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We propose a method for the reconstruction of time-delayed feedback systems having unobserved variables
from scalar time series. The method is based on the modified initial condition approach, which allows one to
significantly reduce the number of starting guesses for an unobserved variable with a time delay. The proposed
method is applied to the reconstruction of the Lang-Kobayashi equations, which describe the dynamics of a
single-mode semiconductor laser with external optical feedback. We consider the case where only the time
series of laser intensity is observable and the other two variables of the model are hidden. The dependence of the
quality of the system reconstruction on the accuracy of assignment of starting guesses for unobserved variables
and unknown laser parameters is studied. The method could be used for testing the security of information
transmission in laser-based chaotic communication systems.
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I. INTRODUCTION

The problem of reconstructing mathematical models of
dynamical systems from time series has a long history [1–3].
As the dimension of the system increases, the reconstruc-
tion of its equations becomes more difficult. For example,
for systems with time-delayed feedback, having an infinite-
dimensional phase space, a direct reconstruction using con-
ventional time-delay embedding techniques often fails. For
a successful recovery of the time-delay systems, one has
to use special methods [4–21]. These methods allow one
to reconstruct parameters of time-delay systems using re-
gression analysis [4,5], information-theory approaches [6,7],
projection of the system phase space onto low-dimensional
subspaces [8–12], analysis of extrema in the time series
[13,14], multiple shooting approach [15], nearest neighbor
analysis [16], synchronization [17,18], and other approaches
[19–21]. There are also methods of time-delayed feedback
system reconstruction based on the analysis of a system’s
response to external perturbations [22–25]. The problem of
time-delay system recovery becomes more complicated if a
time-delay system has hidden variables that are inaccessible
for observation. At the same time, such a task is of practical
interest, since the reconstruction of a mathematical model can
be used as a method for indirect measurement of unobserved
variables in this case.

In the present paper, we propose a method for the recon-
struction of a time-delayed feedback system, in which only
one of the three dynamical variables is observable and the
other two variables are hidden, including a hidden variable
with a time delay. The method is applied to the reconstruction
of the Lang-Kobayashi equations [26], which describe the
dynamics of a single-mode semiconductor laser with external
optical feedback. In dimensionless form, the Lang-Kobayashi

equations are written as follows:

ρ̇(t ) = F (t )ρ(t )+ηρ(t − τ ) cos [φ(t ) − φ(t − τ )+�τ ],

ρ(t )φ̇(t ) = αF (t )ρ(t )−ηρ(t −τ ) sin [φ(t ) − φ(t −τ )+�τ ],

T Ḟ (t ) = P − F (t ) − [1 + 2F (t )]ρ2(t ), (1)

where ρ(t ) and φ(t ) are the modulus and phase of the complex
electric field E (t ) = ρ(t )exp[iφ(t )], respectively; the time t is
normalized to the cavity photon lifetime τp(∼1 ps); F (t ) is the
excess carrier number; T is the ratio of the carrier lifetime to
the photon lifetime; P is the dimensionless pumping current
above threshold; τ is the ratio of the external cavity round-
trip time and the photon lifetime; η is the strength of the
feedback; α is the linewidth enhancement factor; and � is the
dimensionless angular frequency of the solitary laser [27,28].
�τ is called the feedback phase and represents a constant
phase shift incurred by the feedback field with respect to the
laser field.

Semiconductor lasers described by the Lang-Kobayashi
equations have been widely studied under change of model
parameters [28–33]. These lasers are of particular interest,
since they can generate wideband chaotic oscillations of very
high dimension [34] and can be used for chaos-based secure
optical communication [35–37]. The security of laser-based
communication systems is explained mainly by the difficulty
for an eavesdropper to recover the transmitter parameters from
a transmitted chaotic signal.

