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Abstract—Contributions of the insolation variations together

with different natural and anthropogenic factors to the trends of the

surface air temperatures at different latitudes of the Northern and

Southern Hemispheres on various temporal horizons are estimated

from climate data since the nineteenth century with the use of

empirical autoregressive models. As the natural climate variability

modes, we take into account Atlantic Multidecadal Oscillation, El-

Nino/Southern Oscillation, Interdecadal Pacific Oscillation, Pacific

Decadal Oscillation, and Antarctic Oscillation. According to the

obtained results, the contributions of the insolation variations to the

trends of the surface air temperature are statistically insignificant

on the time intervals under study, i.e. from a decade and longer.

Taking into account the insolation variations in the autoregressive

models weakly alters the estimates of the contributions of the

greenhouse gases and natural variability modes to the temperature

trends: the changes are not more than several per cent. Numeri-

cally, the estimated contributions of the insolation variations can

considerably exceed the respective contributions of the natural

variability modes both on short (less than two decades) and long

(longer than a century) time intervals.

Keywords: Surface temperature trends, Contributions of

insolation variations, Greenhouse gases, Natural variability modes,

Time series analysis, Autoregressive models, Granger causality and

medium-term causality.

1. Introduction

Climate change is one of the key global problems.

An overall increase of the global surface air tem-

perature (GST) is revealed from the observation data

since the nineteenth century, each of the last four

decades has been warmer than any previous decade

(Masson-Delmotte et al., 2021). More than a half of

this increase during last decades is attributed to the

anthropogenic rise of the atmospheric content of the

greenhouse gases (GHGs) (Bindoff et al., 2013). In

the time range from several years to several decades,

natural variability can also essentially enhance or

weaken the global warming. To achieve more ade-

quate predictions of global and regional climate

changes, one needs various quantitative estimates of

the contributions of natural and anthropogenic factors

to such changes. The significant impact of the GHGs

has been inferred from empirical data in many studies

in comparison with various natural factors such as

solar and volcanic activity and ‘‘internal’’ quasi-

cyclic processes (Masson-Delmotte et al., 2021;

Stocker et al., 2013; Santer et al., 2001; Allen et al.,

2006; Kaufmann et al., 2006, 2011; Lockwood, 2008;

Foster & Rahmstorf, 2011; Kopp & Lean, 2011;

Loehle & Scafetta, 2011; Gruza & Rankova, 2012;

Zhou & Tung, 2013; Stern & Kaufmann, 2014;

Stolpe et al., 2017; Mokhov & Smirnov,

2018a, 2018b; Kajtar et al., 2019; McBride et al.,

2021). In particular, Tung and Camp (2008) esti-

mated the amplitude of the global warming related to

the 11-year solar cycle to be about 0.2 K with greater

warming over the polar regions than over the tropics,

and (Lean & Rind, 2008) obtained that the El Niño

phenomena induce the GST changes up to 0.2 �C on

the time scales of several years, considerable volcanic

eruptions–up to 0.3 �C, and solar activity variations–

about 0.1 �C, see also (Lean & Rind, 2009; Mokhov

& Smirnov, 2008). Many works confirm significance

of the GHGs impact on GST and compare it with the

impact of other factors, see e.g. (Tol & de Vos, 1993;

Kaufmann & Stern, 1997; Verdes, 2007; Lean &
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Rind, 2008; Mokhov & Smirnov, 2009; Smirnov &

Mokhov, 2009; Attanasio &Triacca, 2011; Kodra

et al., 2011; Mokhov et al., 2012; Imbers et al., 2013;

Triacca et al., 2013; Mokhov & Smirnov,

2016a, 2016b; Stips et al., 2016; Mokhov & Smirnov,

2022).

The possibility of compensation for the global

warming due to a potentially significant weakening of

the insolation in the future was studied, e.g., in

(Mokhov et al., 2006, 2008; Feulner & Rahmstorf,

2010; Song et al., 2010; Jones et al., 2012; Anet et al.,

2013; Meehl et al., 2013; Maycock et al., 2015;

Arsenovic et al., 2018). Thus, estimates of the climate

change under various scenarios of changes in solar

and volcanic activity and anthropogenic forcings for

the twenty-first century were made in (Mokhov et al.,

2006, 2008) with the use of ensemble simulations

with a global climate model taking into account the

carbon cycle. In particular, the estimates were

obtained for scenarios with extreme weakening of

insolation, comparable to the Maunder and Dalton

minima. The results of ensemble simulations indi-

cated a weak contribution of the solar irradiance

variations to the change in the global surface air

temperature in the twenty-first century in comparison

with the possible anthropogenic forcings. According

to the results of model simulations with the GHG

increase in the atmosphere in (Song et al., 2010), the

effect of multidecadal solar variations on climate

depends on the GHG content. The authors noted a

possibility of an increase of the regional climate

response to the solar irradiance decrease due to a

change in the climate variability modes, though the

warming caused by the GHG increase cannot be

compensated even by a possible large solar

minimum.

