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Transfer entropy (TE) is widely used in time-series analysis to detect causal couplings between temporally
evolving objects. As a coupling strength quantifier, the TE alone often seems insufficient, raising the question of
its further interpretations. Here the TE is related to dynamical causal effects (DCEs) which quantify long-term
responses of a coupling recipient to variations in a coupling source or in a coupling itself: Detailed relationships
are established for a paradigmatic stochastic dynamical system of bidirectionally coupled linear overdamped
oscillators, their practical applications and possible extensions are discussed. It is shown that two widely used
versions of the TE (original and infinite-history) can become qualitatively distinct, diverging to different long-
term DCEs.
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I. INTRODUCTION

Transfer entropy (TE) is a celebrated concept which has
become extremely popular in time-series analysis [1,2] during
the two decades since its invention [3,4]. It is described as
“directed statistical coherence” [5] between signals xt and yt

or, in other terms, as “information transfer” [6,7] or “infor-
mation flow” [2] between systems X and Y . TE has many
extensions [8–16] and appears so influential to a large extent
due to applications to causal coupling estimation from time
series, which arises everywhere [2] from nuclear reactors [17]
to neuroscience (e.g., a book [7]) and climate science (e.g., a
review [18]).

Theoretically, a stochastic dynamical system Y with ob-
served state vector yt influences another system X with
observed state vector xt , if and only if the TE TY →X > 0, e.g.,
Ref. [2]. This circumstance makes TY →X relevant to detect an
influence (causal coupling) Y → X . In practice, one detects
an influence Y → X , if an estimate of TY →X is statistically
significantly greater than zero, see, e.g., Refs. [19–32], for
estimation techniques. This inverse problem is not easy, and
cautions must be taken in respect of distinction between an-
ticipation and causation [33–35], spurious causalities due to
incompleteness of observations [36], interpretational difficul-
ties due to synergy [10,37–41], etc. Still, one often tries to
go even further and use obtained numerical values of TY →X

measured in “nats” or “bits” to quantify the coupling Y → X .
It may readily lead to controversies since such quantifier of
causal coupling does not always agree with “intuitive notion
of causality.” The latter term has been used in a discus-
sion of spectral causalities [42] and seemingly implies some
“variation-response” relationships, when a variation in a pa-
rameter of coupling Y → X or in an initial state or a parameter
of the system Y induces a change in observed characteristics
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of X . Such relationships are formalized as “dynamical causal
effects” (DCEs) for stochastic dynamical systems [43–46], in
agreement with Pearl’s interventional viewpoint [33,34,47].

To avoid the above controversies, one often explicitly
claims that TE should not in general be interpreted as a
causality measure but only as information transfer or flow,
e.g., Ref. [2]. Also, one says that TE does not measure “causal
mechanism” but only “causal effect” [48], which is under-
stood as the effect of taking the data from Y into account
when predicting the future of X . However, this is an effect of
a researcher activity, not of a change in a system under study.
It may be called an “informational” causal effect in contrast to
“dynamical” causal effects. If TE were related to DCEs under
some conditions, then one might use that in practice to inter-
pret numerics of TE in a richer way and evaluate unknown
DCEs from available estimates of TE. Relating TE to relevant
DCEs is the purpose of this work, similarly to consideration
of spectral causalities within the DCEs framework [46].

From its formal side, this study is similar to relating TE
in previous theoretical works to such quantities as Wiener-
Granger (WG) causality [49], log-likelihood ratio [50],
thermodynamical potentials [51], limits of computation [5],
and Lempel-Ziv complexity [52] (not to DCEs). Concern-
ing numerics, several works have compared various coupling
quantifiers in respect of their sensitivity (e.g., Refs. [53–56])
and studied their dependence on control parameters of sys-
tems under investigation (e.g., Refs. [4,57–59]), including
such analysis of TE in different regimes in order to identify
dynamical transitions or spatial structures as discussed in
chapter 5 of Ref. [2]. However, those works are not intended
to any interpretations of concrete numerical values of TE.

The paper is organized as follows. Section II recapitulates
the definition of TE and appropriate DCEs. Section III de-
scribes “material and method” of the study: The former is a
stochastic dynamical system of two bidirectionally coupled
one-dimensional Langevin equations (overdamped oscilla-
tors), the latter is mostly analytic derivations in the form of
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intermediate asymptotic as in the theory of dimension and
similarity [60]. Section IV presents the results as characteristic
relationships between the coupling quantifiers. Section V
discusses their practical applicability and possibilities of
generalization. Conclusions are given in Sec. VI. Technical
details are in the Appendices.

II. COUPLING QUANTIFIERS

A. Transfer entropies

Consider a stationary Markov stochastic process (Xt , Yt ):
A vector (xt , yt ) is a complete state of the whole system (X,Y )
in Markov sense [61,62], i.e., a vector (xt+τ , yt+τ ) for any
τ > 0 does not depend on a more distant past, given (xt , yt ).
Time t can be either continuous or discrete. Since empirical
data typically take the form of a time series, the TE has been
originally defined [3] for a discrete-time process (Xt , Yt ) with
t = n�t , �t is sampling interval and n is integer. Denote
pX,τ |X (xτ |x0) conditional probability density function (pdf)
of a future xτ given an initial state x0 of the subsystem X ,
and pX,τ |X,Y (xτ |x0, y0) its pdf conditioned by the complete
initial state of the whole system (X,Y ). Specify temporal
horizon τ = �t . Denote (conditional) Shannon entropy of the
pdf pX,τ |X as IX,τ |X and that of the pdf pX,τ |X,Y as IX,τ |X,Y

(Appendix A). The former entropy quantifies uncertainty of
“self-prediction,” while the latter gives that of “joint predic-
tion.” The difference of the two uncertainties is the TE in the
direction Y → X :

TY →X,τ = IX,τ |X − IX,τ |X,Y . (1)

It quantifies reduction of uncertainty in xτ if y0 is taken into
account, given x0. TE equals zero if and only if the present
of Y and the future of X are conditionally independent. TE is
measured in nats if natural logarithm is used in the definition
of Shannon entropy.

In practice, one is not informed a priori whether ob-
servables xt and yt constitute a complete state of the
system. Empirical tests may reveal that they do not. So one
forms (k, l )-histories X(k)

t = (Xt , . . . , Xt−(k−1)�t ) and Y(l )
t =

(Yt , . . . , Yt−(l−1)�t ) [2] as proxies for state vectors and de-
fines (k, l )-history TE (Eq. (4.11) in Ref. [2])

T (k,l )
Y →X,τ = I (k)

X,τ |X − I (k,l )
X,τ |X,Y . (2)

Here I (k)
X,τ |X is (conditional) Shannon entropy of p(k)

X,τ |X and

I (k,l )
X,τ |X,Y —of p(k,l )

X,τ |X,Y , where p(k)
X,τ |X [xt+τ |x(k)

t ] is conditional

pdf of xt+τ given the history of x and p(k,l )
X,τ |X,Y [xt+τ |x(k)

t , y(l )
t ]

is the pdf conditioned by both histories. To use (k, l )-histories
is very natural if one observes scalars x and y, as mentioned
in Ref. [3].

In practice, one should find the pair (k, l ) empirically,
often from a short time series. Then several pairs (k, l ) may
seem to provide the generalized (k, l )-order Markov property
and approximately the same uncertainty in the future xt+τ .
Different practical principles of the order selection may be
used as discussed in Sec. 4.2.1 of Ref. [2], e.g., one can try
various pairs (k, l ) to select an optimum according to some
criterion (say, minimal prediction uncertainty) or adaptively
select only k using either l = k or l = 1 [3]. Alternatively, one

can first determine as large k as possible to use all information
contained in the past of X and then select l . In theory, this
principle implies k = ∞ and in general l = ∞. To use infinite
history is exactly the idea of WG causality [63,64], where
variances are used instead of Shannon entropies. However, in
the most general formulation, Granger does not restrict this
approach to variances [65], and so T (∞,∞)

Y →X,τ is a measure of WG
causality [2,4]. For Gaussian processes, both characteristics
are equivalent [49] as expressed via the formula T (k,l )

Y →X,τ =
1
2 ln [1 + G(k,l )

Y →X,τ ], where G(k,l )
Y →X,τ is relative prediction im-

provement (Appendix A).
Returning to a first-order Markov process, the original

TE TY →X,τ = T (1,1)
Y →X,τ and the infinite-history TE T ∞

Y →X,τ =
T (∞,∞)

Y →X,τ are two opposite cases in the full set of (k, l )-history
TEs, as both of them adopt a simple qualitative formulation.
For such process, it holds T (k,l )

Y →X,τ � T (k′,l )
Y →X,τ for any k < k′ and

l � 1: Taking into account more distant past of X can improve
its self-prediction but does not change uncertainty of joint
prediction due to Markov property. Further, T (k,l )

Y →X,τ = T (k,l ′ )
Y →X,τ

for any k � 1, l � 1, and l ′ � 1. Thus, TY →X,τ � T ∞
Y →X,τ , i.e.,

the infinite-history TE is a lower bound for the original TE.
Both TEs are often close to each other, e.g., Ref. [44].

B. Dynamical causal effects

Consider a stochastic dynamical system understood as a
Markovian random dynamical system [66], i.e., (Xt , Yt ) is
a Markov process for any initial state (x0, y0). In the time-
series literature, it is also called a “state space model” [67].
Long-term DCEs are defined [43] for a parameterized system
and quantify changes in the dynamics of X occurring after the
coupling Y → X is switched on/off or an individual parameter
of Y is changed. Such quantities are often of the main interest
in practice, e.g., coupling effects on stationary variance in cli-
mate data analysis [44,68] or on power spectral density in neu-
roscience [42,46,69]. A system is specified with conditional
(i.e., transition) pdf pX,Y,τ |X,Y (xτ , yτ |x0, y0, ax, axy, ay, ayx ),
where parameters ax and ay relate to internal dynamics of
the subsystems X and Y (e.g., relaxation rates, intrinsic noise
intensities), while axy and ayx specify couplings Y → X and
X → Y (e.g., coupling coefficients). A widespread example
serving as a paradigmatic system in theoretical studies (e.g.,
physical models of stochastic energetics [70]) is given by
stochastic differential equations,

ẋ = fx(x, y, ax, axy) + gx(x, y, ax, axy)ξx(t ),

ẏ = fy(y, x, ay, ayx ) + gy(y, x, ay, ayx )ξy(t ), (3)

where x and y are state variables, fx and fy > 0 are drift
coefficients, gx and gy are diffusion coefficients, and (ξx, ξy)
is Gaussian white noise with covariance intensity matrix �

whose elements are constant �xx and �yy (�xx is an element
of ax and �yy of ay) with �xy = 0.

The subsystem Y does not influence X , i.e., pX,τ |X,Y does
not depend on y0 for any τ > 0, if and only if axy = 0.
Moreover, if axy = 0, then pX,τ |X,Y does not depend on ay.
Stationary characteristics of Xt generally differ between axy =
a∗

xy �= 0 and axy = 0. They may also differ between different
values of ay if axy �= 0. An effect of switching the cou-
pling Y → X on, i.e., of changing axy from 0 to a∗

xy �= 0, is
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quantified as a respective change in a certain characteristic
Q{Xt |axx, axy, ayy, ayx} which is a functional of stationary pdf
of the process Xt [44,45] and, hence, a function of the system
parameters. Omitting unchanged parameters, one defines

SY →X = Q{Xt |axy = a∗
xy} − Q{Xt |axy = 0}

Q{Xt |axy = 0} . (4)

This quantity is called “coupling-on” long-term DCE.
For a system (3), effects of switching the noise ξy on are

often of interest [43], especially in spectral causality stud-
ies [42,46]. A “noise-on” long-term DCE is given by

NY →X = Q{Xt |�yy = �∗
yy} − Q{Xt |�yy = 0}

Q{Xt |�yy = 0} . (5)

Both long-term DCEs are dimensionless and measured in
relative units (r.u.) showing relative change of Q{Xt } under
parameter variation. The value of 1 r.u. means doubling of
Q. For zero-mean one-dimensional Gaussian processes, Q can
be just stationary variance Q{Xt } = var{Xt }, which is then the
simplest informative characteristic of the dynamics.