A number of methods have been proposed for estimating
the parameters of a semiconductor laser with optical feedback
from time series [38–43]. Most of these methods are intended
for the recovery of delay time in the optical feedback. For
example, the delay time τ can be approximately estimated
using the autocorrelation function [39,42] or delayed mutual
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information calculated from time series of laser intensity
I (t ) = |E (t )|2 = ρ2(t ) [39]. However, these methods often
give an overestimation of τ . For more accurate reconstruction
of τ , one can use either the method based on the statistical
analysis of extrema in the intensity time series [38] or the
method based on the nearest neighbor analysis [43]. The
problem of estimating the other laser parameters is much less
studied.

Since the parameters T and α are fixed in a real laser and
take close values for lasers of the same type, we assume them
to be known as well as the parameters τ and �. We consider a
typical situation for a physical experiment, in which only the
time series of laser intensity is observable, and the phase φ(t )
of the electric field and the excess carrier number F (t ) are
hidden variables. The problem of reconstructing unobserved
variables of the Lang-Kobayashi equations (1) has not yet
been studied. The control parameters P and η, which can be
easily varied in the laser, are assumed to be unknown. Our
goal is to reconstruct the parameters P and η and unobserved
variables φ(t ) and F (t ) from the intensity time series of the
model (1).

A similar problem was considered recently in Ref. [44],
in which a reservoir computing based algorithm was used
for reconstructing two unobserved dynamical variables from
a time series of only one observed dynamical variable. This
algorithm was successfully applied to reconstruct the model
of an optically injected class B semiconductor laser, which
is described by the same three variables as the model (1),
but these variables do not have any time delay. In contrast
to our approach, the unobserved variables were reconstructed
in Ref. [44] for a simpler case, in which all laser parameters
are assumed to be known. Moreover, the reservoir computing
method needs all three dynamical variables to be available
for a limited period of time for training the algorithm. Our
approach has no such limitations.

The paper is organized as follows. Section II contains the
method description. Using the proposed method, in Sec. III,
we recover the parameters and unobserved variables of the
Lang-Kobayashi equations from periodic, chaotic, and inter-
mittent time series of laser intensity. In Sec. IV we summarize
our results.

II. METHOD DESCRIPTION

In experimental studies of laser dynamics, the time series
of laser intensity I (t ) = ρ2(t ) is usually available for obser-
vation and recording. Since ρ(t ) > 0 by definition, its time
series can be easily calculated from time series of I (t ) as
ρ(t ) = √

I (t ). Let us assume that we have the time series
{ρn}N

n=1 of the variable ρ(t ) generated by Eq. (1), where n =
t/�t is the discrete time, �t is the sampling time, and N is the
total number of samples. For convenience, we introduce the
discrete delay time θ = τ/�t .

Almost all methods dealing with the recovery of hidden
variables are based on the initial condition approach [1]. Its
main idea is to consider the initial conditions for hidden
variables as additional unknown parameters of the model
equations. Then, starting guesses (initial values) are specified
for all unknown parameters. At the next step, the objective
function is introduced, which depends on the model parame-

ters and characterizes the distances between the points of the
model time series and observed time series. By minimizing
the objective function, one can reconstruct both the model
parameters and unobserved variables. Such approach and its
modified variants [45,46], known as the multiple shooting
approach, have been successfully applied for the reconstruc-
tion of systems described by ordinary differential equations
[47,48].

If one of the hidden variables, for example, the variable
φ(t ) in Eq. (1), has a time delay, it is necessary to spec-
ify (θ + 1) starting guesses for this variable. However, the
straightforward application of the initial condition approach
to time-delay systems in most cases does not lead to success
[49]. Only simple periodic regimes and only in the case of
small delay times (θ � 11) can be reconstructed using such
technique. It is explained by the fact that the number of the
objective function parameters increases with the increase of
θ . As a result, the problem of global optimization of the
objective function becomes more difficult, because the basin
of attraction of the global minimum becomes smaller.

