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Abstract Constructing electronic models of neurons
has several goals. First, it aims to reproduce the dynam-
ics of biological neurons and their networks (simu-
lation). Second, the resulting networks can be used
for neuroprosthetics. In the brain, most neurons them-
selves are in a non-oscillatorymode, and brain rhythms
arise due to their collective dynamics. In this case,
very small ensembles of neurons can act as rhythm
generators. Such ensembles can be constructed and
studied within the framework of a electronic experi-
ment. In this work, a circuit of several (from eight to
fifteen) FitzHugh–Nagumo electronic oscillators with
electronic synapses (sigmoid coupling function and
delay were implemented) was constructed. Oscillatory
modes were realized in this circuit as a result of col-
lective dynamics, with their frequency being controlled
with changing a delay in the synapse and/or altering the
number of elements in the ring. The oscillatory modes
coexist with a stable fixed point and may be activated
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by means of short time external driving. Thus, the pre-
sented generator is capable of well reproducing both
a slowly gradual change in the main oscillation fre-
quency and its sharp change, with both of these phe-
nomena well diagnosed from time series of brain local
field potentials at limbic epilepsy.

Keywords FitzHugh–Nagumo neuron · Electronic
ring generator · Sigmoid coupling · Time delayed
systems ·Tunable frequency ·Central rhythmgenerator

1 Introduction

Construction of models reproducing behavior of real
neurons and their ensembles is of both scientific and
technical interest. In particular, the concept of a cen-
tral rhythm generator is actively developing in robotics
[1–3]. In particular, the main rhythm is necessary for
realization of simple movements which are character-
istic of living organisms. When modeling pathologi-
cal regimes of brain functioning, including epilepsy,
the mechanisms of basic rhythm generation is also of
a high importance. Here, we attempt to describe the
occurrence and evolution of the main oscillation fre-
quency in the hippocampus at limbic epilepsy (see the
modern epilepsy classification in [4]) using a small
number of electronic oscillators constructed fromphys-
iological reasons and connected in a ring. The main
biological basis we use was obtained from rat mod-
els [5,6]. Compared with purely mathematical model-
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ing, electronic implementation allows us to approach
a biological experiment closer by a number of crite-
ria: specifics of measurements, non-stationarity of the
circuit parameters, non-identity of circuit elements. At
the same time, models using microcontrollers such as
Arduino [7] are another (next to SPICE simulators)
intermediate link between fully analog modeling and
numerical solution of equations.

Earlier in the paper [8], a hardware implementa-
tion of a simplified FitzHugh–Nagumo neuron with
one bifurcation parameter was proposed. The SPICE–
model consisting of 14 simplified FitzHugh–Nagumo
neurons connected with a simple linear coupling was
constructed in [9]. In [10], it was demonstrated that
such SPICE–model successfully scales and reproduces
the inherent variability of biological systems, includ-
ing variety in the number of elements and in the cou-
pling architecture. As a result, eight connectivity con-
figurations of 14 simplified FitzHugh–Nagumo neu-
rons were implemented [11]. The radio engineering
experiment showed that the implemented circuits are
able to demonstrate the desired behavior—long-term
quasi-regular transients reproducing various charac-
teristics of epileptiform activity at absence epilepsy,
following what had been previously shown in mathe-
matical modeling [12,13]. Further, a circuit of a com-
plete FitzHugh–Nagumo neuron with two bifurcation
parameters a and b and a circuit of a chemical synapse
mathematically representing a sigmoid function were
developed in [14]. In [15] it was shown that in two
hardware complete FitzHugh–Nagumo neurons con-
nected with a sigmoid couplings, different scenarios of
oscillation occurrence were possible, including saddle-
node cycle bifurcation leading to appearance of highly
nonlinear limit cycles of large amplitude. Long-living
transients were detected near these bifurcations.