To develop the above mentioned studies, it is

necessary to assess the contributions of different

factors to the temperature trends for different areas of

the Earth on different time scales. Thus, in (Mokhov

& Smirnov, 2022) we have used a simple method

based on multivariate autoregressive (AR) models to

estimate the contributions of GHGs and several nat-

ural modes of climate variability (Atlantic

Multidecadal Oscillation–AMO, El Niño/Southern

Oscillation–ENSO, Interdecadal Pacific Oscillation–

IPO, Pacific Decadal Oscillation–PDO, and Antartic

Oscillation–AAO also called Southern Annular

Mode–SAM) to the temperature trends at different

latitudinal belts of the Northern Hemisphere (NH)

and the Southern Hemisphere (SH) on different time

intervals, with a special attention to the intervals of

about half a century and shorter which is principally

important to resolve many questions in climate

science.

As the next step, we investigate to what extent

inclusion of the solar activity variations into the AR

models can change the previously obtained estimates

of the contribution of various factors to the temper-

ature trends on different time intervals in different

regions. The method used here for estimating the

contributions to trends is based on the concept of

stochastic dynamical models and medium-term cau-

sal effects (Mokhov & Smirnov, 2022) similar to the

idea of long-term causality which has been suggested

in (Mokhov & Smirnov, 2009; Smirnov & Mokhov,

2009) and found its further development within the

framework of dynamical causal effects (Smirnov,

2014, 2022). Relation of this method to the well-

known ‘‘fingerprints’’ approach (Allen & Stott, 2003;

Allen & Tett, 1999; Hasselmann, 1993, 1997; Hegerl

& Zwiers, 2011; Hegerl et al., 1996; Huntingford

et al., 2006; Imbers et al., 2014; Jia & DelSole, 2012;

Ribes & Terray, 2013; Ribes et al., 2009) is discussed

in (Mokhov & Smirnov, 2022).

2. Data

For the present analysis, we have used the mean

annual data for the surface air temperature anomalies

T relative to the reference period 1971–2000 at dif-

ferent latitudes as shown in Fig. 1a and b. Different

colors represent tropical (0–30�N), middle (30–60�N),

and Arctic (60–90oN) latitudes of the NH and the

corresponding (0–30�S, 30–60�S, and 60–90�S) lati-

tudes of the SH. These are the land–ocean

temperatures since 1880 till now from the ERSST

(Extended Reconstruction of Sea Surface Tempera-

tures) version 4 (Huang et al., 2014; Liu et al., 2014;

Huang et al., 2015). Due to the deficiencies of the

data for the Antarctic latitudes, the respective esti-

mates possess rather a qualitative character.
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Interannual variations of the solar and GHGs

radiative forcings under the analysis are shown in

(Fig. 1c). These are the data since the nineteenth

century till 2012 used in GISS CMIP5 simulations

(Miller et al., 2014; GISS, 2018). The data used here

for solar radiative forcing variations are discussed in

detail in Sect. 3.6 of (Miller et al., 2014).

Selection of the indices of AMO, ENSO, IPO,

PDO, and AAO (Fig. 1d; PSL, 2022) for the analysis

is determined by the attempt to include a long-term

internal variability associated with Pacific Ocean

(ENSO, IPO, PDO) and Atlantic Ocean (AMO) or

with processes in the antarctic and subantarctic lati-

tudes (AAO) into empirical AR models for the

temperature variations.

The AMO is an ongoing series of long-duration

changes in the sea surface temperature of the North

Atlantic Ocean, with cool and warm phases that may

last for several decades at a time. The detrended

AMO index since 1856 till now from the HadISST1

data set (Enfield et al., 2001; Rayner et al., 2003) is

used here. This index is currently calculated over the

latitudes north of equator. However, for comparisons

to the previous results (Mokhov & Smirnov,

2018a, 2018b, 2022), we have used the previous

version of the index computed for the band 20�N–

70�N (Fig. 1d, cyan). In any case, this index pos-

sesses the characteristic periodicity of about 6

decades.