To overcome this shortcoming of the method, we take into
account the fact that the arguments of the objective function
are not completely independent, since the neighbor points
of a trajectory of a time-delayed hidden variable should be
strongly correlated. In the case of large delay time, one can
specify only a small portion of the initial conditions for φ(t ),
specifying them only for the points of φ(t ) located far away
in time one from another. However, to simulate the time
series of Eq. (1), it is necessary to have all (θ + 1) starting
guesses for the hidden variable. We propose to use cubic
spline interpolation for obtaining all intermediate values of
initial conditions for φ(t ).

Let us define the starting guesses for the unobserved vari-
ables φ(t ) and F (t ) as {φ̃n}θ+1

n=1 and F̃θ+1, respectively, and the
starting guesses for the unknown parameters P and η as P̃ and
η̃, respectively. The other parameters of Eq. (1) are assumed
to be known. All together, the starting guesses can be written
as a vector

ζ = (φ̃1, . . . , φ̃θ , φ̃θ+1, F̃θ+1, P̃, η̃). (2)

Instead of specifying (θ + 1) values of φ̃n, we specify
only L (L � θ ) φ̃n values, where n = n1, . . . , nL with n1 =
1 and nL = θ + 1. This approach allows us to significantly
reduce the number of starting guesses for the unobserved
variable φ(t ). In general, the instants of time ni are not
necessary equidistant. However, for convenience, we use
equidistant starting guesses φ̃ni with ni = 1 + [ (i−1)θ

L−1 ], where
i = 2, . . . , L − 1 and square brackets denote the integer part
of a number. As a result, the vector (2) can be rewritten as
follows:

ζ = (
φ̃n1 , . . . , φ̃nL , F̃θ+1, P̃, η̃

)
. (3)

The vector (3) consists of K components, which we denote
as ζ1, . . . , ζK . We specify the vector (3) and calculate (θ +
1 − L) intermediate φ̃n values using cubic spline approxima-
tion. Then, we generate the model time series {ρ̂n}N

n=θ+2 by
solving Eq. (1) with the observed {ρn}θ+1

n=1 values as initial
conditions for ρ(t ). The objective function can be calculated
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as follows:

S(ζ) = S(ζ1, . . . , ζK ) =
N∑

n=θ+2

(ρn − ρ̂n)2. (4)

The function (4) characterizes the sum of squares of the
distances between the points of the observed time series and
model time series. To minimize the function S, we can use one
of the classical optimization techniques. In the present paper,
the minimization of S is carried out using the gradient descent
algorithm, which requires the calculation of the gradient,

g =
(

∂S

∂ζ1
, . . . ,

∂S

∂ζK

)
, (5)

and the Hessian matrix,

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

∂2S
∂ζ 2

1

∂2S
∂ζ1∂ζ2

. . . ∂2S
∂ζ1∂ζK

∂2S
∂ζ2∂ζ1

∂2S
∂ζ 2

2
. . . ∂2S

∂ζ2∂ζK

...
...

. . .
...

∂2S
∂ζK ∂ζ1

∂2S
∂ζK ∂ζ2

. . . ∂2S
∂ζ 2

K

⎤
⎥⎥⎥⎥⎥⎥⎦

. (6)

The direct analytic or asymptotic calculation of g and H
is not possible, since explicit dependence of the objective
function S on its arguments is not known and cannot be
expressed explicitly for most types of oscillation regimes.
However, g and H can be estimated numerically. We add a
small perturbation ±δζi sequentially to each ith component
ζi of the vector ζ and generate the perturbed time series by
solving Eq. (1). Then, the ith component gi of the gradient (5)
can be estimated using the following approximate formula:

gi ≈ S(ζ1, . . . , ζi+δζi, . . . , ζK )−S(ζ1, . . . , ζi−δζi, . . . , ζK )

2δζi
.