Both long-term DCEs are compared below to the two kinds
of TE after reducing each TE to a single quantifier. Indeed, the
original TE TY →X,τ depends on τ and is, therefore, a family
of coupling quantifiers, not a single one. For a typical case
of nondegenerate noise intensity matrix �, the TE TY →X,τ is
readily shown to be a linear function of τ at infinitesimally
small τ . The TE rate ṪY →X,0 = dTY →X,τ

dτ
|τ=0 determines the

values of TY →X,τ over the interval of small-enough τ to some
characteristic time. The TE rate has the dimension of inverse
time and so its numerical values depend on the time unit. So
a dimensionless quantifier TY →X = τcharṪY →X,0 is used below,
where τchar is defined as the minimum of the individual char-
acteristic times of the subsystems X and Y . It is called here
the “reduced” original TE. The reduced infinite-history TE is
defined in the same manner, after excluding a dependence of
T (∞,∞)

Y →X,τ on �t at each τ via taking first the limit of �t → 0
as in Ref. [71]. In practice, it corresponds just to �t much
smaller than any characteristic time of the dynamics. So we

define the infinite-history TE rate Ṫ (∞,∞)
Y →X,0 = dT (∞,∞)

Y →X,τ |�t→0

dτ
|τ=0

and the reduced infinite-history TE T ∞
Y →X = τcharṪ

(∞,∞)
Y →X,0 . If

any TE is computed for τ � τchar, then the respective reduced
TE equals the small-τ TE multiplied by τchar/τ . In the rest of
the paper, the term “reduced” is usually omitted for brevity.

Note that the original TE can be expressed as a short-term
DCE [43], an effect of varying an initial state y0 on pdf of Xτ ,
given x0 (Appendix B). The infinite-history TE cannot be so
expressed, remaining only “directed statistical coherence” or
“informational causal effect.”

III. OBJECT AND METHOD

A. Reference system

Relationships between the original TE and coupling-on
DCE (and infinite-history TE and noise-on DCEs as auxil-
iary quantities) depend on parametrization of a system. As
a starting step, a complete analysis is performed here for
a reasonably general class of systems which is a set of
two one-dimensional linear Langevin equations describing

stochastically perturbed overdamped oscillators. This is a
special case of Eq. (3) given by

ẋ = −αxx + kxyy + ξx(t ), ẏ = −αyy + kyxx + ξy(t ), (6)

where αx > 0 and αy > 0 are relaxation rates of the sub-
systems and kxy and kyx are coupling coefficients. This
simple system still has such general properties as internal
dynamics of X and Y (autocorrelations), stochasticity sources
(white noise), and directional couplings. Such systems are
widespread in physics and other sciences as a basis for
empirical modeling, e.g., approximations of large climate
models [72,73].

When Eqs. (6) are derived as a conceptual model for a
physical system, the quantities x, y, and t are dimensional with
physical dimensions [x], [y], and [t]. In order to formulate
ultimate results of this study in a more physical rather than
statistical manner, appropriate dimensionless parameters are
introduced below as in the theory of dimensions and similar-
ity [60], which looks for relationships between dimensionless
quantities of interest in a simple form of power laws. So
define first the ratios of relaxation rates mxy = αy/αx and
myx = 1/mxy. Call mxy relative source rate for the coupling
Y → X . The subsystem Y is the source of this coupling and
the subsystem X is its recipient. If mxy > 1 (mxy < 1), then the
coupling Y → X is coupling from the fast (slow) source. Call
M = max{mxy, myx} � 1 the rate difference.

Second, in order to introduce coupling parameters, note
that the variances of x and y for uncoupled systems are σ 2

x,0 =
�xx/(2αx ) and σ 2

y,0 = �yy/(2αy). Consider variances of the
first and the second terms on the right-hand side of the first
equation (6) in the open-loop regime, i.e., when both x and
y evolve as if they were uncoupled. The ratio of the variance
of the second (coupling) term to that of the first (individual)

term is β2
xy = k2

xyσ
2
y,0

α2
x σ 2

x,0
= k2

xy�yy

αxαy�xx
. This is the simplest dimension-

less parameter of the coupling Y → X . Relying only on the
evolution equation coefficients and the “free” variances of x
and y, it characterizes the coupling immediately, i.e., with-
out taking into account coupled behavior. Therefore, call β2

xy
immediate coupling strength or simply coupling strength. If
β2

xy > 1 (β2
xy < 1), then the coupling Y → X is (immediately)

strong (weak). Geometric mean of the coupling strengths
β2 =

√
β2

xyβ
2
yx = |kxykyx |

αxαy
is mean coupling strength. Denote s =

sgn{kxykyx}: s = 1 (s = −1) corresponds to positive (negative)
feedback.

Third, ratios of coupling strengths are useful to character-
ize “predominance.” Thus, call lxy = |βxy/βyx| predominance
parameter of the coupling Y → X . If lxy > 1 (lxy < 1), then
the coupling Y → X is predominant (deficient). Everything is
the same for lyx = 1/lxy. Parameter L = max{lxy, lyx} quanti-
fies immediate coupling difference. If L = 1, then couplings
are immediately equivalent.

Finally, it is convenient to introduce relative coupling pa-
rameters as those divided by the relative source rate. The
ratio β2

xy/mxy is relative coupling strength. If β2
xy/mxy > 1

(β2
xy/mxy < 1), then the coupling Y → X is relatively strong

(relatively weak). If β2
xy > M (1 < β2

xy < M), then the cou-
pling Y → X is essentially strong (moderately strong). Sim-
ilarly, if β2

xy < 1/M (1/M < β2
xy < 1), the coupling Y → X
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FIG. 1. CCFs for the system (6) with mxy = 10 and various
other parameters: (a) lxy = 50, β2 = 0.01; (b) lxy = 3, β2 = 0.05;
(c) lxy = 0.3, β2 = 0.005; (d) lxy = 3, β2 = 0.5. Solid lines show the
case of positive feedback s = 1, the dashed lines show the case of
s = −1. Time units along the abscissa axes correspond to αx = 0.1
and αy = 1.

is essentially weak (moderately weak). Next, the ratio lxy/mxy

is relative predominance parameter of the coupling Y → X .
If lxy/mxy > 1 (lxy/mxy < 1), then the coupling Y → X is
relatively predominant (relatively deficient). If lxy > M (1 <

lxy < M), then the coupling Y → X is essentially predomi-
nant (moderately predominant). If lxy < 1/M (1/M < lxy <

1), then the coupling Y → X is essentially deficient (mod-
erately deficient). A parameter Lr = max{lxy/mxy, lyx/myx} is
relative coupling difference. If Lr = 1, then the couplings are
relatively equivalent. If L > M (1 < L < M), then the cou-
plings are essentially different (moderately different).

B. Correlation functions

A usual characterization of stationary Gaussian pro-
cesses [74,75] involves autocorrelation functions (ACFs) and
cross-correlation function (CCF). Since ACFs and CCF can be
used in practical estimation of DCEs from TEs (Sec. V), they
are briefly commented here for some characteristic parameter
values for the system (6). For sufficiently weak couplings
β2

xy � 1 and β2
yx � 1, ACFs of the processes Xt and Yt are al-

most exponentially decaying with decay rates equal to αx and
αy, respectively. Figure 1 shows plots of the CCF Cxy(τ ) =
〈XtYt−τ /(σxσy)〉 computed from Eq. (C6) (Appendix C).

For essentially predominant coupling from the fast source
Y → X , the CCF looks quite asymmetric for any feedback
sign [Fig. 1(a)], with an interval of sign reversal for negative
feedback. Figure 1(b) illustrates moderately predominant (i.e.,
relatively deficient) coupling from the fast source Y → X and
small β2 = 0.05: Positive feedback exhibits less asymmetric
form than that in Fig. 1(a), while peculiarity of the negative
feedback is that the CCF maximum is attained at negative τ

where X (a source of deficient coupling) leads in time, in con-
trast to other cases where at the CCF maximum point a source
of predominant coupling leads. Figure 1(d) exhibits CCF plots

similar to Fig. 1(b), though mean coupling is 10 times stronger
(so CCF values are greater). Predominant coupling from the
slow source in Fig. 1(c) shows almost symmetric (relatively to
the maximum point) CCF plots. Thus, using the CCF plot, one
can guess in practice the situations of essentially predominant
coupling from the fast source (including feedback sign) and
moderately predominant coupling from the fast source with
negative feedback.

To distinguish other situations, one should perform an ad-
ditional analysis (Appendix C). In general, ACFs and CCF
are determined by the characteristic exponents z1,2 which are
the roots of the characteristic polynomial z2 + (αx + αy)z +
� = 0, where � = αxαy − kxykyx is the system determinant.
Denote uncoupled system determinant �0 = αxαy, relative
determinant �̃ = �/�0 = 1 − sβ2, and inverse system deter-
minant 1/�̃.

C. Expressions for coupling quantifiers

Recalling that stationary variance is used as the character-
istic Q to define the long-term DCEs, the latter are found by
solving linear algebraic equations for the stationary covari-
ance matrix of the process (Xt ,Yt ) given in Appendix C. The
results read

SY →X = (lxy + mxys)β2

�̃(1 + mxy)
, (7)

and

NY →X = lxyβ
2

�̃ + mxy
. (8)

Reduced TEs are defined with τchar = 1/max{αx, αy}. The
original TE is found from linear ordinary differential equa-
tions for conditional moments (Appendix C) as

TY →X = lxyβ
2

4max{1, mxy} (1 + SX→Y )(1 − r2), (9)

where r is zero-lag correlation coefficient. The infinite-
history TE is found via cross-spectral matrix factorization
(Appendix C) and reads

T ∞
Y →X =

(√
1 + lxyβ2

mxy
− 1

)
min{1, mxy}

2
. (10)

In power-law relationships of the theory of dimensions and
similarity [60], their exponents and domains of applicability
are of utmost importance, while numerical coefficients are
typically of the order of unity and their exact values are
often not so necessary, e.g., twice as small or twice as large
estimates are quite acceptable. Here, relationships between
the coupling quantifiers and the dimensionless parameters
are also found as intermediate asymptotic in the approximate
power-law form. Namely, one takes, e.g., mxy � 1 and lxy �
mxy (or other strong inequalities) to expand Eqs. (7)–(10)
into Taylor series with respect to small parameters 1/mxy and
mxy/lxy (or others) and retain the lowest order. The resulting
relationships often remain reasonably accurate if the asymp-
totic conditions are violated, as specially studied below.
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IV. RESULTS

A. “Four-TE” relationship

Intermediately asymptotic cases imply L � 1, M � 1, and
Lr � 1 (L � M or L � M) as studied in this subsection. Start
with uncoupled subsystems X and Y and increase coupling
strengths from zero. While mean coupling strength remains
small β2 � 1, coupling-on DCEs rise in absolute value pro-
portionally to the respective coupling strength. The DCE (7) in
the direction of relatively predominant coupling (say, Y → X )
reads [76]

SY →X ≈ β2
xy

max{1, mxy} . (11)

If this coupling is from the fast source, then this DCE
equals the relative coupling strength. Otherwise, it equals
the immediate coupling strength. The TE (9) reads TY →X ≈
β2

xy/(4max{1, mxy}) for small-enough coupling strengths,
when r2 and SX→Y are small. Hence, SY →X relates to TY →X

for relatively predominant coupling Y → X as

SY →X ≈ 4TY →X , (12)

showing that a nats of the TE correspond to 4a r.u. of the
coupling-on DCE. This simple relationship is very convenient
for the DCE estimation and TE interpretation. The domain of
its applicability is as follows.

For positive feedback, a sufficient condition for validity of
the “four-TE” relationship (12) is that the coupling strengths
are appropriately bounded:

(i) β2 � 1, if the coupling Y → X is from the fast source
and essentially predominant (lxy � M);

(ii) β2
xy � 1, if the coupling Y → X is from the slow source

and predominant (lxy � 1);
(iii) 1 − β2 � 1/L, if the coupling Y → X is from the

slow source and moderately deficient (1/M � lxy � 1).
In case (i), the coupling Y → X can be of any strength

β2
xy and the corresponding TE and DCE can be arbitrarily

large. The four-TE relationship is violated for nonsmall β2,
since the relative determinant �̃ gets considerably less than
unity and a large multiplier 1/�̃ appears in the expression
for SY →X (7), so the latter becomes much greater than the
four-TE level 4TY →X . In cases (ii) and (iii), both TE and DCE
are necessarily weak. The relationship (12) is violated for
nonsmall β2

xy in case (ii) and β2 exceeding 1 − 1/L in case
(iii), since then the cross correlation r gets of the order of
unity and a small multiplier 1 − r2 in Eq. (9) decreases the
TE, making 4TY →X � SY →X . In those ranges, SY →X rises as
β2

xy in case (ii) and as 1/(L�̃) in case (iii), while the TE
intermediately stabilizes at TY →X = 1/4 nats.

