasympathetic modulation of the heart rate. Unfortu-
nately, we cannot compare the time series and their spectra
presented in Fig. 9 with the time series and spectra of real

signals from the autonomic nervous system modulating the
heart rate, since invasive methods are required to obtain these
signals.

Nevertheless, without invasive measurements, it can be
shown that the powers of the LF and HF components of
HRV are associated with the activity of the autonomic nervous
system. For this, different approaches are used, for example,
a tilt table test, otherwise known as a “passive stand,” [46].
In the tilt table test, the patient first lies strapped to a tilt
table for about 20 min, and then the table is tilted from a
horizontal position to an upright position, which is maintained
for about 10 min. Normally, upon tilt up there is an increase
in the sympathetic activity and a decrease in the parasym-
pathetic activity of the autonomic nervous system [46,47],
which is manifested in a change of the power spectrum of RR
intervals.

We carried out a tilt table test with two young healthy
subjects. Figure 10 shows the power spectra of sequences of
RR intervals for both subjects who first lay flat on a table
and then tilted upright. According to the terminology we have
introduced, these are the power spectra of the signals m̂(t )
extracted from the ECG signals using the ACP approach. It
can be seen in Fig. 10 that in the upright position, the power
of the LF component of HRV associated with sympathetic
modulation of the heart rate increased, while the power of
the HF component of HRV associated with parasympathetic
modulation decreased. This result is in good agreement with
the known results [46,47].
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FIG. 7. Time series (left column) and power spectra (right column) of the broadband modulating signal m(t) (bold black line), the signal
m̂(t ) extracted using the ACP approach (dotted red line), and the signal m̂(t ) extracted using the heterodyning technique (thin blue line). (a),
(b) The signals m̂(t ) are extracted from the signal h(t) of the Van der Pol oscillator. (c), (d) The signals m̂(t ) are extracted from the signal h(t)
of the model of ECG signal.

Limitations. The study of the possibility of extracting the
signal of frequency modulation from a frequency-modulated
signal was carried out in our paper using only two mathemat-
ical models. One of them is the frequency-modulated Van der
Pol oscillator, which does not pretend to describe the electrical
activity of the human heart. The second model is the dynam-
ical model of ECG signal, which is only an approximation
of real ECG signals. We did not consider the cases of various
ECG wave forms associated with the individual characteristics
of patients and pathologies of the cardiovascular system. In
particular, the presence of cardiac arrhythmias can affect the
results of the study. Moreover, real signals that modulate the
heart rate are more complex in shape than the model signals
m(t) that we have considered. The heterodyning technique is
intended for narrow-band modulating signals, so it turned out
to be ineffective in the case of broadband frequency modu-
lation. Finally, we did not have invasive signals that directly
characterize the activity of the autonomic nervous system.
This did not allow us to compare the time series and their
spectra presented in Fig. 9 with the time series and spectra
of real signals modulating the heart rate.

V. CONCLUSION

Using two model oscillators with frequency modulation,
we have investigated the possibility of extracting the signal
of frequency modulation under the assumption that only the
oscillator signal is available for analysis. We have shown

that, using the ACP and heterodyning methods, it is possible
to quite accurately extract the modulating signal only in the
case of harmonic modulation of the oscillator frequency, but
the accuracy of both methods decreases with an increasing
frequency of modulation. With more complex modulating
signals, the quality of reconstruction of their time series is sig-
nificantly reduced, what can be explained by the nonlinearity
of the oscillator. However, the main frequency components of
the modulating signal can be reconstructed even in the case of
broadband modulation of the oscillator frequency.

For real human ECG signals, whose frequency is modu-
lated by the autonomic nervous system, the obtained results
can be interpreted as follows. The time series of LF and HF
oscillations in HRV that are extracted from ECG using the
analysis of RR intervals, in the general case, significantly dif-
fer from the time series of the signals of frequency modulation
of the heart rate. However, the power spectrum of RR intervals
in the LF and HF bands has peaks at the same frequencies as
the signals of frequency modulation. The quality of extract-
ing the LF component of HRV associated with sympathetic
modulation of the heart rate by the autonomic nervous system
is higher than the quality of extracting the HF component of
HRV associated with parasympathetic modulation.

The nonlinearity inherent in both the heart and the
autonomic nervous system, the complex interaction be-
tween these systems, and the influences of noise lead to
a more complicated response of the heart to the activity
of the autonomic nervous system than a simple frequency
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FIG. 8. Amplitude response curves (blue line) and phase response curves (dotted red line) of the Van der Pol oscillator (a), (b) and the
model of ECG signal (c), (d) plotted using the ACP approach (a), (c) and heterodyning technique (b), (d) for the extraction of harmonic
modulating signal.

FIG. 9. Time series (a) and power spectra (b) of the signals m̂(t ) extracted from the experimental ECG using the ACP approach (dotted
red line) and the heterodyning technique (blue line). (c) Power spectra of the signals m̂(t ) averaged over the entire group of 10 subjects. For
the ACP method, the mean S values and their standard errors are shown by the dotted red line and pink, respectively, and for the heterodyning
method, by the blue line and light blue, respectively.
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FIG. 10. Power spectra of the signals m̂(t ) extracted from the experimental ECG signals using the ACP approach for a subject lying flat
(solid line) and then tilted upright (dotted line). (a) Subject A; (b) subject B.

modulation of the heart rate. Thus, the LF and HF compo-
nents of HRV should be used with caution as estimates of the
sympathetic and parasympathetic activity modulating the
heart rate.

Since the activity of the autonomic nervous system con-
tains important information for medical diagnostics, its
adequate assessment using easily available ECG signals is of
great interest. However, for a more accurate answer to the
question of how well the interbeat interval variability reflects
the frequency modulation of the heart rate, the next step is

to move from analyzing model data to analyzing real data.
This will require recording not only ECG signals, but also
invasive measurement of signals characterizing the activity of
the autonomic nervous system.
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