(7)
In a similar way, each component hi, j of the Hessian matrix

can be numerically estimated by sequentially introducing
perturbations simultaneously to the two components (ζi and
ζ j) of the vector ζ:

hi, j ≈ Si+ j+ − Si+ j− − Si− j+ + Si− j−
4δζiδζ j

,

Si+ j+ = S(ζ1, . . . , ζi + δζi, . . . , ζ j + δζ j, . . . , ζK ),

Si+ j− = S(ζ1, . . . , ζi + δζi, . . . , ζ j − δζ j, . . . , ζK ),

Si− j+ = S(ζ1, . . . , ζi − δζi, . . . , ζ j + δζ j, . . . , ζK ),

Si− j− = S(ζ1, . . . , ζi − δζi, . . . , ζ j − δζ j, . . . , ζK ). (8)

Having the gradient of the objective function and the
Hessian matrix, we can calculate the vector of corrections
�ζ to the starting guesses ζ by solving the system of linear
equations,

H�ζ = −g. (9)

Since the gradient method often gives corrections that are
too large, we check the condition,

S(ζ + �ζ) < S(ζ). (10)

If the inequality (10) does not hold, then we reduce the
correction �ζ by half. This check is repeated up to 20 times.

If, even after this multiple check, the inequality (10) does not
hold, then the algorithm stops. If the inequality (10) holds,
then we adjust the vector of starting guesses ζ by adding
a vector of corrections �ζ to it, and again calculate the
objective function. This procedure is repeated until the change
in the objective function at the next step of algorithm becomes
sufficiently small:

S(ζ) − S(ζ + �ζ) < ε, (11)

where the parameter ε sets the accuracy of calculations. We
set ε = 10−10 throughout the paper.

Similarly to other methods of optimization, the gradient
descent algorithm often finds a local minimum, but not the
global one. Hence, the results of the proposed approach
depend on the choice of starting guesses for both laser param-
eters and unobserved variables. To achieve good accuracy of
the parameters P and η reconstruction, we vary their starting
guesses P̃ and η̃ in the two-dimensional space with the steps
�P and �η, respectively. Note that it is possible to reduce
the investigated part of the parameter plane (P̃, η̃) by using
the charts of dynamical regimes [28] for detecting the ranges
of P and η values, at which the observed regime of oscil-
lations can take place. The oscillation regime can be easily
defined from the observable time series of I (t ). Since we
know the oscillation regime, we limit the interval for changing
the starting guesses F̃θ+1 for the hidden variable F (t ) by
the values at which the observed regime can be realized. Then,
we vary F̃θ+1 in this interval with a certain step. Hence, the
appropriate starting guesses for the parameters P and η and
the variable F (t ) should be searched in a three-dimensional
space.

Since we use a cubic spline for interpolating the initial
conditions for the time-delayed hidden variable φ(t ) on the
delay time interval, it is necessary to specify at least three
starting guesses φ̃n. As a result, the dimension of the param-
eter space greatly increases and the method of reconstruction
fails, because it needs too much computation time for scan-
ning the high-dimensional parameter space. Therefore, we
have to use another approach taking into account that for the
considered regimes, the characteristic period of oscillations is
much greater than the delay time τ . We propose to specify the
starting guesses for φ(t ) using the linear approximation

φ̃(t ) = ω̃t + ϕ̃, (12)

where ω̃ characterizes the straight line slope and ϕ̃ defines
the initial value of φ(t ). We do not search for ω̃ and ϕ̃

values corresponding to the global minimum of the objective
function. Instead, we vary ω̃ in the range [−10/τ,10/τ ] with
the step 0.5/τ and ϕ̃ in the range [−5, 5] with step 1. Some
combinations of ω̃ and ϕ̃ provided good enough quality of
reconstruction for the chosen P̃, η̃, and F̃θ+1.

III. METHOD APPLICATION

To test the proposed technique, we consider the laser
regimes with the parameters T = 1710, α = 5, � =
−0.1962, P = 0.6, and η = 0.015 taken from Refs. [27,28].
Three qualitatively different regimes of oscillations are ob-
served under variation of the delay time τ . Figure 1 shows
the time series of ρ(t ) in system (1) at sampling time
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t

FIG. 1. The time series of ρ(t ) in the system (1) with T = 1710, α = 5, � = −0.1962, P = 0.6, and η = 0.015. (a) Periodic regime at
τ = 60.5. (b) Chaotic regime at τ = 63.5. (c) Intermittent regime at τ = 65.