For absent feedback, i.e., for a unidirectional coupling
Y → X , the condition (i) transforms to “any β2

xy” since then
β2 = 0 and cross correlation is small r2 � 1. Hence, the four-
TE law (12) applies to any unidirectional coupling from the
fast source. The condition (ii) remains. For negative feedback,
all conditions remain the same as for positive one, only the
reason for the violation of (12) at nonsmall β2 in case (i) dif-
fers: SY →X saturates at L/M due to large �̃ in the denominator
of the right-hand side of Eq. (7) for β2 � 1, while 4TY →X

rises as SY →X β2.

In total, the four-TE relationship is sufficiently widely
applicable (see also Appendix D) and not even restricted to
both weak couplings. Moreover, when it is not accurate up
to a small relative error (�1), it may still remain reason-
ably accurate as studied in the next subsection. As for the
relatively deficient coupling X → Y , the “S − T ” relationship
differs from Eq. (12) involving an additional large factor: (i)
|SX→Y | ≈ 4(L/M )TX→Y , (ii) |SX→Y | ≈ 4(LM )TX→Y , and (iii)
|SX→Y | ≈ 4(M/L)TX→Y .

The infinite-history TE T ∞
Y →X , often reported in published

works, is close to the original TE TY →X for weak-enough
couplings. Their closeness is violated if the relative coupling
strength β2

xy/mxy is not small (i.e., not much less than unity)
or the opposite DCE SX→Y is so large that the factor (1 +
SX→Y )(1 − r2) − 1 in Eq. (9) is not small. Thus, the four-TE
relationship often extends to the infinite-history TE as well but
not in all cases.

B. How many nats provide unit long-term effect?

A unit DCE corresponds to doubling of the recipient vari-
ance and represents quite considerable coupling role rather
than very small coupling strengths. Questions of practical
interest are as follows: How many nats of the original TE
provide unit coupling-on DCE in the same direction? and Are
such threshold values close to the four-TE law (12)?

The thresholds are shown in Fig. 2 for various couplings
with dominating role in dynamics. To compute the threshold
TY →X , the value of SY →X = 1 is substituted to Eq. (7) and
the threshold β2 is found, since both lxy and mxy are known
for each point in the plots of Fig. 2. Having β2, the opposite
DCE SX→Y is found from the same equation as (7) and r2 from
Eq. (C4). Then the threshold TE TY →X is found from Eq. (9).
Figure 2(a) corresponds to the coupling Y → X from the fast
source. In the unidirectional case, the threshold TY →X (solid
line) is about 1/4 nats for mxy � 10, meeting the four-TE law.
For equal rates mxy = 1, it differs almost twice (to 3/8 nats)
which is not a very strong distinction. If the coupling Y → X
is essentially predominant (long dashes for lxy = 100), then
the threshold TY →X even for not very small ratio mxy/lxy ≈
0.2 is about 0.2 nats, close to 1/4 nats for a unidirectional
coupling. For a boundary situation of relatively equivalent
couplings (short dashes), the threshold is TY →X ≈ 0.1 nats for
any mxy, which differs from 1/4 nats about twice, i.e., again
not drastically.

As for the coupling from the slow source [Fig. 2(b)], the
threshold TX→Y in a unidirectional case varies in a wider
range from 3/8 nats (for mxy = 1) to 1/8 nats (for mxy ≈ 100)
as shown by the solid line. This range slightly changes to
(0.12, 0.3) nats for a predominant coupling X → Y with lyx =
10 (long dashes). For a boundary situation of immediately
equivalent couplings (short dashes), the threshold is exactly
TX→Y = 1/8 nats, differing from the level of 1/4 nats twice.
Thus, a predominant or immediately equivalent coupling from
the slow source will lead in practice to a smaller accuracy of
the four-TE law in estimating coupling-on DCEs of the order
of unity. However, even in the worst cases here, the four-TE
law gives a reasonable rough estimate, twice as small or twice
as large as a true value.
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FIG. 2. Threshold values of the original and infinite-history TEs
corresponding to the unit coupling-on DCE in the same direction for
the system (6): (a) for the coupling from the fast source Y ; (b) for
the coupling from the slow source X . Parameters are given in the
legends.

The threshold infinite-history TE differs from the respec-
tive original TE if the unit coupling-on DCE is achieved at
large-enough (of the order of unity) relative coupling strength
in that direction. Namely, the thresholds TY →X and T ∞

Y →X in
Fig. 2(a) moderately differ (T ∞

Y →X /TY →X ≈ 0.8) for unidi-
rectional couplings and large mxy, where they correspond to
β2

xy/mxy ≈ 1. In Fig. 2(b) their difference occurs for mxy �
1 with threshold values of β2

yx ≈ 1/mxy, where T ∞
X→Y ≈

1/
√

8mxy nats, TX→Y ≈ 1/8 nats, and T ∞
X→Y ≈ √

8/mxyTX→Y .
The latter formula indicates that the infinite-history TE may
quite strongly differ from the original TE and be a bad proxy
as further addressed in the next subsection.

In total, the most typical values of the original TE pro-
viding a unit coupling-on DCE often correspond (reasonably)
accurately to the four-TE law, i.e., are close to 1/4 nats vary-
ing roughly from 0.1 to 0.35 nats around this basic value.
The respective infinite-history TE is sometimes close and

sometimes considerably less. It is now easy to see the meaning
of 1 nat. Such original TE means a very influential coupling:
for a unidirectional coupling from the fast source Y → X ,
Eqs. (7) and (9) give that the respective DCE is SY →X = 4
r.u., i.e., a fivefold increase of the recipient variance. Further,
T ∞

Y →X = 1 nat corresponds to even greater SY →X = 8 r.u. For
a unidirectional coupling from the slow source X → Y , both
TX→Y = 1 nat and T ∞

X→Y = 1 nat means SX→Y = 4mxy � 1
r.u., i.e., quite large long-term DCE.

C. Qualitative distinction between TEs

The limit case of essential predominance lxy → ∞ is met
above for a unidirectional coupling Y → X , where β2

yx =
β2 = 0 due to kyx = 0. However, it is also met for zero noise in
the coupling recipient �xx → 0. Then β2

yx → 0 but the mean
coupling strength β2 = |kxykyx|/(αxαy) is finite. As shown
below, the original and infinite-history TEs in the direction
of essentially deficient coupling behave then qualitatively dif-
ferently, one being finite and another arbitrarily small.

Consider essentially strong coupling from the fast source
Y → X , when β2 ≈ 1 and cross correlation r is small:
1/M � 1 − β2 � 1 implies r2 = 1/(M�̃) � 1 and lxy =
L � M (Table II in Appendix E). Nothing new happens in
the direction of essentially predominant coupling Y → X ,
only the coupling-on DCE becomes even greater SY →X =
L/(M�̃) � NY →X = 4TY →X = L/M. In the direction of es-
sentially deficient coupling X → Y , the coupling-on DCE
satisfies the four-TE law SX→Y = 4TX→Y = 1/(M�̃) � 1,
while the infinite-history TE and the noise-on DCE are much
smaller NX→Y = (4/�̃)T ∞

X→Y = 1/(L�̃). For L → ∞ occur-
ring under �xx → 0, both NX→Y and T ∞

X→Y tend to zero
remaining proportional to each other, while both SX→Y and
TX→Y remain finite and constant. Thus, the original TE ap-
pears to be a measure of the coupling-on DCE, while the
infinite-history TE is a measure of the (strongly different)
noise-on DCE. So one can conclude that the two TEs are
qualitatively distinct here.

The situation remains similar for mean coupling strength
of the order of unity but not very close to it. In particular, for
β2 = 1/2, it holds SX→Y = 8TX→Y = 1/M � 1 and NX→Y =
8T ∞

X→Y = 1/L � 1/M. The factor relating SX→Y to TX→Y is
greater than in the previous case (and more distant from 4),
while the factor relating NX→Y to T ∞

X→Y is smaller and closer
to 4. So the divergence of the two TEs from each other appears
to be a robust property, i.e., a typical situation in the space of
dimensionless parameters.

This robustness is confirmed for an essentially deficient
coupling from the fast source Y → X (lxy � 1/M) and
mean coupling strength close to unity (1/M � 1 − β2 � 1).
Then one gets very small NY →X = 4T ∞

Y →X = 1/(LM ) � 1,
somewhat greater TY →X = 1/(4M2) � 1, and large SY →X =
1/�̃ � 1 (Table II in Appendix E). Again, both SY →X and
TY →X do not tend to zero under L → ∞ and remain constant,
while NY →X and T ∞

Y →X do tend (satisfying the four-TE law
in their turn). Thus, the original and infinite-history TEs nec-
essarily diverge from each other for an essentially deficient
coupling with nonsmall mean coupling strength and positive
feedback.
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D. Other relationships

All relationships between the coupling quantifiers are di-
verse, with the most representative and practically relevant
ones presented above. Details of the full set of cases is given in
Appendices D and E, while its further characteristic features
are briefly commented below.

The coupling-on DCE (11) is positive independently of the
feedback sign, i.e., relatively predominant coupling always
increases the recipient variance. The coupling-on DCE in the
opposite direction SX→Y has the sign s of the feedback. As for
the absolute values, the DCE in the direction of predominant
coupling is exactly L times greater SY →X /SX→Y = lxys. Ratios
of other coupling quantifiers in the opposite directions are not
so universal, e.g., TY →X /TX→Y ≈ l2

xy/mxy for weak-enough
couplings (Appendix D). Negative feedback and large cross
correlation 1 − r2 � 1 are also discussed in Appendix D.

Finally, consider what happens if very strong inequalities
(e.g., L � 1, β2 � 1/L, etc.) are met only in a moder-
ate sense, e.g., β2 = 3/L instead of β2 � 1/L. As reported
in Table III (Appendix E), the intermediately asymptotic
“strong-inequality” relationships remain reasonably accurate,
typically with relative error less than 50% and often consider-
ably smaller. Moreover, these relationships often apply to the
very boundary points (e.g., β2 = 1/L) where they typically
give an approximate value of a DCE not worse than twice as
small or twice as large as a true value. A particular boundary is
the case of equal rates M = 1 (Table IV, Appendix E), where
relationships obtained for a large rate difference often apply
with slight correction. Thus, for positive feedback and β2 �
1/L, one gets SY →X = 2TY →X (i.e., the two-TE relationship)
instead of SY →X = 4TY →X . To generalize both cases, Eqs. (7)
and (9) give SY →X = kTY →X with k = 4/(1 + 1/M ) for an
arbitrary M and weak-enough couplings.

The situation can get quite specific for negative feedback.
Then a boundary case of relatively equivalent couplings al-
ways provides zero coupling-on DCEs in both directions (and
r = 0), even for arbitrarily large coupling strengths. This is
not reflected by the TEs which get then arbitrarily large as
well. This is an illustration that a simple relationship like the
four-TE law is not sometimes relevant even as an approxi-
mation and, in addition to TEs, more detailed description of
dynamics is needed to learn dynamical effects of directional
couplings.

V. DISCUSSION

The task to find the long-term DCEs from estimates of TEs,
ACFs, and CCF readily arises, e.g., in meta-analysis stud-
ies, where published works report resulting figures for those
quantities without the values of empirical model coefficients.
Then one cannot use a full model to estimate the coupling-on
DCEs directly from their definition (4) by manipulating model
coefficients [77]. So relationships between TEs and DCEs can
be applied to estimate the latter. Knowing ACFs and CCF, one
can guess where the system is in the space of dimensionless
parameters and choose relationships to be used to determine
SY →X from TY →X . Below, let us focus on application of the
simplest and sufficiently general four-TE law, while more
complicated cases are discussed in Appendix F.