We have used a slow component of the index

which is represented by the annual-mean values of

the index smoothed with a weighted moving average

filter with a 10-year triangular window. The choice of

the filter is discussed in (Smirnov & Mokhov, 2015)

and used also in (Mokhov & Smirnov,

2018a, 2018b, 2022).

The ENSO is characterized by strong interannual

fluctuations in the sea surface temperature of the

equatorial Pacific Ocean with the associated atmo-

spheric pressure anomalies over the Pacific. The

ENSO index which shows sea surface temperature

anomalies in the region Nino-3,4 (5�S–5�N,

Figure 1
Time series under analysis which represent interannual variations of the following indices: a, b the surface air temperature T at various

latitudes of the NH and the SH (different colors are explained in the legend) and for the entire Earth (GST, grey dashes, shown for the data

visualization purposes only); c the solar activity (black) and GHGs radiative forcing (brown); d indices of the filtered AMO (cyan), ENSO

(blue), IPO (black), PDO (green), and AAO (magenta)
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170–120�W) is used here (Fig. 1d, blue). These data

since 1870 till now are based on the HadISST1 data

set.

The PDO is a key mode of interdecadal climate

variability in the NH over the Pacific related with the

El Niño phenomena. The PDO index based on the

ERSST version 5 (NCEI, 2022) is used here. The data

cover the interval since 1854 till now (Fig. 1d,

green).

The IPO characterizes interdecadal climate vari-

ability over a wide Pacific area in the Northern and

Southern Hemispheres. Its index called TPI (tripole

index) and used here is defined as the difference

between the sea surface temperature of the central

equatorial Pacific (10�S–10�N, 170�E–90�W) and the

mean sea surface temperature of the north-western

(25�N–45�N, 140�E–145�W) and south-western

(50�S–15�S, 150�E–160�W) Pacific (Henley et al.,

2015). The data last since 1870 till now (Fig. 1d,

black).

The AAO is a mode of the atmospheric pressure

field in the SH which is characterized by the differ-

ence of the sea level pressure between 40 and 65oS

(Gong & Wang, 1999). The data for that index used

here cover the period since 1871 till 2012 (Fig. 1d,

magenta).

We have fitted all empirical models below to the

period since 1880 till 2012 where each of the 13

mentioned variables is available.

3. Method

Various contributions to the temperature trends

for each latitudinal zone are estimated on time

intervals of the lengths ranging from 5 to 130 years

with the aid of empirical multivariate AR models

analogously to (Mokhov & Smirnov,

2018a, 2018b, 2022). The approach fits to the

framework of dynamical causal effects (Mokhov &

Smirnov, 2022; Smirnov, 2014; Smirnov & Mokhov,

2009) based on the comparison of dynamics of a

model under alternative conditions. Under that

approach, one considers a coupled stochastic

(Markovian) dynamical system consisting of two

subsystems X and Y. To characterize an effect of

coupling in the direction Y ? X, one performs some

variation in the initial state or parameters of the

subsystem Y and examines the response of the sub-

system X at some future time instant or on some

future time interval in an appropriate sense which

provides the corresponding dynamical causal effect.

Here, the effect of interest is defined as a response of

X (a change of the linear trend of an observable x on

some future time interval) when the dynamics of Y is

changed from an observed time series of y to an

alternative regime where y is equal to a constant

value starting from a certain time instant. This is a

kind of the parameter variation as explained in

(Smirnov, 2022). So, from the dynamical causal

effects viewpoint, the contribution to the trend

belongs to the family ‘‘parameter variation–medium-

term effect’’ (Smirnov, 2022).