�t = 0.05 and τ = 60.5, τ = 63.5, and τ = 65. The os-
cillation regime in Fig. 1(a) is periodic, and the regimes
in Figs. 1(b) and 1(c) are chaotic. The transient process is
excluded from the analysis to guarantee the dynamics on
the attractor. At τ = 65, the system exhibits intermittencylike
behavior with long quasiregular epochs separated by epochs
of irregular oscillations. Further throughout the paper we will
call the regime with τ = 65 as intermittent.

A. Reconstruction of periodic regime

First, we apply the method to the system (1) reconstruction
in a periodic regime. In Fig. 2, the periodic time series of
all three dynamical variables of Eq. (1) with τ = 60.5 (θ =
1210) are shown in the background by a dashed black line.
Note that we use only 10 000 points of time series for the
system recovery; i.e., the upper time series in Fig. 2 is a short
fragment of Fig. 1(a). The laser parameters τ , T, α, and � and
the variable ρ(t ) are assumed to be known. Using the starting
guesses P̃ = 0.65, η̃ = 0.016 75, and F̃θ+1 = 0.023, and the
parameters ω̃ = 7/τ , ϕ̃ = 0, and L = 4 we calculate the time
series of variables at the first step of the method application.
These time series are presented in green (gray) in Fig. 2. Their
shape is similar to the shape of the original time series, but the
period of oscillations differs from the period of oscillations in
the original model.

At the last step of the proposed technique, we obtain
the time series shown in orange (light gray) in Fig. 2. For
all variables, the orange (light gray) curves coincide closely
with the dashed black curves. The original and reconstructed
time series are practically indistinguishable in Fig. 2. Thus,
the quality of time series reconstruction is very good. The
parameters P and η are estimated as P̂ = 0.600 001 and η̂ =
0.015 000 4, respectively, with the objective function value

S = 1.8 × 10−9. The relative error of parameter reconstruc-
tion,

δ = |P − P̂|
P

+ |η − η̂|
η

, (13)

takes the small value δ = 2.8 × 10−5.
The quality of the system reconstruction depends on how

successfully the starting guesses for unknown parameters are
chosen. To test the method efficiency depending on the initial
deviations of starting guesses from the true values of P and η,
we reconstruct the system (1) at different values of starting
guesses P̃ and η̃, which differ from the true values by no
more than 20%. The obtained results are presented in Fig. 3
for four different sets of values of F̃θ+1, ω̃, and ϕ̃. The
quality of the parameters P and η recovery is characterized
by δ values, which are shown in different shades of gray in
Fig. 3. The black squares in the (P̃, η̃) plane correspond to
the starting guesses leading to the global minimum of the
objective function (4) with δ → 0. If for the selected values
of starting guesses, the error δ � 0.01, then the corresponding
square in the (P̃, η̃) plane is shaded in gray. Otherwise, the
square is white. The square in the center of the (P̃, η̃) plane
corresponds to the accurate choice of starting guesses at which
the reconstruction is successful. It should be noted that for
each set of starting guesses in Fig. 3, the reconstruction is
carried out at various L varying from 3 to 9. The results shown
in Fig. 3 correspond to L values, which give the smallest S for
each pair of P̃ and η̃ separately; i.e., the different gray squares
in the same (P̃, η̃) plane can correspond to different L.