First, one should consider sample ACFs of both processes
under study and verify that their plots are close to exponential
decay. In addition, the CCF maximum over time lags should
be small enough, e.g., maxτ r2(τ ) < 0.1 suffices. Then each
relaxation rate equals the respective ACF decay rate. Thereby,
one gets also the value of mxy. For all that, the sampling in-
terval should be small-enough �t � τchar = 1/max{αx, αy},
e.g., �t � 0.2τchar.

Second, for this small �t , the ordinary one-step-ahead
TEs multiplied by 1/(max{αx, αy}�t ) provide the respective
reduced TEs. Only for an essentially strong coupling, a max-
imal value of an ordinary τ -dependent TE can be achieved
at τmax � τchar, so one needs even smaller �t � 0.2τmax to
estimate a reduced TE reliably. This condition is met if an
ordinary TE versus τ is linear with zero intercept within
the range of the smallest available τ = �t, 2�t, . . . , and
τmax � 5�t . As for the TE estimation, recall that for a two-
dimensional stationary Gaussian process (Xt ,Yt ) and small τ ,
the TE simply relates to the respective prediction improve-
ment [49], so TY →X = (1/2)GY →X (Appendix A). One can
use an estimate of WG causality often reported in the literature
to assess the TE, if the latter is not given.

Third, if couplings in both directions are nonzero, then
an estimate of predominance parameter is found as lxy =√

mxyTY →X /TX→Y . Depending on the value of lxy/mxy, one
identifies direction of relatively predominant coupling and
the four-TE law gives the coupling-on DCE for that direc-
tion. The relationship with a factor less than 4, namely k =
4/(1 + 1/M ), can be used if the rates are not very different.
The coupling-on DCE in the opposite direction is given by
the corrected four-TE (or k-TE) law with an additional large
factor (either Lr or LM, Sec. IV A) and its sign s can be often
determined from the CCF plot. Having the DCE estimates,
one can check again whether conditions for applicability of
those relationships are still fulfilled.

If CCF values are not small enough, then the observed ACF
decay rates may differ from αx and αy, depending on other
parameters of the system. Other conditions for applicability
of the four-TE law may not be fulfilled as well, e.g., mean
coupling strength β2 may not be small. Then one should
either use prior knowledge of some system parameters (or full
empirical model for direct estimation of the DCEs) or identify
which of diverse relationships applies, using the four Tables
in Appendix E.

Details of application procedure deserve a careful statis-
tical study. Here consider a simple illustration of how the
suggested relationships allow one to have an intuitive “feel-
ing” of the TE numerics while reading reported results on WG
causality or TE analysis. References [78,79] provide estimates
of the WG causality from solar activity variations (Y ) on
tropical Atlantic climate (X ) from paleoclimate time series
(total solar irradiance from combined paleoclimate archives
and stalagmite δ18O data at Yok Balum cave, southern Belize)
over the past 2000 years at a time step of �t = 5 years.
After coping carefully with dating errors, the authors have
revealed statistically significantly (at p < 0.05) a unidirec-
tional influence of solar activity variations on the regional
rainfall variations with (optimally selected) one-step-ahead
relative prediction improvement G(4,1)

Y →X,�t = 0.015 r.u. As the
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plots in supplemental material [79] show [Figs. S1(b) and
S2(b)], ACFs of both signals are close to exponential decay
with 1/αx = 20 years and 1/αy = 25 years. Maximal CCF is
about 0.3 [Fig. S4(b)]. The τ -dependent PI G(4,1)

Y →X,τ rises ap-
proximately linearly over small τ = �t, 2�t, 3�t from 0.015
to ≈0.04 r.u. and seemingly reaches maximum at τ = 4�t
[Fig. S6(a)]. Thus, conditions for a weak unidirectional cou-
pling in a system (6) are fulfilled. The reduced TE (either
original or infinite-history) equals G(4,1)

Y →X,�t/(2αx�t ) ≈ 0.03
nats. Since the relaxation rates ratio is mxy ≈ 0.8, the two-TE
relationship can be used to estimate SY →X [or, more accu-
rately, the k-TE relationship with k = 4/(1 + mxy) ≈ 2.2].
Thus, one gets SY →X ≈ 6–7 r.u. This is a result of a simple
meta-analysis without extensive computations. To summarize,
the published values of WG causality are found to correspond
to the reduced TE from solar activity variations to the Atlantic
hydroclimate of 0.03 nat and to the increase of the recipient
(Belizean rainfall) variance by 6–7% due to the solar influ-
ence. Further studies seem to be in order to understand how
significant this coupling is from the physical viewpoint and
whether it is a manifestation of a more global solar influence
on the Earth climate. In particular, a moving-window analy-
sis [79] has shown that in the first millennium A.D. the relative
PI is about three times as great and so may correspond to about
20% increase of the recipient variance due to solar influence,
but reliability of the estimates from such shorter time windows
is lower. Diverse examples of one-step-ahead relative PIs of
one to several hundredth in climate data (e.g., Refs. [80–82])
can readily get similar DCE interpretations.

If a practical situation does not resemble two one-
dimensional systems (6), then one can construct an empirical
autoregressive model from a time series and estimate the
coupling-on DCEs directly, assuming that the model remains
adequate under zeroing of the coupling coefficients. However,
this study can be also extended to wider classes of systems
which are of interest in practice, e.g., to higher-dimensional
linear systems where one has less vivid expressions for the
TEs via generalized variances [49] and can expect certain
multi-dimensional (matrix) generalizations of the relation-
ships (7)–(10) to hold.

For nonlinear systems, long-term DCEs may be more ap-
propriately characterized with other quantities in addition to
variance. Still, some classes of systems, e.g., weak nonlinear-
ity in the presence of noise or simple unimodal stationary pdf
determined by sufficiently strong noise, may well lead to S-T
relationships close to those obtained here. In such situations
one can also expect the original and infinite-history TEs to
be sometimes close to each other and sometimes diverging
to different long-term DCEs. One can expect the infinite-
history TE to be related to responses of the recipient ACF and
power spectral density to switching the source noise on. The
original TE is in any case expected to be closely related to
the coupling-on DCE in terms of some appropriate stationary
characteristic Q in Eq. (4). Further studies of relationships
between various quantifiers of directional couplings for rea-
sonably wide and practically interesting classes of stochastic
dynamical systems seem to promise useful results. As such
quantifiers, one can consider phase dynamics-based character-
istics [83–90], nonlinear Granger causality measures [91–94],

convergent cross mapping [53,54,95] and similar state space
measures [59,96–103], “information flows” [13,14,16], em-
pirical model-based approaches [104–108], and others, e.g.,
Refs. [12,109,110].

VI. CONCLUSIONS

Transfer entropy TY →X reduced to a characteristic time
of a system (X,Y ), a fundamental characteristic of infor-
mation transfer between time-evolving objects X and Y , is
related here to a coupling-on long-term dynamical causal
effect SY →X which is a relative change of recipient variance
under switching the coupling on. Though this relationship is
diverse, depending on dimensionless parameters of a system
under study (bidirectionally coupled one-dimensional linear
Langevin equations), a reasonably general and practically ap-
plicable case is the four-TE law SY →X = 4TY →X which holds
for relatively predominant coupling Y → X , strongly differ-
ent relaxation rates, and properly bounded mean coupling
strength. A more general relationship, still for the bounded
mean coupling strength, is SY →X = kTY →X with k = 4/

(1 + 1/M ) where M � 1 is the rates ratio. So it becomes the
two-TE law for equal rates.

These relationships and conditions of their applicability
are found as intermediate asymptotic [60], allowing practical
estimation of the coupling-on DCE from an estimate of the
respective TE and, thereby, richer interpretation (closer “intu-
itive feeling”) of the TE numerics. In particular, the reduced
TE TY →X of 1 nat provides quite large coupling-on DCE in
the same direction, ranging from 4 r.u. (fivefold increase of
the recipient variance) to much greater values.

While the above original TE TY →X shows reduction of
uncertainty in the future of X conditioned by an initial state,
one often uses the infinite-history TE which is a measure of
Wiener-Granger causality. Both TEs are shown here to be
numerically close to each other under a well-defined condition
of weak-enough couplings but drastically diverging from each
other for an essentially deficient coupling, positive feedback,
and nonsmall mean coupling strength. The infinite-history TE
then tends to zero under an increase of the coupling predom-
inance parameter L → ∞ being proportional to the source
noise-on DCE, while the original TE remains finite and con-
stant being proportional to the coupling-on DCE. This should
be taken into account when estimating DCEs and interpreting
TEs: The widely used infinite-history TE is not always a good
proxy for the original TE.
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APPENDIX A: TRANSFER ENTROPY FORMULAS
AND UNITS

The (differential) Shannon entropy of a variable X
with pdf pX (x) is given by IX = − ∫

pX (x) ln pX (x)dx.
Conditional entropy of X conditioned by Y is IX |Y =
− ∫

pXY (x, y) ln pX |Y (x|y)dxdy, where pXY (x, y) is joint pdf
of X and Y and pX |Y (x|y) = pXY (x, y)/pY (y) is conditional
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FIG. 3. Illustration of dependence between Xt+τ and Yt , given
xt = const and τ > 0. Joint pdf of Xt+τ and Yt is shown as a cloud
of small circles. Marginal pdfs of Yt and Xt+τ (given xt ) are shown
with dashed lines along abscissa and ordinate axes, respectively.
Vertical dashed lines represent sections of the pdf of Xt+τ under an
additional condition of given yt : Two values y∗

t and y∗∗
t produce two

different conditional pdfs of Xt+τ shown along the ordinate axis with
solid lines. The respective conditional expectations x∗

t+τ and x∗∗
t+τ are

shown with large filled circles.

pdf of X. Difference of the respective conditional entropies
is the (k, l )-history TE defined in the main text as TY →X,τ =
IX,τ |X − IX,τ |X,Y . It quantifies how strongly uncertainty in the
current value of x, given its k previous values, is reduced if
the previous l values of y are taken into account.

For a two-dimensional Gaussian process (Xt ,Yt ), the (k, l )-
history TE relates [49] to the ratio of variances as

T (k,l )
Y →X,τ = 1

2
ln

var
{
Xt+τ

∣∣X (k)
t

}
var

{
Xt+τ

∣∣X (k)
t ,Y (l )

t

} , (A1)

where var{·|·} stands for the conditional variance. This ra-
tio relates to the relative prediction improvement (PI) of the
process x when the past of y is taken into account, since
the conditional variances are just the variances of prediction
errors. Denote the relative PI,

G(k,l )
Y →X,τ = var

{
Xt+τ

∣∣X (k)
t

} − var
{
Xt+τ

∣∣X (k)
t ,Y (l )

t

}
var

{
Xt+τ

∣∣X (k)
t ,Y (l )

t

} , (A2)

which is the absolute PI divided by the variance of
joint prediction error. Hence, the TE is T (k,l )

Y →X,τ =
1
2 ln [1 + G(k,l )

Y →X,τ ] [49]. Note that it differs from an
ordinary normalized PI which is taken to be the absolute
PI divided by the self-prediction error variance and so equals
G(k,l )

Y →X,τ /[1 + G(k,l )
Y →X,τ ] � 1.

The meaning of the relative PI is illustrated for k = l = 1
in Fig. 3, where the two-dimensional pdf of Xt+τ and Yt

conditioned on xt is shown. The conditional expectation of
Xt+τ at additionally fixed Yt = y∗

t is denoted x∗
t+τ . Two such

expectations are shown in Fig. 3 with filled circles. The vari-
ance of Xt+τ (i.e., of the pdf shown with the dashed line along
the ordinate axis) is the conditional variance var{Xt+τ |xt } or

the self-prediction error variance. It is the sum of the two
terms: The variance of the conditional expectation var{x∗

t+τ }
(obtained via averaging over the pdf of y∗

t shown below the
abscissa axis) and the conditional variance var{Xt+τ |xt , yt }
which is the joint prediction error variance (it is the variance of
any conditional pdf shown along the ordinate axis with a solid
line). Hence, the former term is the difference of the two pre-
diction error variances (var{Xt+τ |xt } − var{Xt+τ |xt ,Yt }) and
represents the contribution of the (conditioned on xt ) depen-
dence between Yt and Xt+τ to the self-prediction error of Xt+τ .
The relative PI is just the ratio of this contribution to the joint
prediction error variance. Its units can be called relative units
(r.u.). If the ordinary normalized PI equals 1/2 (or 50%), then
G(k,l )

Y →X,τ = 1 r.u., i.e., contribution of the absolute PI to the
self-prediction error of Xt+τ equals contribution of the joint
prediction error, and the TE then equals (1/2) ln 2 ≈ 0.7 nats.