In this work, we construct a model for each

temperature anomaly T taking into account the

influences of the GHGs, solar activity, and a natural

variability mode IM in the form

Tn ¼ a0 þ a1Tn�1 þ a2IGHG;n�1 þ a3IM;n�1

þ a4ISun;n�1 þ nn ð1Þ

Here, n is discrete time (years), nn is white noise

(it corresponds to a variability with time scales of

about a year and less), IGHG is the GHGs radiative

forcing, IM is the index of a climate mode, and ISun is

the solar radiative forcing. The index IM is either

IAMO, or IENSO, or IIPO, or IPDO, or IAAO. Only one of

the natural variability indices IM is included into the

model (1) to keep it as small as possible and so retain

reasonable statistical properties of the estimates. The

evolution equations for IGHG, IM , and ISun are not

constructed, since these factors are considered here as

external drivers. The AR Eq. (1) is fitted to the entire

observation interval via the ordinary least-squares

technique, i.e. via minimization of the sum SðaÞ ¼
P

n
n2n of squared errors nn ¼ Tn � a0 � a1Tn�1 �

a2IGHG;n�1 � a3IM;n�1 � a4ISun;n�1 over the parameter

vector a. The least-squares estimates â0; â1; â2; â3; â4

are obtained along with the estimates of their stan-

dard deviations. The latters are available from the

same regression estimation under the assumption of a

stationary white finite-variance noise and equal to the

mean squared residual error multiplied by the inverse

of ATA where A is the matrix whose columns are

time series of the five regressors. Significance level at

I. I. Mokhov and D. A. Smirnov Pure Appl. Geophys.



which the null hypothesis of a zero coefficient is

rejected is estimated as the inverse of the standard

Gaussian cumulative distribution function evaluated

at the estimated value of a coefficient divided by its

estimated standard error. The residual errors corre-

sponding to the least-squares estimate

â ¼ ðâ0; â1; â2; â3; â4Þ are denoted n̂n. Agreement of

the residuals with the white noise assumption is

illustrated in Fig. 2 which presents the residuals

versus discrete time n (upper panels) and their

empirical autocorrelation functions with 95% confi-

dence bands (lower panels). For the model (1) with

AMO illustrated in Fig. 2a only the correlation at the

lag of 4 years is significant at the pointwise level of

p\ 0.05 (more precisely, at p = 0.15). Taking into

account Bonferroni multiple test correction, the ACF

is significantly nonzero only at p = 0.06. Moreover,

this ACF is about 0.2, i.e. still quite small. So, the

procedure used here for the estimation of the model

coefficient errors is justified. An attempt to include a

more complex correlation structure of the residuals

into the estimation procedure is not expected to

change anything and to improve reliability of the

results. Still, it can be performed at the future steps to

check whether such details can lead to any changes of

the estimation results. The residuals properties are

overall similar for the models (1) with the other cli-

matic modes, in particular, the results for ENSO are

shown in Fig. 2b.

To determine the contributions of the anthro-

pogenic and natural factors to the linear temperature

trends for each of the six latitudinal zones over a time

interval Lstart; Lend½ � with the length L ¼ Lend � Lstart,

we analyzed time realizations of the AR model (1)

with the estimated parameters â in hypothetical

regimes for the natural variability modes or the GHGs

atmospheric content: instead of the observed time

series for a given factor (say, for the solar radiative

forcing ISun;n, n ¼ 1880; :::; 2012) we ‘‘fed’’ the

model (1) with an artificially generated time series
~ISun;n at its input. The initial value of T and the entire

time series of the other two factors (i.e. of IGHG;n and

IM;n,n ¼ 1880; :::; 2012, if the contribution of ISun;n

is estimated) at the model input were taken to equal

the actually observed values. The time series of the

‘‘external noise’’ nn at the model input was taken to

Figure 2
Model residuals (upper panels) and their empirical autocorrelation functions (lower panels) with 95% confidence bands estimated as ACF

�2=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � lag

p
where N ¼ 132 is the number of residuals. Both resilduals and ACFs are shown for the empirical models (1) where T is the

temperature of the northern middle latitudes and the climatic mode is AMO (a) or ENSO (b)

Contribution of Solar Irradiance Variations



be the time series of n̂n. The contribution of each

factor to the trend was estimated as the difference

between the trends of the actually observed values Tn

and the model values ~Tn obtained under the alterna-

tive condition (i.e. under the input signal ~ISun;n in our

example). It means that the model (1) is assumed to

be applicable under that alternative condition. In this

work, we take the hypothetical behavior to be a

constant value ~ISun;n ¼ const or ~IGHG;n ¼ const or
~IM;n ¼ const (i.e. ‘‘absence of any dynamics’’) after

some starting time instant, and take an unchanged

behavior ~ISun;n ¼ ISun;n or IGHG;n ¼ ~IGHG;n or ~IM;n ¼
IM;n before that time instant. For any mode IM , that

constant level is close to the empirical mean of IM

over the entire interval 1880–2012 and the starting

time instant is the first instant n when the value IM;n

gets close to that constant. For IGHG or ISun which

exhibit long-term trends over the entire period under

study, the constant level is the value of IGHG or ISun in

the very beginning of the time series and so the

starting time instant of the changed behavior for any

of these two factors is 1880.