The bottom right corner of the (P̃, η̃) planes in Fig. 3 is
occupied mainly by white squares. It can be explained by the
fact that for P and η equal to P̃ and η̃ values in this part of
the plane, system (1) exhibits an oscillation regime that is
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FIG. 2. Original periodic time series of dynamical variables of Eq. (1) with τ = 60.5 (dashed black line), time series of variables at the
first step of the algorithm [green (gray) line], and reconstructed time series at the last step of the algorithm [orange (light gray) line].

qualitatively different from the regime observed at P and η

values taken from the center of the (P̃, η̃) plane. If the starting
guesses P̃ and η̃ are chosen from the bottom right corner of
Fig. 3, the algorithm typically does not converge to the regime
observed at P = 0.6 and η = 0.015. Besides the four sets of
F̃θ+1, ω̃, and ϕ̃ values used for the construction of Fig. 3, there
are a lot of other combinations of these parameters, which
ensure good quality of reconstruction.

Each plot in Fig. 3 consists of 25 × 25 squares correspond-
ing to different starting guesses P̃ and η̃. A more detailed vari-
ant of Fig. 3(b) consisting of 121 × 121 squares is presented in

FIG. 3. Dependencies of error δ of parameters P and η recon-
struction in the periodic regime with τ = 60.5 on the choice of
starting guesses P̃ and η̃. (a) F̃θ+1 = 0.022, ω̃ = 7/τ , and ϕ̃ = 0.
(b) F̃θ+1 = 0.023, ω̃ = 7/τ , and ϕ̃ = 0. (c) F̃θ+1 = 0.024, ω̃ = 6/τ ,
and ϕ̃ = 1. (d) F̃θ+1 = 0.025, ω̃ = 7.5/τ , and ϕ̃ = −1.

Fig. 4(a), in which the squares are shown in different shades of
gray if the relative error δ � 0.01. The portion of gray squares
in Fig. 4(a) is 57% of the total number of squares. The black
squares occupy 11% of the total number of squares.

Figure 4(a) shows in gray the starting guesses P̃ and η̃ that
ensure high accuracy of the parameters P and η reconstruction
with an error not exceeding 1%. To illustrate the error values
larger than 0.01, we invert the colors and plot Fig. 4(b). The
white squares in Fig. 4(b) correspond to the starting guesses
leading to successful reconstruction of P and η with δ � 0.01.
Larger errors are shown in different shades of gray. The
portion of gray squares in Fig. 4(b) is 43% of the total number
of squares. The black squares, which correspond to δ � 1,
occupy about 1% of the total number of squares.

B. Reconstruction of chaotic regime

Chaotic regimes are typical for semiconductor lasers [50].
It has been shown that chaos can be used for chaos-based

FIG. 4. Dependencies of error δ of parameters P and η recon-
struction in the periodic regime with τ = 60.5 on the choice of
starting guesses P̃ and η̃. (a) Small errors with δ � 0.01. (b) Large
errors with δ > 0.01.
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FIG. 5. Original chaotic time series of dynamical variables of Eq. (1) with τ = 63.5 (dashed black line), time series of variables at the first
step of the algorithm [green (gray) line], and reconstructed time series at the last step of the algorithm [orange (light gray) line].

secure communication systems [35–37,51–54] and genera-
tion of ultrafast random bit sequences [55,56]. We consider
a chaotic regime, which occurs from the above-considered
periodic regime under variation of τ . Figure 5 shows with a
dashed black line the chaotic time series of all three dynamical
variables of Eq. (1) with τ = 63.5. As in the case of periodic
regime reconstruction, we use only 10 000 points of time
series for the chaotic system recovery; i.e., the upper time
series in Fig. 5 is a short fragment of Fig. 1(b).

With the starting guesses P̃ = 0.65, η̃ = 0.01675, and
F̃θ+1 = 0.01 and the method parameters ω̃ = 3/τ , ϕ̃ = 4,
and L = 3, we calculate the time series of variables at the first
step of the algorithm. These time series are shown in green
(gray) in Fig. 5. At the last step of the algorithm, we obtain
the time series shown in orange (light gray) in Fig. 5. For all
variables, the reconstructed time series coincide closely with
the original time series. The reconstructed parameters P and η

take the values P̂ = 0.600 21 and η̂ = 0.015 002, respectively,
while the objective function takes the value S = 1.7 × 10−7.
The relative error δ = 4.8 × 10−4 is an order of magnitude
larger than in the case of periodic regime reconstruction, but
is still small. The increase of S and δ with respect to the
periodic regime can be explained by the irregularity of the
chaotic regime and the fact that the global minimum of the
objective function (4) is achieved for smaller L, at which
the approximation of initial conditions for φ(t ) is worse than
at larger L. However, the method convergence to the global
minimum of the objective function is better for smaller L
values because of the smaller number of parameters of the
objective function.