What values of the relative PI (and TE) imply a strong
coupling Y → X? A simple approach is to call the relative
PI large, if it exceeds 1. Then the contribution of the de-
pendence between Yt and Xt+τ to the self-prediction error of
Xt+τ is greater than the contribution of the joint prediction
error variance, i.e., greater than half the self-prediction error
variance. This terminology is justified but insufficient to call
the coupling itself strong or weak, since the relative PI is then
large or small only in comparison with its own unit, without
taking into account any features of coupled and uncoupled
dynamics.

If the relative PI is much less than unity, then one gets
a very simple relation T (k,l )

Y →X,τ ≈ (1/2)G(k,l )
Y →X,τ , so a certain

fraction of the nat corresponds to two such fractions of the
r.u., e.g., the relative PI of 0.2 r.u. corresponds to the TE of
0.1 nats. In particular, it holds for infinitesimal τ and, hence,
for the rates of these quantities.

The entire consideration applies to multivariate Gaussian
processes if generalized conditional variances (determinants
of the generalized covariance matrices) [49] are used instead
of the ordinary conditional variances.

APPENDIX B: TRANSFER ENTROPY AS SHORT-TERM
DYNAMICAL CAUSAL EFFECT

The original TE T (1,1)
Y →X,τ can be expressed as a short-term

DCE as discussed in Ref. [43], where that DCE is introduced
for a system (X,Y ) demonstrating a Markov process (Xt ,Yt ).
However, the viewpoint is changed to the “intervention-
effect” perspective [47]. Instead of asking how the future is
predicted based on the observed past, one looks at how the
future responses to (independent) variations of the current
state. Then it is no longer compulsory to restrict consideration
with a stationary regime of (X,Y ). Rather, one relies on an
explicit description of the system under study as a stochastic
dynamical system, whose initial state (x0, y0) uniquely deter-
mines all future conditional pdfs. The evolution is specified
formally as pX,Y,τ |X,Y (xτ , yτ |x0, y0) = LX,Y,τ (x0, y0), where
the operator LX,Y,τ uniquely relates an initial state (x0, y0) to a
conditional pdf of (Xτ , Yτ ) at τ > 0 and serves as a transition
pdf. Through marginalization of the image of LX,Y,τ (x0, y0)
over y or x, one gets the operators LX,τ (x0, y0) or LY,τ (x0, y0),
which uniquely relate an initial state to marginal pdfs of Xτ
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and Yτ , respectively:

pX,τ |X,Y (xτ |x0, y0) = LX,τ (x0, y0),

pY,τ |X,Y (yτ |x0, y0) = LY,τ (x0, y0). (B1)

Here Y does not affect X if and only if ∂LX,τ (x0, y0)/∂y0 ≡ 0
for any τ > 0. If the latter condition does not hold, then
one says that the directional coupling Y → X exists. Every-
thing is symmetric for the direction X → Y . A representative
of (B1) widespread in physics and other disciplines is given
by stochastic differential equations, where the operators LX,τ

and LY,τ represent a solution to the Fokker-Planck equation.
Under general conditions, if the system starts from an initial
Dirac-delta pdf, then it converges to a certain stationary pdf
after a transient process. After the convergence has occurred,
the process (Xt , Yt ) becomes stationary, while it is in general
nonstationary at smaller times t .

Short-term (transient) DCEs quantify transient responses
of the states of X in finite time τ to variations of the
initial state of Y , given the initial state of X . An ele-
mentary short-term DCE FY →X,τ (x0, y∗

0, y∗∗
0 ) quantifies the

difference between the conditional pdfs pX,τ |X,Y (x|x0, y∗
0 )

and pX,τ |X,Y (x|x0, y∗∗
0 ) using the Kullback-Leibler diver-

gence D(p||q) = ∫
p(x) ln(p(x)/q(x))dx. Via averaging over

(x0, y∗
0, y∗∗

0 ) with pdf pst
X (x0)pst

Y |X (y∗
0|x0)pst

Y |X (y∗∗
0 |x0) ex-

pressed via the stationary pdf pst
XY (x0, y0), one gets the

short-term DCE FY →X,τ depending only on the response time
τ . It was shown [43] that FY →X,τ is a sum of the original TE
and an additional positive term. Hence, the original TE is a
lower bound for the short-term DCE FY →X,τ . The relationship
between both quantities simplifies to T (1,1)

Y →X,τ = (1/2)FY →X,τ

if their values are infinitesimally small or, in practice, just
much less than unity.

If the system under study is given by linear stochastic dif-
ferential equations with one-dimensional state vectors x and
y, then the process (Xt ,Yt ) is Gaussian and the variance of the
mean-squared difference between two values of xτ obtained
at fixed value of x0 and two different values y∗

0 and y∗∗
0 inde-

pendently sampled from the stationary pdf conditioned by x0,
is a sum of two terms. The first term is the squared difference
of the conditional expectations (x∗

τ − x∗∗
τ )2 averaged over y∗

0
and y∗∗

0 , i.e., the response of the conditional expectation of xτ

to the variation of y0 (Fig. 3). The second term is the doubled
conditional variance of xτ conditioned on (x0, y0) which is in-
dependent of a concrete value of (x0, y0). The short-term DCE
FY →X,τ then equals the ratio of the first term to the second
term. Its units can also be called r.u. The short-term DCE of 1
r.u. means that the two contributions to the squared difference
of xτ are equal to each other. For a Gaussian process, the
short-term DCE equals the relative PI: FY →X,τ = G(1,1)

Y →X,τ . If

FY →X,τ � 1, then T (1,1)
Y →X,τ = (1/2)FY →X,τ , i.e., the original

TE of a nats corresponds to the short-term DCE of 2a r.u.

APPENDIX C: DETAILS OF REFERENCE SYSTEM

Recall that the noise-free (i.e., � = 0) dynamics of the
basic system (6) is described by its characteristic exponents
z1,2 which are the roots of the characteristic polynomial, i.e.,
satisfy z2 + (αx + αy)z + � = 0, where � = αxαy − kxykyx

is the system determinant. These exponents read z1,2 =

−αx+αy

2 ±
√

(αx+αy )2

4 − �. In the uncoupled case, both noise-
free subsystems demonstrate exponential decay of the initial
perturbation with the respective exponent αx or αy, while in
the presence of noise their ACFs behave so and their CCF is
zero.

For positive feedback and � > 0 (i.e., for the mean cou-
pling strength 0 < β2 < 1), the noise-free system is stable
with the fixed point of the node type. In the presence of
noise, the ACFs decay slower than in the uncoupled case,
i.e., power spectral densities (PSDs) become stronger con-
centrated at lower frequencies. The CCF becomes nonzero
and the variances of x and y increase. If the mean coupling
strength increases as β2 → 1, then the inverse system deter-
minant rises as 1/(1 − β2) → ∞ and both variances tend to
infinity as well. For β2 > 1 the noise-free system becomes
unstable and the processes xt and yt in the presence of noise
are nonstationary.

For negative feedback and large-enough mean coupling
strength β2 > (αx − αy)2/(4αxαy), the noise-free system ex-
hibits stable fixed point of the focus type. The PSDs in
the presence of noise become stronger concentrated at the
characteristic frequency |Im{z1,2}| of the decaying oscilla-
tions. These oscillations become visible in the ACFs plots at
large-enough β2. The variances of x and y depend on other
parameters in a complicated way.

Figure 4 presents the terminology of coupling strength
and predominance introduced in the main text. Note that the
notions of relatively strong and essentially strong coupling
coincide for the coupling from the fast source (as well as
notions of relatively predominant and essentially predominant
coupling). The notions of relatively weak and essentially weak
coupling coincide for the coupling from the slow source (as
well as notions of relatively deficient and essentially deficient
coupling).

1. Original TE, DCEs, and CFs

To compute the original TE for the system (6), consider
evolution of the vector zt = (xt , yt ). For an initial state z0 =
(x0, y0), the conditional pdf p(xt , yt |z0) at any t > 0 is Gaus-
sian with expectations mx|z0 (t ) and my|z0 (t ), variances σ 2

x|z0
(t )

and σ 2
y|z0

(t ), and covariance σxy|z0 (t ) given by (e.g., Ref. [43])

ṁx|z0 = −αxmx|z0 + kxymy|z0 ,

ṁy|z0 = −αymy|z0 + kyxmx|z0 , (C1)

and

σ̇ 2
x|z0

= −2αxσ
2
x|z0

+ 2kxyσxy|z0 + �xx,

σ̇ 2
y|z0

= −2αyσ
2
y|z0

+ 2kyxσxy|z0 + �yy,

σ̇xy|z0 = −(αy + αy)σxy|z0 + kyxσ
2
x|z0

+ kxyσ
2
y|z0

, (C2)

where �xy = 0 has been used, mx|z0 (0) = x0, my|z0 (0) = y0,
and σ 2

x|z0
(0) = σ 2

y|z0
(0) = σxy|z0 (0) = 0. These are linear equa-

tions which can be solved analytically. Conditional variance
σ 2

x|z0
(t ) is the joint mean-squared prediction error, which

equals �xxt at infinitesimal t . Conditional variance σ 2
x|x0

(t )
is the mean-squared self-prediction error, which at such t
equals �xxt + var{mx|x0 (t )} = �xxt + k2

xyσ
2
y|xt2, where σ 2

y|x is
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FIG. 4. Grades of the coupling Y → X for mxy > 1 according to
its (a) immediate strength and (b) predominance parameter. Loga-
rithmic scale is used along both abscissa axes. The upper row of
names in the right panel presents typical situations of difference
and points of equivalence of the two directional couplings: essen-
tial difference (L � M), moderate difference (L � M), immediate
equivalence (β2

xy = β2
yx), and relative equivalence (β2

xy/mxy = β2
yx).

stationary conditional variance of y equal to σ 2
y (1 − r2) with

r = σxy/(σxσy) standing for the stationary zero-lag cross-
correlation coefficient. For Gaussian processes and infinites-
imal t , the original TE equals one-half of the relative pre-
diction improvement [σ 2

x|x0
(t ) − σ 2

x|z0
(t )]/σ 2

x|z0
(t ) [49]. Noting

σ 2
y = σ 2

y,0(1 + SX→Y ), one gets TY →X = k2
xyσ

2
y,0(1 − r2)(1 +

SX→Y )/(2 max{αx, αy}�xx ). Recalling σ 2
y,0 = �xx/(2αx ), one

gets the TE in the form (9).
To derive stationary variances and covariance of X and Y

which equal the above conditional moments under t → ∞,
one sets the left-hand side of (C2) equal to zero and solves the
respective linear algebraic equations for the three stationary
second-order moments. The resulting stationary covariance
σxy is

σxy = σx,0σy,0(βxy + mxyβyx )

�̃(1 + mxy)
, (C3)

where βxy and βyx are signed quantities whose signs coin-
cide with the signs of kxy and kyx, respectively. Then r =
σxy/(σxσy) and its squared value r2 reads

r2 = (mxylyx + myxlxy + 2s)β2

[1 + mxy + (lxy − s)β2][1 + myx + (lyx − s)β2]
, (C4)

the stationary variance σ 2
x reads

σ 2
x = σ 2

x,0

[
1 + (lxy + mxys)β2

�̃(1 + mxy)

]
, (C5)

and similarly for σ 2
y . Equation (C5) gives the coupling-on

DCE (7) recalling SY →X = (σ 2
x − σ 2

x,0)/σ 2
x,0.

The (normalized) ACFs and CCF are found from the ordi-
nary differential equations (e.g., Ref. [75]) given by

dCxx(τ )/dτ = −αxCxx(τ ) + (σy/σx )kxyCyx(τ ),

dCxy(τ )/dτ = −αxCxy(τ ) + (σy/σx )kxyCyy(τ ),

dCyx(τ )/dτ = −αyCyx(τ ) + (σx/σy)kyxCxx(τ ),

dCyy(τ )/dτ = −αyCyy(τ ) + (σx/σy)kyxCxy(τ ), (C6)

with τ � 0, Cxy(−τ ) = Cyx(τ ), and initial conditions
Cxx(0) = Cyy(0) = 1 and Cxy(0) = Cyx(0) = r. The latter
is found from Eq. (C3), as well as σx and σy are given by
Eq. (C5) and a similar one.