The difference of the two trends above is equal to

the linear trend of the temperature difference dTn ¼
Tn � ~Tn and the latter is estimated below. This trend

on each time interval Lstart; Lend½ � (with L ranging

from 5 to 130 years) is represented by a coefficient

adT of the standard linear regression dTn ¼ adT n þ fn

obtained via the ordinary least-squares technique. In

this way, we have estimated the contributions to the

temperature trends from the five factors denoting

such contributions as CGHG (from GHGs), CSun (from

solar radiative forcing), CAMO (from AMO), CENSO

(from ENSO), CIPO (from IPO), and CAAO (from

AAO). We have estimated also the actual trend of T,

i.e. the coefficient aT in the regression equation

Tn ¼ aT n þ fn. To assess the relative role of each

factor, we have used the corresponding ratios, i.e.

CGHG=aT , CSun=aT , CAMO=aT , CSun=CGHG, and

CSun=CAMO for the model (1) with GHGs, solar

activity, and AMO. Everything is analogous for the

models with ENSO, IPO, PDO, and AAO instead of

AMO.

The selection of the simplest form of the possible

AR models (linear, unit-lag, with a single mode IM)

and the noise realization n̂n to generate the hypo-

thetical alternative behavior are justified in (Mokhov

& Smirnov, 2022) as a reasonable starting step to

assess the contributions to the trends from empirical

data without any presumed theoretical hypotheses

about the climate processes under study. Further

studies with more complicated nonlinear empirical

models, e.g. such as those in (Mukhin et al., 2021;

Seleznev et al., 2019) are surely possible. Concerning

the model consistency check, all models (1) here

agree well with the observed dynamics which is

justified analogously to (Mokhov & Smirnov,

2022).The relative standard deviation of a trend

contribution estimate appears equal to the relative

standard deviation of the respective AR coupling

coefficient estimate. So, the uncertainties in the trend

contribution estimates can be easily obtained from

the model fitting results (see Table 1). As a further

check for significance of the solar activity variations

contribution, we have compared each AR model (1)

and its trend contribution estimates to the respective

estimates for the model without solar activity

Tn ¼ a0 þ a1Tn�1 þ a2IGHG;n�1 þ a3IM;n�1 þ nn ð2Þ

The AR models (2) were used for the estimation

in (Mokhov & Smirnov, 2018a, 2018b, 2022).

For an additional illustration of the coupling

analysis performed in this work, we have estimated

the widely known Granger causality (Granger,

1963, 1969) in terms of the mean-squared prediction

improvements (PIs), its other examples with climate

data are given e.g. in (Attanasio & Triacca, 2011;

Mokhov & Smirnov, 2008, 2009, 2016a, 2016b,

2017; Mokhov et al., 2011). To estimate the coupling

x ! T from a process x to a process T given several

other processes y1; :::; yK , one minimizes the mean-

squared errors of the equation for T in the ðK þ 2Þ-
variate AR model

r2in ¼ 1

N � P

XN

n¼N�P

Tn � a0 �
XP

i¼1

aiTn�i

 

�
XK

k¼1

XP

i¼1

ck;iyn�i �
XP

i¼1

bixn�i

!2 ð3Þ

and the similar equation in the respective ðK þ 1Þ-
variate AR model with x excluded

I. I. Mokhov and D. A. Smirnov Pure Appl. Geophys.
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r2ex ¼
1

N � P

XN

n¼N�P

Tn � a0 �
XP

i¼1

aiTn�i

 

�
XK

k¼1

XP

i¼1

ck;iyn�i

!2 ð4Þ

and computes e.g. the relative PI in the form

PIx!T y1;:::;yKj ¼ r2ex�r2in
r2ex

� 100 %. The AR order P is

often selected with the use of the Schwarz informa-

tion criterion (Schwarz, 1978). Nonzero PIs indicates

that the coupling x ! T is present. Statistical sig-

nificance of this conclusion is often checked with the

Fisher F-test. We have used P = 1 to present the

Granger causality estimates for the same AR models

as those used for the trend contributions estimation.

Slightly greater values of P give similar results. The

causality from GHGs to each of the six T’s is pre-

sented below as PIGHG!T for the bivariate AR models

(3), i.e. with K = 0 and no other factors apart from

GHGs, for brevity. The results are similar for greater

Figure 3
The temperature trends at different latitudes (see the legend) and the respective contributions of different factors within a 10-yr moving

window versus the window end point: a the trends; b contributions of the solar activity according to the AR-models (1) accounting for ENSO;

c contributions of ENSO; d contributions of the solar activity relative to the summed solar and ENSO contributions; e contributions of GHGs;

f contributions of the solar activity relative to the summed solar and GHGs contributions

I. I. Mokhov and D. A. Smirnov Pure Appl. Geophys.



values of K. The causality from the solar radiative

forcing is presented for the trivariate AR models (3)

with GHGs and solar activity, i.e. PISun!T GHGj and

K = 1. The causality from each natural mode M is

presented for the full four-variate AR models (3)

coinciding with the AR models (1), i.e. PIM!T GHG;Sunj
and K = 2.