For both periodic and chaotic regimes, we consider rela-
tively short time series, whose duration is much smaller than
the Lyapunov time for the chaotic regime. As a result, the
accuracy of time series reconstruction is similar for periodic

and chaotic regimes, and Figs. 2 and 5 are also similar. In the
case of chaotic regime reconstruction from long time series,
the probability of getting into the global minimum of the
objective function decreases.

The dependence of δ on the starting guesses P̃ and η̃ is
presented in Fig. 6. If for the selected values of P̃ and η̃, the
error δ > 0.01, then the corresponding square in the (P̃, η̃)
plane is shown in white. For δ � 0.01, the squares are shown
in different shades of gray. The portion of gray squares in
Fig. 6 is 51% of the total number of squares. The black
squares, which correspond to the starting guesses leading to
the global minimum of the objective function (4) with very
small δ, occupy 20% of the total number of squares. The

FIG. 6. Dependence of error δ of parameters P and η reconstruc-
tion in the chaotic regime with τ = 63.5 on the choice of starting
guesses P̃ and η̃.
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FIG. 7. Original intermittent time series of dynamical variables of Eq. (1) with τ = 65 (dashed black line), time series of variables at the
first step of the algorithm [green (gray) line], and reconstructed time series at the last step of the algorithm [orange (light gray) line].

portion of black squares in the chaotic regime (Fig. 6) is even
larger than in the periodic regime [Fig. 4(a)].

C. Reconstruction of intermittent regime

Finally, we apply the method for the system (1) reconstruc-
tion in a regime of intermittency observed at τ = 65. In this
regime, the epochs of almost periodic oscillations are inter-
rupted by relatively short irregular transitions [Fig. 1(c)]. The
reconstruction of such regime is more difficult, since small
changes in the initial conditions for unobserved variables F (t )
and φ(t ) can significantly change the frequency of switching
between the epochs of quasiregular and irregular oscillations;
i.e., the system dynamics is more sensitive to the values of
F̃θ+1, ω̃, and ϕ̃ than in the above-considered cases of periodic
and chaotic oscillations.

TABLE I. Model parameters τ , T, α, �, P, and η and recon-
structed parameters P̃ and η̃ for Figs. 2, 5, and 7 corresponding to
periodic, chaotic, and intermittent regimes, respectively.

Regime

Parameter Periodic Chaotic Intermittent

τ 60.5 63.5 65
T 1710 1710 1710
α 5 5 5
� –0.1962 –0.1962 –0.1962
P 0.6 0.6 0.6
η 0.015 0.015 0.015
P̂ 0.600001 0.60021 0.60004
η̂ 0.0150004 0.015002 0.014977

Using the starting guesses P̃ = 0.66, η̃ = 0.016 75, and
F̃θ+1 = −0.003, and the method parameters ω̃ = −5.5/τ , ϕ̃ =
5, and L = 8, we calculate the time series of variables at the
first step of the algorithm. These time series are presented in
green (gray) in Fig. 7. At the last step of the algorithm, we ob-
tain the time series shown in orange (light gray) in Fig. 7. The
original and reconstructed time series are close to each other.
The parameters P and η are estimated as P̂ = 0.600 04 and
η̂ = 0.014 977, respectively, with the objective function value
S = 2.01 × 10−4 and the relative error δ = 1.6 × 10−3. The
model and reconstructed parameters for periodic, chaotic, and
intermittent regimes shown in Figs. 2, 5, and 7, respectively,
are presented in Table I.