For definiteness, the signs of kxy and kyx in the SDS (6)
are selected in this work so to provide nonnegative r. Simul-
taneous reversal of both signs changes only the sign of each
value of Cxy(τ ). So for positive feedback, both kxy and kyx are
positive. For negative feedback, the coupling coefficient in the
direction of relatively predominant coupling is positive and
the opposite one is negative.

2. Infinite-history TE

The infinite-history TE for the system (6) can be found in
closed form using spectral factorization of the power spectral
density matrix of the process (Xt ,Yt ) similarly to a discrete-
time example considered in Ref. [111]. This approach can be
summarized as follows. The infinite-history TE rate equals
one-half of the WG causality rate and so reads [46,71,112]

Ṫ (∞,∞)
Y →X,0 = 1

4π

∫ ∞

−∞
GY →X (ω)dω, (C7)

where the Granger-Geweke spectrum GY →X (ω) characteriz-
ing the coupling Y → X in the frequency domain is given for
the first-order system (6) with zero noise covariance �xy = 0
by

GY →X (ω) = ln

[
1 + |Hxy(ω)|2Wyy,0(ω)

Wxx,0(ω)

]
, (C8)

where Wxx,0(ω) = �xx
2π (α2

x +ω2 ) and Wyy,0(ω) = �yy

2π (α2
y +ω2 ) are

power spectral densities of the uncoupled processes x and y,
respectively, and Hxy(ω) = kxy

αx+iω is the transfer function of
the unidirectional coupling Y → X . Taking the integral (C7)
by parts, one gets

Ṫ (∞,∞)
Y →X,0 = 1

4π

∫ ∞

−∞
ln

(
1 + β2

xy/mxy

1 + ω2/α2
y

)
dω

= αy

2

(√
1 + β2

xy/mxy − 1
)
. (C9)

Dividing right-hand side of the latter equation by max{αx, αy},
one gets the reduced infinite-history TE T ∞

Y →X (10).
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APPENDIX D: DETAILED RESULTS

Throughout this Appendix, let mxy > 1 for definiteness,
i.e., Y is a fast subsystem, and X is a slow one.

1. Unidirectional couplings

This is a limit case of essential coupling difference with
L = ∞ and β2 = 0, where lxyβ

2 = β2
xy > 0 and lyxβ

2 = 0 for
the coupling Y → X . It holds �̃ = 1 and SY →X = NY →X . All
coupling quantifiers X → Y are zero.

To relate first the long-term DCE to the immediate and
relative coupling strengths, consider a unidirectional coupling
from the fast source Y → X . Then the long-term DCE equals
the relative coupling strength SY →X ≈ β2

xy/M. A moderately
strong coupling 1 � β2

xy � M means that the variance of the
coupling term kxyy in the right-hand side of the evolution
equation of the system is much greater than that of the indi-
vidual term −αxx. Such coupling provides a small long-term
DCE SY →X � 1. To cause a large long-term DCE, the vari-
ance of the coupling (fast) term should exceed the variance of
the individual (slow) term more than M times. If their ratio
equals M, so the immediate coupling strength is large, then
the long-term DCE is just equal to 1 r.u., i.e., this immediately
strong coupling leads to an increase of the recipient variance
only by 1 r.u. (doubling of the variance). The factor M can be
understood as follows. The variance of the integral of the fast
term over any time interval τ � τchar = 1/αy rises linearly
with τ and equals the variance of this term multiplied by τ/αy,
since its ACF decays over the interval 1/αy. Due to inertia of
the slow recipient X , contribution of each term to the recipient
variance is determined by the variance of the integral of that
term over the interval τ = 1/αx � 1/αy. For the slow term,
this variance of integral is just the ordinary variance multiplied
by 1/α2

x . Therefore, the ratio of the contribution of the fast
term to that of the slow term equals the ratio of their variances
β2

xy divided by M.
For the unidirectional coupling from the slow source

X → Y , the long-term DCE equals the immediate coupling
strength SX→Y ≈ β2

yx, being much smaller than the relative
coupling strength Mβ2

yx. Why is the long-term DCE not large
for moderately weak coupling 1/M � β2

yx � 1 due to pos-
sibly greater contribution of the slow (coupling) term than
that of the fast (individual) term? Roughly speaking, this is

because the contributions should be computed over the small
relaxation time 1/αy of the fast recipient Y rather than over
1/αx. Moreover, the individual term remains fast only if the
long-term DCE of the slow coupling term is not large. So the
ratio of these contributions equals the ratio of the variances
β2

yx contrary to the case of the slow recipient X . Thus, the
long-term DCE equals either the immediate (from the slow
source) or the relative (from the fast source) coupling strength.

The original TE from the fast source is TY →X = β2
xy/(4mxy)

for any coupling strength β2
xy, since cross correlation is always

small r2 � 1 for this unidirectional coupling (Table I). Hence,
the long-term DCE is expressed via the original TE simply
as SY →X = 4TY →X . The infinite-history TE reads T ∞

Y →X =
TY →X for β2

xy/M � 1 and T ∞
Y →X =

√
β2

xy/(4M ) = √
TY →X for

β2
xy/M � 1. The long-term DCE and both TEs are small for

relatively weak coupling β2
xy/M � 1 and large for relatively

strong coupling β2
xy/M � 1.

The original TE from the slow source TX→Y = β2
yx(1 −

r2)/4 simplifies to TX→Y = β2
yx/4 � 1 for weak coupling

β2
yx � 1 since the cross correlation is then small r2 = β2

yx
(Table I). The infinite-history TE is equal to T ∞

X→Y = TX→Y for
essentially weak coupling (β2

yx � myx = 1/M) and to T ∞
X→Y =√

β2
yx/(4M ) � TX→Y for moderately weak coupling (1/M �

β2
yx � 1). The infinite-history TE changes its relationship

to other quantifiers, depending on the relative coupling
strength β2

yx/myx. In total, for the weak coupling from the
slow source, the “four-TE” relationship SX→Y = 4TX→Y holds
again, with SX→Y = 4T ∞

X→Y for essentially weak coupling
(where T ∞

X→Y � 1/M) and SX→Y = 4M(T ∞)2
X→Y � 1 for

moderately weak coupling (with 1/M � T ∞
X→Y � 1/

√
M).

These relationships hold for small values of the coupling
quantifiers which can be diagnosed in practice.

For strong coupling from the slow source β2
yx � 1, the

value of r2 gets close to unity (Table I). Then for mod-
erately strong coupling, 1 � β2

yx � M, one has r2 = 1 −
1/β2

yx and the long-term DCE SX→Y = 1/(1 − r2) � 1. In
this range of coupling strengths, the original TE is constant
TX→Y = 1/4 nats, since the rising coupling strength β2

yx ex-
actly compensates for the decreasing factor 1 − r2 on the
right-hand side of Eq. (11). So TX→Y is not informative in
respect of the long-term DCE. The infinite-history TE remains
small 1/

√
M � T ∞

X→Y � 1 and the long-term DCE reads

TABLE I. Coupling quantifiers for unidirectional couplings versus the coupling strength β2
xy or β2

yx . The rate difference is strong mxy =
M � 1. The sign “−||−” means “the same as in the above box.”

β2
xy or β2

yx r2 SY →X NY →X 4TY →X 4T ∞
Y →X SX→Y NX→Y 4TX→Y 4T ∞

X→Y

β2
xy � M

β2
xy

M2 � 1
β2

xy

M � 1
β2

xy

M � 1
β2

xy

M � 1
β2

xy

M � 1 0 0 0 0

β2
xy � M 1

M � 1
β2

xy

M � 1
β2

xy

M � 1
β2

xy

M � 1
√

4β2
xy

M � 1 0 0 0 0

β2
yx � 1

M β2
yx � 1 0 0 0 0 β2

yx � 1 β2
yx � 1 β2

yx � 1 β2
yx � 1

1
M � β2

yx � 1 β2
yx � 1 0 0 0 0 −||− −||− −||−

√
4β2

yx

M � 1

1 � β2
yx � M 1 − 1

β2
yx

0 0 0 0 β2
yx � 1 β2

yx � 1 1 −||−

β2
yx � M 1 − 1

M 0 0 0 0 −||− −||− β2
yx

M � 1
√

4β2
yx

M � 1
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SX→Y = 4M(T ∞)2
X→Y . So one has T ∞

X→Y � TX→Y � SX→Y .
An empirical sign of this situation is a small value of T ∞

X→Y ac-
companied by the intermediate TX→Y = 1/4 nats. Finally, for
essentially strong coupling β2

yx � M, one gets constant r2 =
1 − 1/M and large values of all coupling quantifiers T ∞

X→Y =√
β2

yx/4M � 1, TX→Y = β2
yx/(4M ), and SX→Y = 4MTX→Y =

4M(T ∞)2
X→Y . Thus, the strong coupling from the slow source

leads to large cross-correlation and diverse relationships be-
tween the long-term DCE and both TEs. Notice a simple
approximate relationship SX→Y = r2/(1 − r2) which is valid
for weak and moderately strong coupling from the slow source
(i.e., if 1 − r2 � 1/M) and can be used in practical estima-
tion.

For bidirectional couplings below, introduce a separate
notation for a unidirectional DCE Suni

Y →X which is SY →X un-
der an additional restriction of no coupling X → Y . It reads

Suni
Y →X = lxyβ

2

1+mxy
= β2

xy

1+mxy
.

2. Weak bidirectional couplings

At positive feedback, consider so weak bidirectional cou-
pling that all coupling quantifiers in both directions are small.
In this case, the cross correlation is necessarily small r2 � 1
and the mean coupling is weak β2 � 1 corresponding to the
relative system determinant �̃ close to unity. All these con-
ditions are met, if couplings in both directions are relatively
weak: β2

xy � M and β2
yx � 1/M. The resulting relationships

appear quite close to the unidirectional case, apart from
difference for the coupling-on DCE of the relatively defi-
cient coupling. Namely, for any coupling direction it holds
N[·] = Suni

[·] = 4T[·] = 4T ∞
[·] , where [·] stands for the coupling

direction. For the relatively predominant coupling, it holds
S[·] = Suni

[·] , while for the relatively deficient coupling this
relationship changes to S[·] = LrSuni

[·] (if this is a moderately
predominant coupling from the fast source or essentially de-
ficient coupling from the slow source) or S[·] = (LM )Suni

[·] (if
this is a deficient coupling from the fast source), and anyway
involves a large factor Lr or LM. This difference is explained
by considerable contribution of the feedback loop to the
coupling-on DCE of a relatively deficient coupling. Note that
for each coupling direction the original and infinite-history
TEs coincide, both being small, that gives an empirical sign
of this situation in the form TY →X = T ∞

Y →X � 1 and TX→Y =
T ∞

X→Y � 1/M.
Relax the condition of relative weakness of the coupling

X → Y and let it be only moderately weak 1/M � β2
yx � 1

maintaining weak mean coupling β2 � 1. All the coupling
quantifiers remain small and related in the same way (Table II)
with the only change concerning the infinite-history TE from
the slow source T ∞

X→Y =
√

β2
yx/4M � TX→Y . An empirical

sign of this situation includes T ∞
X→Y � TX→Y � 1, 1/M �

T ∞
X→Y � 1/

√
M, TY →X = T ∞

Y →X � 1, and a special check for
weakness of the mean coupling, e.g., based on Table II.

Relax the condition of the relative weakness of the
coupling from the fast source maintaining weak mean
coupling β2 � 1. It implies essentially strong coupling from
the fast source β2

xy � M and essentially weak coupling from
the slow source β2

yx � 1/M, so lxy = L � M. The quantifiers

of the coupling from the fast source are then all large and
related as in the case of unidirectional coupling from the fast
source SY →X = NY →X = Suni

Y →X = 4TY →X = 4(T ∞)2
Y →X =

Lβ2/M � 1. The cross correlation and the opposite long-term
DCEs remain small: the noise-on and unidirectional DCEs
equal four times the infinite-history TE NX→Y = Suni

X→Y =
4T ∞

X→Y = β2/L � 1, the coupling-on DCE is much greater
SX→Y = (L/M )Suni

X→Y = β2/M � 1, and the original TE takes
position between them as NX→Y � TX→Y = β4/(4M ) �
SX→Y . An empirical sign of this situation includes
1 � T ∞

Y →X � TY →X , T ∞
X→Y � T ∞

X→Y � 1, and a special
check for weak mean coupling. Thus, the original TE starts
to “move” to the coupling-on DCE, away from the infinite-
history TE which remains “linked” to the noise-on DCE, as
manifested more clearly in the situations of Sec. IV C.