4. Results

4.1. Relative Contributions of Solar Activity

to Trends on Short Time Scales

After fitting the AR models (1) to the data under

study, we have estimated contributions of GHGs,

solar activity, and natural modes to the temperature

trends. Since relative roles of the natural modes and

solar activity are of the main interest in this work, let

us start with an illustration of the typical results on

short time scales of about 10 years. Figure 3 shows

the temperature trends at different latitudes within

10-yr time windows (Fig. 3a), the contributions of

solar activity (Fig. 3b), ENSO (Fig. 3c), and GHGs

(Fig. 3e), and the values of the solar activity contri-

butions relative to those of ENSO (Fig. 3d) and

GHGs (Fig. 3f).

Overall, the 10-yr temperature trends fluctuate

with the amplitude of about 0.5 K/decade at the

tropical and the middle latitudes and about 1 K/

decade at the polar latitudes. The solar activity

contributions fluctuate (see the solid lines in Fig. 4

for a detailed illustration)with the amplitude of about

Figure 4
The contributions of the solar activity variations (solid lines) and ENSO (dashed lines) to the temperature trends within a 10-yrmoving

window. Different panels correspond to different latitudes

Contribution of Solar Irradiance Variations



0.06 K/decade at the polar latitudes, 0.04 K/decade at

the tropical latitudes, 0.01 K/decade at the northern

middle latitudes, and 0.003 K/decade for the southern

middle latitudes. So, the solar activity contributions

are relatively small at all latitudes. The ENSO

contributions vary (the dashed lines in Fig. 4) with

the amplitude of about 0.15 K/decade at the polar

latitudes, 0.06 K/decade at the tropical and the

northern middle latitudes, and 0.01 K/decade at the

southern middle latitudes. So, the contribution of

ENSO is greater in amplitude than that of the solar

activity, but still quite moderate. Figure 4 shows that

both contributions are most close to each other at the

tropical latitudes, while the ENSO contribution

essentially dominates at the extratropical latitudes.

However, the ratio of the solar activity contribution to

that of ENSO can be quite different on different time

intervals and sometimes much greater than unity,

because the intervals of close-to-zero values are

different for the solar activity and the ENSO contri-

butions. For example, the solar activity contribution

equals 0.02 K/decade on the interval [1997, 2006],

where the ENSO contribution is 0.0006 K/decade.

Both the solar activity and the ENSO contribu-

tions are less than the GHGs contributions (Fig. 3e)

even at the short time scale under consideration,

except for the Antarctic region where the GHGs

contribution is even less in amplitude than the two

other contributions. Still, the solar activity contribu-

tion is not negligibly small in comparison with the

significant GHGs contributions (Fig. 3f). We note

that the sum of the contributions of the three factors

included into the model (1) is usually not equal to the

temperature trend itself. According to the model (1),

the difference is due to the contribution of the noise

nn, examples of such noise realizations are shown in

Fig. 2.

As for the longer time scales, our analysis within

the time windows with Lend = 2012 and different

lengths shows that both the ENSO and the solar

activity contributions are much weaker than the

GHGs contribution for time windows longer than

10 years. However, the role of the solar activity

relative to the ENSO is dominating for the time

windows longer than 80 years and at least compara-

ble for shorter time scales. The corresponding results

are presented in more detail in Sect. 4.3.

The results are similar for the AR models (1) with

any other natural mode instead of the ENSO. Hence,

the solar activity contribution may seem potentially

significant at the first glance. Indeed, the solar

activity variations were estimated as a sufficiently

important factor in many previous studies where

different data versions on different time intervals

were analyzed with different methods. Below, we

check this preliminary conclusion via assessing

statistical significance of the coupling coefficient

estimates and comparing of the AR models (1) and

(2), i.e. with and without the solar activity variations.

4.2. AR Model Coefficients

Table 1 presents estimates of the two coefficients

in the AR models (1) (upper number in each cell) and

the AR models (2) (lower number in parentheses in

each cell) which characterize sensitivity of the

temperature anomalies T to the changes of the GHGs

radiative forcing IGHG and the natural variability

indices IM for the entire period since 1880 till 2012.