The delay naturally occurs in the synapse when a
signal is transmitted between the axon and the dendrite
as a result of the finiteness of the ion transport speed. It
may have a significant impact on the network dynamics
[16]. Theoretically, impact of the delay on the dynam-
ics of two coupled FitzHugh–Nagumo neurons with
chemical synapse was studied in [17]. So, the model
used previously was improved by adding a delay in the
coupling [18]:

εu̇i (t) = ui (t) − ci u
3
i (t) − vi (t)

+
∑

j �=i

ki j h
(
u j (t − τ)

)
,

v̇i (t) = ui (t) + ai − bivi (t),

h(u) = 1 + tanh(u)

2
, (1)

where u is a dimensionless variable corresponding to
the transmembrane potential in a biological excitable
tissue; v is a dimensionless variable similar to slow
recovery current; t is dimensionless time; ε is an inertia
parameter; a and b are dimensionless parameters that
control the neuron own dynamics; c is an integration
constant (usually c = 1/3); k is a coupling coefficient,
while the coupling is implemented in the form of an
offset hyperbolic tangent h; τ is time delay.

Four variants of tunable analog delay were com-
pared in [18]. The standard “DELAY” component from
the National Instruments Multisim electronic circuit
simulator was used as a reference.We also considered a
first-order all-pass filter with a potentiometer, a Bessel
filter with a potentiometer, and sequentially connected
Bessel filters, each of which simulates a fixed delay
time. As a result, it was decided to focus on one Bessel
filter with a potentiometer as a preferable implementa-
tion. The SPICE–circuit of a ring generator consisting
of 20 neurons with improved synapses was created in
[18]. The key feature of this generator was that its fre-
quency could be changed in three different ways: by
changing the delay time (smooth tuning is available in
a wide range), by changing the number of elements
in the network (frequency tuning is carried out step-
wise), by varying the frequency of an external driving
(under conditions of multistability, coexisting regimes
with multiple frequencies can be realized).

The purpose of this work is to construct the hard-
ware implementation of a ring generator, the theoretical
study of which was performed in [18].

2 Analog generator

A circuit diagram of the complete FitzHugh–Nagumo
electronic oscillator with synapse is shown in Fig. 1.
In contrast to the mathematical model, see Eq. (1),
the parameters of the electronic circuit have dimen-
sions. Therefore, there are two time-scale parameters:
E = R11C1 and T = R7C2. The parameter ε from
Eq. (1) is calculated as ε = E/T . The parameters
c = (R3 + R4)/R3 and b = R6/

(
R5 + Rb · B

100%

)

(to set B percentage of the potentiometer Rb was used)
are scaling factors at U and V respectively, which are
dimensional analogs of two variables of the mathemat-
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Fig. 1 Circuit diagram of a single complete FitzHugh–Nagumo
neuron with a synapse. Parameters of the neuron: R1 = R3 =
1 k�, R2 = 9 k�, R4 = 2.333 k�, R5 = 51 k�, potentiometer
Rb = 4.7 M�, R6 = R7 = R8 = R9 = R11 = R12 = R13 =
100 k�, R10 = 5 k�, potentiometer Ra = 1 k�, R14 − R18
depends on coupling strength k, C1 = 1 nF, C2 = 0.01 uF, U1,
U2 are multipliers of the type AD633, and U3, U4 are ampli-
fiers of the type AD822. Parameters of the delay in the form
of a Bessel filter with potentiometers: R30 = R31 = 50 k�,

C3 = 5.6 nF, C4 = 3.9 nF, U5A is an amplifier of the
type LM358AD. Paramters of the synapse (sigmoid function):
R19 = R29 = 300 k�, R20 = 0.51 k�, R21 = R23 = 1 k�,
R22 = R24 = R28 = 10 k�, R25 = R26 = 5.1 k�,
R27 = 2 k�, Q1, Q2 are bipolar junction transistors of the
type 2N1711, U6 is an amplifier of the type NE5532AI. There
are three outputs in the circuit: U and V (both used for measure-
ment and corresponding to the model u and v variables) and Us,
corresponding to the synaptic output h(u)