Figure 8 shows the dependence of the relative error of
parameter reconstruction δ on the starting guesses P̃ and η̃.

FIG. 8. Dependence of error δ of parameters P and η reconstruc-
tion in the regime of intermittency with τ = 65 on the choice of
starting guesses P̃ and η̃.
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The portion of gray squares in Fig. 8 is 13% of the total
number of squares. There are only 14 black squares (0.1%),
starting from which the global minimum of the objective
function is achieved. Thus, the probability of falling into a
global minimum sharply decreased by two orders of mag-
nitude in comparison with the cases of periodic and chaotic
regimes, while the achievement of a local minimum became
less probable in several times. To construct each of Figs. 4,
6, and 8 using GNU FORTRAN 8, LAPACK for least squares and
OPENMP for parallel computing, it took us about 46 h with an
Intel Core i5 4460 CPU.

IV. CONCLUSION

We have proposed a method for the reconstruction of time-
delayed feedback systems with unobserved variables from
scalar time series. The method extends the initial condition
approach to the case of a hidden variable having a time delay.
The initial conditions for unobserved variables are considered
as unknown parameters of the model, but instead of specifying
starting guesses for a time-delayed hidden variable over the
entire interval of the delay time, it is proposed to specify only
a small number of starting guesses at the delay time and obtain
the other initial conditions by interpolating the trajectory with
a cubic spline. This approach allows one to reduce the number
of starting guesses for a time-delayed hidden variable by
several orders of magnitude. As the objective function of the
method, the sum of squares of the distances between the points
of the model time series and observed time series is used.
The unknown model parameters and unobserved variables are
reconstructed by minimizing the objective function. Thus, the
considered approach can be used as a method for indirect
measurement of unobserved variables.

The proposed method is applied to the reconstruction of
the Lang-Kobayashi equations, which describe the dynamics
of a single-mode semiconductor laser with external optical
feedback. We have considered the case where only one of the
three variables is observable and the other two variables of the
model are hidden, including the hidden variable with a time
delay. Such situation is typical for semiconductor lasers, since
most experiments in laser physics are restricted to intensity
measurements. Moreover, it is assumed that we do not know
the laser parameters characterizing the pumping current and

feedback strength, while the other model parameters including
the delay time characterizing the optical feedback are known
or can be reconstructed from time series of laser intensity
using other methods [38–43]. Our approach allows one to
solve a more challenging problem than the method [44]
that accurately reconstructs the unobserved laser variables
in the absence of delay-induced dynamics and under the
assumptions that all laser parameters are known and all three
dynamical variables are available for a limited period of time.

Despite the fact that the method often converges to a local
minimum of the objective function, even in this case it can
give a small error of the parameter reconstruction. We have
studied the dependence of the quality of the model system
reconstruction on the accuracy of assignment of starting
guesses for unknown parameters and unobserved variables. It
is shown that for periodic and chaotic regimes, the region of
starting guesses for unknown parameters, which provides high
quality of reconstruction, is larger than for the intermittent
regime. The recovery of the parameters of semiconductor
lasers gives a possibility of hidden message extraction for
the communication schemes using chaotic signals of these
systems. Since the reconstruction of the laser parameters in
the intermittent regime is more difficult than in the chaotic
regime, a laser-based communication system exploiting the
intermittent regime can be more secure. On the other hand, the
chaotic regime in Fig. 1(b) has a wider power spectrum than
the intermittent regime in Fig. 1(c). Chaotic carrier signals
with a broad power spectrum are known to be good candidates
for laser-based secure communication [51].

Since the considered method gives access to the opti-
cal phase directly by measuring the optical intensity, it is
promising for use in optical information processing [57]. The
proposed method can be applied to the reconstruction of other
time-delay systems with hidden variables from time series.
It is possible to extend the method to the case of a larger
number of hidden variables and unknown parameters in model
equations. However, the success of reconstruction is less
likely with an increase in the number of method parameters.
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