One can see that almost all coefficients are the same

for the models (1) and (2). Only some of them

slightly decrease in absolute value (by one decimal

digit in the lowest order) when the solar activity is

taken into account, while the others remain

unchanged under the accuracy used in Table 1. It

means that the account of the solar activity variations

practically does not change the estimates of the

temperature sensitivities to the GHGs and the natural

variability modes. The latter were discussed in

(Mokhov & Smirnov, 2022) and are summarized

below along with the new results for the temperature

sensitivities to the insolation variations. Note that

other choices of the estimation period are possible,

e.g. the periods before 1950 and after 1950 would

give two different sets of AR model coefficients.

However, here we perform the analysis in a mini-

malistic spirit focusing on the question of

contributions to the trend for the simplest possible

model (1) with constant parameters. Using different

estimation periods would correspond to the model

with time-varying coefficient which is a more

sophisticated case. Moreover, it can lead also to

worse statistical reliability of the results due to the

reduction of the data amount. It would be resonable to

I. I. Mokhov and D. A. Smirnov Pure Appl. Geophys.
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check such more complex models at the next steps of

the investigation. The present study can then be used

as a reference point to compare the results of the

more complex models.

In going from an AR model (2) without the solar

radiative forcing to an AR model (1), the coefficient

a2 representing the impact of GHGs changes by 10 to

12% for the Antarctic latitudes and by 3% for the

Arctic latitudes and remains the same for all other

latitudes. Just to repeat the previous result (Mokhov

& Smirnov, 2022), it is always significant at least at

the level of p\0:05, i.e. its estimate exceeds twice

the standard error estimate, and the largest value a2 ¼
0:35 K=ðWm�2Þ is achieved for the Arctic latitudes.

According to the estimates of a3 for the AMO, it

does not change at all between the models (1) and (2),

i.e. insensitive to the account of the solar radiative

forcing in the model. We just repeat that the impact

of AMO is essential only in the NH with the largest

(and significant at the level of p\0:05) value of a3 ¼
0:7 for the Arctic latitudes.

Similalry, the estimates of a3 do not change

between the models (1) and (2) for ENSO, PDO, and

AAO. We again repeat that the impact of ENSO is

strongest at the polar latitudes with significance

levels of p ¼ 0:1 for the Antarctic and p ¼ 0:13 for

the Arctic. For the PDO, the estimates of a3 are not

significant even at p ¼ 0:2. For the AAO, that

estimate is significant at the tropical latitudes of NH

(p ¼ 0:06) and insignificant at the others.

The estimated coefficient a3 for the IPO changes

between the models (1) and (2) by 12 to 16% for the

polar latitudes and remains unchanged for the other

latitudes. We here repeat that its estimates are overall

insignificant. It is interesting that multiple above

mentioned insignificant estimates are not affected by

the account of the solar radiative forcing in the

models.

Table 2 presents the estimates of the solar activity

coupling coefficient a4 in the AR models (1) which

characterizes the sensitivity of the temperatures to the

solar activity variations. The values of a3 are shown

just for convenience of comparison of the confidence

intervals, i.e. of statistical significance of the nonzero

coefficients for the solar activity variations and the

natural variability modes. One can see that the values

of a4 are always not significant even at the level of
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p\ 0.3, i.e. they are always less than the standard

error estimate (less than ‘‘1r’’) and often much less.

The largest ratio of the a4 estimate to its standard

error is obtained for the tropical latitudes of the SH

(a4 is about 0.8), while the next large values are

obtained for the NH tropical latitudes, Antarctic and

Arctic latitudes (about 0.4–0.5). For the NH middle

latitudes, we get a4 about 0.2 and even less a4 of

about 0.06 for the SH middle latitudes. Hence, all

estimates of the solar activity contributions to the

temperature trends presented in Sect. 4.1 (above) and

4.3 (below) are also non-significant and can be

provided with the corresponding relative values of the

confidence intervals. If one still tries to extract ‘‘most

considerable’’ numerical estimates, the solar activity

contributions to the tropical temperature trends

should be considered first, while the estimates for

the polar latitudes are even less reliable and those for

the middle latitudes should be neglected.

Table 3 presents the estimates of the Granger

causality in terms of the mean-squared PI, just to give

an alternative numerical expression of the different

influences on the temperatures. These estimates

confirm the strongest role of the GHGs at all latitudes

with its relatively smaller PIs at the southern middle

and polar latitudes, an insigninficant role of the solar

radiative forcing at all latitudes, a strong role of AMO

in the NH, a quite notable role of ENSO in the polar

regions, a quite notable role of AAO in the northern

tropics and its somewhat weaker role in the southern

tropics, a weak role of IPO in Arctic, an absent role of

PDO at all latitudes, and an absent influence of all

factors (except for the GHGs) in the southern middle

latitudes.