3. Large cross correlation

Large cross correlation 1 − r2 � 1 is a specific situation,
observed either if mean coupling strength is close to unity
with positive feedback or coupling from the slow source
is strong. It is most difficult for estimation of directional
coupling quantifiers from time series of x and y since both
variables almost coincide, so information about the couplings
should be extracted from their quite weak deviations from
each other. Even a moderate measurement noise can ren-
der the task unsolvable. Still, for very weak measurement
noise, an observation of practical relevance is that an ap-
proximate relationship for the coupling from the slow source
SX→Y ≈ 1/(1 − r2) is valid (Table II), except for essentially
strong couplings from the slow source. Namely, a sufficient
condition is β2

yx � M. Violation of the condition β2
yx � M

can be diagnosed if the original TE is large in one direction
TX→Y � 1 (from the slow source), and small in another direc-
tion TY →X � 1. All other cases with 1 − r2 � 1 are “marked”
with different relationships (Table II).

This relationship for a coupling from the slow source can
be generalized to involve also small (r2 � 1) cross correla-
tions. Then it takes the form SX→Y = r2/(1 − r2) (Table II).
For a large cross correlation, it applies no matter whether
the coupling X → Y is relatively predominant or not. For a
small cross correlation, it applies only in case of relatively pre-
dominant coupling X → Y . It applies also in case of negative
feedback under the same conditions on the coupling strength.
Anyway, it does not apply to the coupling-on DCE from the
fast source.

4. Ratios of coupling quantifiers

To summarize the relationships between different cou-
pling quantifiers in the same direction for the positive
feedback, note that it always holds S[·] � N[·] � Suni

[·] � 4T ∞
[·]

and S[·] � 4T[·] � 4T ∞
[·] . Approximate equalities take place for

weak-enough couplings except for the coupling-on DCE of
relatively deficient coupling. The value of 4T[·] can either
exceed the respective N[·] and Suni

[·] or be less than these DCEs.
Concerning ratios of the quantifiers of the same kind in

the opposite directions, note first the ratio of the coupling-
on DCEs which always exactly equals SY →X /SX→Y = lxys.
The DCE for a relatively predominant coupling is always
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TABLE II. Coupling quantifiers for bidirectional couplings with mxy = M � 1. The first column gives the feedback sign s in the symbolic
form. The third column gives the values of the coupling strength, where the parentheses are used for compactness to denote inequalities
in strong sense, e.g., ( M

L , 1) means M
L � β2 � 1. If β2 is close to unity for positive feedback, then the value of the system determinant

�̃ = 1 − β2 is given instead. The asterisk in the third column means that the case of L/M < M is presented there, while the opposite case is
analogous.

s lxy β2 r2 SY →X NY →X 4TY →X 4T ∞
Y →X SX→Y NX→Y 4TX→Y 4T ∞

X→Y

± � M � M/L Lβ2

M2 � 1 Lβ2

M � 1 Lβ2

M � 1 Lβ2

M � 1 Lβ2

M � 1 ± β2

M � 1 β2

L � 1 β2

L � 1 β2

L � 1(
M
L , 1

)
1
M � 1 Lβ2

M � 1 Lβ2

M � 1 Lβ2

M � 1
√

4Lβ2

M � 1 −||− −||− β4

M � 1 −||−

+ � M �̃ ∈ (
1
M , 1

)
1

M�̃
� 1 L

M�̃
� 1 L

M � 1 L
M � 1

√
4L
M � 1 1

M�̃
� 1 1

L�̃
� 1 1

M�̃
� 1 1

L � 1

�̃ � 1
M 1 − M�̃ −||− −||− −||− −||− 1

M�̃
� 1 M

L � 1 1 −||−

− � M
(
1, L

M

)∗ 1
Mβ2 � 1 L

M � 1 Lβ2

M � 1 Lβ2

M � 1
√

4Lβ2

M � 1 − 1
M � 1 1

L � 1 β2

M � 1 β2

L � 1(
L
M , M

) −||− −||− −||− −||− −||− −||− −||− −||−
√

4β2

LM � 1

� M −||− −||− L � 1 −||− −||− −||− −||− β2

M � 1
√

4β2

LM

± (1, M ) � L
M

β2

L � 1 ±β2 � 1 Lβ2

M � 1 Lβ2

M � 1 Lβ2

M � 1 β2

L � 1 β2

L � 1 β2

L � 1 β2

L � 1(
L
M , 1

) −||− −||− −||− −||− −||− −||− −||− −||−
√

β2

LM � 1

+ (1, M ) �̃ ∈ (
1
L , 1

)
1

L�̃
� 1 1

�̃
� 1 L

M � 1 L
M � 1 L

M � 1 1
L�̃

� 1 1
L�̃

� 1 1
L�̃

� 1
√

4
LM � 1

�̃ ∈ (
1
M , 1

L

)
1 − L�̃ −||− −||− −||− −||− 1

L�̃
� 1 1

L�̃
� 1 1 −||−

�̃ � 1
M −||− −||− −||− −||− −||− −||− M

L � 1 −||− −||−

− (1, M )
(
1, M

L

)
1
L � 1 −1 + 1

β2
Lβ2

M � 1 Lβ2

M � 1 Lβ2

M � 1 1
L � 1 1

L � 1 1
L � 1

√
4β2

LM � 1(
M
L , M

)
M

Lβ2 � 1 −1 + L
M

Lβ2

M � 1 Lβ2

M � 1
√

4Lβ2

M � 1 −||− −||− β2

M � 1 −||−
� M −||− −||− L � 1 −||− −||− −||− −||− β2

M � 1
√

β2

LM

± (
1
M , 1

) � 1
LM Lβ2 � 1 ±β2 � 1 β2

LM � 1 β2

LM � 1 β2

LM � 1 Lβ2 � 1 Lβ2 � 1 Lβ2 � 1 Lβ2 � 1(
1

LM , 1
L

) −||− −||− −||− −||− −||− −||− −||− −||−
√

4Lβ2

M � 1(
1
L , 1

)
1 − 1

Lβ2 −||− −||− −||− −||− Lβ2 � 1 Lβ2 � 1 1 −||−

+ (
1
M , 1

)
�̃ ∈ (

1
M , 1

)
1 − �̃

L
1
�̃

� 1 1
LM � 1 1

LM � 1 1
LM � 1 L

�̃
� 1 L

�̃
� 1 1

√
4L
M � 1

�̃ � 1
M −||− −||− −||− −||− −||− −||− LM � 1 −||− −||−

− (
1
M , 1

) (
1, M

L

)
1 − 1

L −1 + 1
β2

β2

LM � 1 β2

LM � 1 β2

LM � 1 L � 1 L � 1 1
√

4Lβ2

M � 1(
M
L , M

)
1 − β2

M −||− −||− β4

M2 � 1 −||− −||− −||− Lβ2

M � 1
√

4Lβ2

M � 1

(M, LM ) M
β2 � 1 −1 + 1

M
1
L � 1 β2

M � 1 −||− −||− −||− −||− −||−
� LM −||− −||− −||− −||−

√
4β2

LM � 1 −||− −||− −||− −||−
± � 1

M � 1
LM Lβ2 � 1 ±β2 � 1 β2

LM � 1 β2

LM � 1 β2

LM � 1 Lβ2 � 1 Lβ2 � 1 Lβ2 � 1 Lβ2 � 1(
1

LM , 1
L

) −||− −||− −||− −||− −||− −||− −||− −||−
√

4Lβ2

M � 1(
1
L , M

L

)
1 − 1

Lβ2 −||− −||− −||− −||− Lβ2 � 1 Lβ2 � 1 1 −||−(
M
L , 1

)
1 − 1

M −||− −||− β4

M2 � 1 −||− −||− −||− Lβ2

M � 1
√

4Lβ2

M � 1

+ � 1
M �̃ ∈ (

1
M , 1

)
1 − �̃

M
1
�̃

� 1 1
LM � 1 1

M2 � 1 1
LM � 1 L

�̃
� 1 L

�̃
� 1 L

M � 1
√

4L
M � 1

�̃ � 1
M −||− −||− −||− −||− −||− −||− LM � 1 −||− −||−

− � 1
M (1, M ) 1 − β2

M −1 + 1
β2

β2

LM � 1 β4

M2 � 1 β2

LM � 1 L � 1 L � 1 Lβ2

M � 1
√

4Lβ2

M � 1

(M, LM ) M
β2 � 1 −1 + 1

M
1
L � 1 β2

M � 1 −||− −||− −||− −||− −||−
� LM −||− −||− −||− −||−

√
4β2

LM � 1 −||− −||− −||− −||−
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positive. An interesting situation is a moderately predomi-
nant (relatively deficient) coupling from the fast source Y →
X for negative feedback, where the CCF plot is unusual
[dashed line in Fig. 2(b)]. Then the respective coupling-
on DCE is negative SY →X < 0, but in absolute value it is
lxy times as large as the opposite DCE SX→Y > 0. Thus, a
decrease of the recipient variance due to switching the cou-
pling on is possible even for a (moderately) predominant
coupling.

Assume positive feedback below, until the subsection
“Negative feedback.” The ratio of the unidirectional DCEs is
exactly equal to Suni

Y →X /Suni
X→Y = l2

xy/mxy for any parameters.
If coupling from the slow source is predominant, then its
unidirectional DCE prevails by the factor of L2M. If cou-
pling from the fast source is essentially predominant, then
its unidirectional DCE prevails by the factor of L2/M. In
case of moderately predominant coupling from the fast source
lxy � 1, its unidirectional DCE L2/M can be greater or less
than unity depending on the values of L and M. Thus, take as
a vivid numerical example M = 100 and lxy = √

50 ≈ 7, e.g.,
β2

xy = 5 and β2
yx = 0.1 where the mean coupling strength β2 =√

0.5 ≈ 0.7 is intermediate. Then, the unidirectional DCE
from the fast source Suni

Y →X ≈ 0.05 r.u. is twice as small as
that from the slow source Suni

X→Y ≈ 0.1 r.u., both being small.
The coupling-on DCE from the fast source is moderately
large SY →X ≈ 2.5 r.u. (the slow recipient variance increases
3.5 times due to switching the coupling Y → X on). This
effect is 7 times as large as SY →X ≈ 0.4 r.u. which is moder-
ately small (the fast recipient variance rises only 1.4 times due
to switching the coupling X → Y on). So this predominant
coupling from the fast source appears to be also predominant
in terms of the coupling-on DCE, but deficient in terms of the
unidirectional DCE.

The ratio of the noise-on DCEs NY →X /NX→Y for the pre-
dominant coupling from the fast source ranges from L2/M
for weak-enough mean coupling to smaller value of L2/M2

for the mean coupling strength close to unity (Table II).
Therefore, for moderately predominant coupling from the fast
source (L � M), this ratio can be greater than unity for weak-
enough mean coupling and inevitably gets less than unity for
small enough �̃. Such a transition does not take place for
the coupling-on and unidirectional DCEs. For the deficient
coupling from the fast source, this ratio ranges respectively
from 1/(L2M ) to 1/(L2M2), both values being small. Thus,
predominant coupling from the slow source prevails even
stronger in terms of its noise-on DCE.

The ratio of the original TEs TY →X /TX→Y for the predom-
inant coupling from the fast source ranges from L2/M for
weak-enough mean coupling to smaller value of L/M for the
mean coupling strength close to unity (Table II). The latter
is inevitably small for the moderately predominant coupling
Y → X , while the former can exceed unity similarly to the
ratio of noise-on DCEs. For the deficient coupling from the
fast source, the ratio TY →X /TX→Y ranges respectively from
1/(L2M ) to 1/(LM ), both values being small.

The ratio of the infinite-history TEs T ∞
Y →X /T ∞

X→Y for the
predominant coupling from the fast source ranges from L2/M
for weak-enough mean coupling to

√
4L3/M for the mean

coupling strength close to unity. In the latter case, this ratio

can be greater than unity when the ratio of the original TEs
is less than unity, so the moderately predominant coupling
Y → X can be predominant in terms of the infinite-history
TE and deficient in terms of the original TE and noise-on
DCE. For the deficient coupling from the fast source, the ratio
T ∞

Y →X /T ∞
X→Y ranges from 1/(L2M ) to

√
4/(L3M ), i.e., always

small.