4.3. Contributions of Various Factors

to the Temperature Trends

As a consequence of the above independence of

the coefficients a2 and a3 on the inclusion or non-

inclusion of the solar activity into the AR models

(Table 1), the estimates of the contributions of the

GHGs and natural variability modes to the temper-

ature trends do not depend on the account of the solar

activity as well, see Tables 4 and 5 where those two

contributions are shown for the time windows of the

lengths ranging from 10 to 130 years. The lower
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numbers in each cell (in parentheses) correspond to

the AR models (2), and they are quite close to the

upper numbers corresponding to the AR models (1).

The main points can be summarized as follows.

The estimates of the GHGs contribution CGHG=aT

are most strongly influenced by the account of the

solar activity for the Antarctic latitudes (Table 4).

Namely, inclusion of the solar activity into the AR

model leads to the relative decrease of CGHG=aT by

about 10%. For the tropical latitudes of the SH, this

decrease is about 4–6%. It is about 2–4% for the

tropical and polar latitudes of the NH and about 1%

for the middle latitudes of both hemispheres.

Table 5 presents the relative contributions of the

five climatic modes for the AR models (1) and (2).

For that finite accuracy, the ratios CAMO=aT ,

CENSO=aT , CIPO=aT , CPDO=aT , and CAAO=aT either

remain unchanged or decrease by one decimal digit

after the inclusion of the solar activity into the AR

model. Only two numbers change in two decimal

digits. All these estimates are affected by 10% or less

under the account of the solar activity.

Table 6 presents the relative contributions of the

solar activity to the temperature trends. The numer-

ical values (upper row of numbers in each cell) are

mainly quite small. They are less than 0.05 except for

the Antarctic latitudes,where they exceed 0.1 and

reach 0.2 for the long time windows. These values for

the tropical latitudes (about 0.05) are greater than

those for the Arctic and middle latitudes (about 0.01

to 0.02). It is worth to note the non-monotone

dependence on the window length: the weakest

contributions are observed for the time windows of

the length of 50 years, while the larger values for the

longer windows are explained by the long-term trend

in the time series of solar activity variations which

leads to the dominance of the solar activity contri-

butions over natural variability modes at large

enough time scale. One can also notice that the solar

activity contributions to the temperature trends at

different latitudes (except for the Antarctic ones) are

negative on shorter time intervals of the two or three

decades, while they are positive on the intervals of

half a century and longer. Still, all these observations

correspond to quite weakly significant estimates of

the solar activity influence on the temperature trends.

To be cautious, one must conclude that a reliable
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detection of the solar activity contributions to tem-

perature trends from the data at hand is not possible.

So, the previous estimates of the contributions of the

GHGs and natural variability modes (Mokhov &

Smirnov, 2022) remain almost unchanged under the

account of the solar activity and so their reliability is

confirmed.

5. Conclusions

Quantitative estimates of the contribution of

insolation variations to surface air temperature trends

in tropical, middle and polar latitudes over time

intervals from a decade to a century have been

obtained with the use of multivariate AR models and

the respective short-term (Granger) and long-term

causality characteristics based on observational data

since the nineteenth century. This is done with min-

imal assumptions about the data used and the

empirical models fitted to the data. According to the

presented results, the contributions of the insolation

variations to the trends of the surface air temperatures

are statistically insignificant at time intervals longer

than two decades. Sensitivity of the temperature

variations to the insolation interdecadal variations is

less statistically significant than this sensitivity to the

other factors including anthropogenic influences and

natural variability modes.

According to the numerical values of the obtained

estimates, the contributions of the insolation varia-

tions to the temperature trends at different latitudes

for some time intervals can considerably exceed the

respective estimates of the contributions of the nat-

ural variability modes. It is found that the

contributions of the insolation variations to the tem-

perature trends can reach 7% at the tropical latitudes

and 10% at the Antarctic latitudes with the smallest

values at the middle latitudes. It is noted that for the

most recent, relatively short time intervals (within

three decades), these contributions at different lati-

tudes (except for the Antarctic ones) is negative,

while for half a century and longer time intervals they

are positive. The account of the insolation variations

in the AR models weakly (by several per cent or less)

changes the estimates of the contributions of the

GHGs and natural variability modes to the tempera-

ture trends at different latitudes.
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