5. Negative feedback

For s = −1 and weak mean coupling (β2 � 1) almost ev-
erything remains the same as in case of positive feedback with
the only difference that the coupling-on DCE in the direction
of relatively deficient coupling is negative. Similarity of both
cases is reflected by the sign ± in the leftmost column of
Table II. What is quite different in case of negative feedback
is that the mean coupling strength can be arbitrarily large
maintaining stationarity of the process (Xt ,Yt ). Thus, different
intervals of large β2 � 1 give rise to different scaling regimes
of the coupling quantifiers under study.

Both ratios TY →X /TX→Y and T ∞
Y →X /T ∞

X→Y tend to lxy if β2

is large enough: β2 � LM and β2 � M, respectively. So the
quantifier in the direction of predominant coupling is L times
as large as that in the opposite direction. For weaker mean
couplings, these ratios are somewhat smaller for predominant
coupling from the fast source and their inverses are even
greater for the predominant coupling from the slow source.
In the former case, both ratios can become less than unity for
L2 < M. The ratio of noise-on DCEs NY →X /NX→Y tends to l2

xy
for strong-enough mean coupling corresponding to essentially
strong coupling from the fast source and strong coupling from
the slow source. So the noise-on DCE is greater by the factor
of L2 in the direction of predominant coupling. The ratio of the
unidirectional DCEs Suni

Y →X /Suni
X→Y is l2

xy/mxy as for the positive
feedback.

6. Numerics at boundaries

The above relationships remain reasonably accurate even
at boundary points. Table III confirms this statement for the
boundary points in terms of mean coupling strength β2 for
the essentially predominant coupling from the fast source.
There, the values obtained from the exact Eqs. (7)–(10) are
presented along with two numbers in parentheses which are
the estimates obtained from the asymptotic expressions for
the typical intervals divided by the boundary point. If both
numbers in parentheses coincide with the actual boundary
value, then they are omitted.

A particular boundary case of equal rates M = 1 is pre-
sented in Table IV, where the two-TE relationship SY →X =
2TY →X should be used instead of the four-TE law. Still, this
difference is not very large. Quite different situation occurs
when coupling-on DCEs in both directions are zero for nega-
tive feedback and relatively equivalent couplings lxy = mxy as
clear also from Eq. (7). The reason is that the contributions
of the two terms on the right-hand side are equal in absolute
value but opposite in sign. This specific balance is not cap-
tured by both TEs which take the same large values as in case
of positive feedback and large coupling-on DCEs.
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TABLE III. Coupling quantifiers for boundary values of β2 (β2
xy) for essentially predominant (unidirectional) coupling Y → X . Figure

brackets give two approximate values obtained via asymptotic formulas (from Table II) for the two intervals of β2 (β2
xy) divided by the

boundary point. The approximate values are omitted if they coincide with the actual boundary value.

s lxy β2 r2 SY →X NY →X 4TY →X 4T ∞
Y →X SX→Y NX→Y 4TX→Y 4T ∞

X→Y

∞ β2
xy = M 1

2M � 1 1 1 1 2(
√

2 − 1) 0 0 0 0{
1
M , 1

M

} {1, 2}
± � M M/L 1

2M � 1 1 1 1 2(
√

2 − 1) ± 1
L � 1 M

L2 � 1 2M
L2 � 1 M

L2 � 1{
1
M , 1

M

} {1, 2} {
M
L2 , M

L2

}
+ � M 1

2
1
M � 1 L

M � 1 L
2M � 1 L

2M � 1
√

2L
M � 1 1

M � 1 1
2L � 1 1

2M � 1 1
2L � 1{

1
M , 2

M

} {
L

2M , 2L
M

} {
L

2M , L
M

} {
L

2M , L
M

} {√
2L
M ,

√
4L
M

} {
1

2M , 2
M

} {
1

2L , 2
L

} {
1

4M , 2
M

} {
1

2L , 1
L

}
�̃ = 1

M
1
M � 1 L � 1 L

M � 1 2L
M � 1

√
4L
M � 1 1 M

2L � 1 1 1
L � 1

{1, 0} {
L
M , L

M

} {
M
L , M

L

}
− � M 1 1

M � 1 L
2M � 1 L

M � 1 L
M � 1

√
4L
M � 1 − 1

2M
2

3L � 1 1
2M

1
L{

L
M , L

M

} −{
1
M , 1

M

} {
1
L , 1

L

} {
1
M , 1

M

}
L
M

∗ 1
L � 1 L

M � 1 L2

M2 � 1 L2

M2 � 1 2L
M � 1 − 1

M
1
L � 1 L

M2
2(

√
2−1)
M{

1
M , 2

M

}
M 1

M2 � 1 L � 1 L
2 � 1 L � 1

√
4L � 1 − 1

M
1
L � 1 1 4√

L
� 1

[L, L]

APPENDIX E: NUMERICS OF COUPLING QUANTIFIERS

Various coupling quantifiers expressed via dimensionless
parameters for different typical intervals and boundary val-
ues of the mean coupling strength β2 are summarized in
Tables I–IV.

The relationships between the coupling quantifiers and
the dimensionless parameters are found as intermediate

asymptotic in the approximate power-law form. Namely, one
takes, e.g., mxy � 1 and lxy � mxy (or other strong inequali-
ties) to expand Eqs. (7)–(10) into Taylor series with respect to
small parameters 1/mxy and mxy/lxy (or others) and retain the
lowest order. As an example, consider essentially predominant
coupling from the fast source Y → X (i.e., lxy � mxy � 1)
for positive feedback s = 1 and weak-enough mean coupling
β2 � M/L � 1 (the first line of Table II). Then Eq. (7) in the

TABLE IV. Coupling quantifiers for bidirectional coupling and equal relaxation rates mxy = M = 1. Notice the products 2T[·] instead of 4T[·].

s lxy β2 r2 SY →X NY →X 2TY →X 2T ∞
Y →X SX→Y NX→Y 2TX→Y 2T ∞

X→Y

± � 1 � 1/L Lβ2

4 � 1 Lβ2

2 � 1 Lβ2

2 � 1 Lβ2

2 � 1 Lβ2

2 � 1 ± β2

2 � 1 β2

2L � 1 β2

2L � 1 β2

2L � 1
1
L � · � 1 1

2
Lβ2

2 � 1 Lβ2

2 � 1 Lβ2

4 � 1
√

Lβ2 � 1 −||− −||− β4

8 � 1 −||−

+ � 1 2
3

3
4 L � 1 L

2 � 1 L
6 � 1

√
2L
3 � 1 1 1

2L � 1 1
12

1
3L � 1

�̃ � 1 1 − �̃ L
2�̃

� 1 L � 1 L
4 � 1

√
L � 1 1

2�̃
� 1 1

L � 1 1
4

1
2L

− � 1 1 � · � L 1 − 1
β2

L
2 � 1 L

2 � 1 Lβ2

4 � 1
√

Lβ2 � 1 − 1
2

1
2L � 1 β2

4 � 1 β2

2L � 1

� L −||− −||− −||− −||− −||− −||− −||− −||−
√

β2

L � 1

+ 1 � 1 β2 � 1 β2 � 1 β2

2 � 1 β2

2 � 1 β2

2 � 1 β2 � 1 β2

2 � 1 β2

2 � 1 β2

2 � 1

1
2

1
2 1 1

3
1
4

√
3
2 − 1 1

2
1
3

1
4

√
3
2 − 1

�̃ � 1 1 − �̃ 1
�̃

� 1 1 1
2

√
2 − 1 1

�̃
� 1 1 1

2

√
2 − 1

− 1 � 1 0 0 β2

2 � 1 β2

2 � 1 β2

2 � 1 0 β2

2 � 1 β2

2 � 1 β2

2 � 1

1 −||− −||− 1
3

1
2

√
2 − 1 −||− 1

3
1
2

√
2 − 1

� 1 −||− −||− 1 β2

2 � 1
√

β2 � 1 −||− 1 β2

2 � 1
√

β2 � 1
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main text gives

SY →X = lxyβ
2(1 + mxy/lxy)

mxy(1 − β2)(1 + 1/mxy)

= lxyβ
2

mxy
(1 + mxy/lxy + β2 − 1/mxy + . . . )

≈ lxyβ
2

mxy
.

The squared cross correlation is obtained from Eq. (C4) as

r2 ≈
lxyβ

2

mxylxy

(
1 + 2mxy

lxy
+ m2

xy

l2
xy

)
(mxy

lxy
+ β2 + 1

lxy

)(
1 + 1

mxy
− β2

)
≈ lxyβ

2

m2
xy

� 1

mxy
� 1.

The opposite coupling-on DCE SX→Y equals SY →X /lxy and so

SX→Y ≈ β2

mxy
� 1.

Thus, the reduced original TE TY →X is derived from Eq. (9) of
the main text as

TY →X ≈ lxyβ
2

4mxy

(
1 − lxyβ

2

m2
xy

)(
1 + β2

mxy

)
≈ lxyβ

2

4mxy
� 1.

So SY →X ≈ 4TY →X , both being small, as one can see in the
first line of Table II.

For other ratios of dimensionless parameters, the Tay-
lor series expansion may appear more complicated requiring
analysis of several terms to find out which is of the lowest
order. However, the principle is the same as in the above
example.

To get exact values of TEs and DCEs at boundary points,
one just substitutes these boundary values of dimensionless
parameters into Eqs. (7)–(10).

Note that the mean coupling strength β2 = |βxyβyx| (not so
obvious parameter) turns out to be an important dimensionless
parameter whose characteristic values separate domains with
different relationships of coupling quantifiers.

APPENDIX F: APPLICATION ISSUES

After getting the estimates of ACFs, CCF, mxy, original,
and/or infinite-history TEs, it is necessary to decide which
of the diverse relationships between the coupling quantifiers
should be used. It can be done on the basis of the above em-
pirical signs of applicability and Tables I–IV. Thus, the case
of relatively weak couplings in both directions is considered
in Sec. V.

Another characteristic situation is met when T ∞
Y →X =

TY →X � 1, 1/M � T ∞
X→Y � 1/

√
M, 1/M � TX→Y � 1,

and T ∞
X→Y � TX→Y . Here, the mean coupling strength β2 may

appear small or close to unity that determines the relationships
between the coupling quantifiers (Table II). The CCF plot
depends on which coupling is predominant. Note that Cxy(τ )
typically reaches its main extremum at τ > 0 (i.e., the process
y leads) if the coupling from the fast source Y is predominant
and at τ < 0 otherwise, which is violated if the coupling
from the fast source Y is moderately predominant and the
feedback is negative. Then according to the CCF extremum,
the process x is leading [Figs. 2(b) and 2(d)]. In this case,
ACFs can be used to determine whether the mean coupling
strength β2 is small or not: Long-term values of the ACF of
the fast subsystem Y are determined by the slow decay rate αx

only for β2 close to unity. In addition, β2 can be estimated as
β2 = √

32MTY →X TX→Y or β2 = 4MT ∞
X→Y

√
T ∞

Y →X . If it turns
out β2 � 1, then one gets lxy = √

MTY →X /TX→Y , otherwise
lxy =

√
(M/2)TY →X /(β2TX→Y ). If it holds 1 � lxy � M

as a result, then Table II shows that for any mean coupling
strength, a moderately deficient coupling from the slow source
corresponds to SX→Y = NX→Y = 4TX→Y = 4(T ∞)2

X→Y ,
while its unidirectional DCE is Suni

X→Y = SX→Y for β2 � 1
and Suni

X→Y = β2SX→Y � SX→Y for β2 � 1. For the respective
moderately predominant coupling from the fast source
Suni

Y →X = NY →X = 4TY →X = 4T ∞
Y →X and the coupling-on

DCE is SY →X = Suni
Y →X for β2 � 1 and SY →X = −1 + 1/β2

for β2 � 1.
Other intervals of coupling strengths and predominance

parameters can be handled based on Tables I–IV and typical
plots of the correlation functions in the same manner.

Additional prior information or a full set of the autoregres-
sive model coefficients can be used for a direct estimation of
the long-term DCEs based on their definitions (4) and (5).
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