ical model u and v in the Eq. (1). Coupling coefficient
k is calculated as k = R13/RIN, where RIN is the
nominal value for one of the input resistors from R14
to R18. The parameter a is set by the voltage at the
“+” clamp of the amplifier U4B. The total voltage drop
on a series-connected resistor R10 = 5 k� together
with a potentiometer Ra = 1 k� is Ua = 15 V, i. e.
the voltage drop on the entire potentiometer is 2.5 V.
In particular, if the potentiometer is set to A = 0%,
the voltage 2.5 V is set to “+” input of U4B, and if
the potentiometer is set to A = 100%, this voltage
is zero. So, the parameter a can be calculated using

A measured in percents of potentiometer resistance as
follows: a = 2.5 · (

1 − A
100%

)
.

The circuit for one neuron contains two analog mul-
tipliers U1 and U2 and two dual operational amplifiers
U3 and U4. Elements U3B and U4A are integrators.
They allow to obtain U and V , respectively. Element
U3A is an inverter. It allows to obtain −U . Element
U4B is a repeater. The amplifiers U1 and U2 perform
the cubic transformation according to the formula (1).

The chemical synapse circuit consists of two parts: a
circuit simulating an analog delay, and a circuit imple-
menting a sigmoid function (electronic implementa-
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Fig. 2 Photograph of the
hardware implementation of
a neuron-like activity
electronic ring generator
with a tunable frequency.
There are 15 neurons
N1–N15 with synapses in
three rows, five in a row.
The pontentiometer used to
set the value of aring is
located at the left bottom of
the photograph

tion of a hyperbolic tangent). The first circuit contains
a second-order Bessel filter based on the operational
amplifier U5A. The second circuit contains a dual oper-
ational amplifier U6 and two bipolar transistors Q1 and
Q2. The inverting amplifier U6A has a gain of 0.05, the
differential amplifier U6B has a gain of 0.5.

The physical implementation of the ring generator
consists of 15 neurons with synapses N1–N15, see
Fig. 2. All neurons were connected in a ring unidi-
rectionally, see Fig. 3. The neurons are set to be in a
subthreshold mode with parameters aring = 1.1 and
bring = 0.09, in this mode they may respond by a pulse
to an external pulse, but do not generate any oscilla-
tory activity by themselves. The external input is in an
oscillatory mode with parameters ainput = 0.875 and
binput = 0.08. Driving from it is provided, if neces-
sary, by pressing the button (bottom right in the Fig. 2).
The coupling strength inside the ring and the coupling
strength of external input were taken to be the same
kring = kinput = 1.0. The number of neurons in the ring
varied by means of the rotary switch from one to eight
discretely.

When neurons are closed in a ring, a coupling occurs
between them with a time delay, which corresponds to
a delay in a chemical synapse in a real biological neu-

ron caused by a finite times required for ion transport
through the synapse. As a result, an oscillatory attrac-
tor can form in the ring, while a separate neuron has
a single attractor in the form of a stable point. How-
ever, this oscillatory attractor often coexists with a sta-
ble equilibrium position, since it arises rigidly, not due
to the Andronov–Hopf bifurcation, but as a result of
the saddle-node bifurcation of the cycle [19,20] (in the
two-dimensional case — this bifurcation is known as a
birth of a cycle from the condensation of phase trajec-
tories [21]). This mechanism for mathematical mod-
els of FitzHugh–Nagumo neuron networks was stud-
ied in [13], but without delay. It is responsible both for
the formation of the attractor and for long-term tran-
sients occurring near the bifurcation point. Possibil-
ity of approaching this attractor depends on the initial
conditions, for example, whether an electronic key is
closed, or can be carried out by a short-term external
driving. In this case, the model can go through a bifur-
cation of the birth (or death) of a cycle directly during
the experiment due to changes in the parameters of
electronic neurons because of heating.
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Fig. 3 Scheme of connection of neurons in the ring. Solid lined
are for connection between first 8 neurons which are always in
the ring, dashed lines are for additional neurons which may be
included in the ring to change the oscillation frequency. Sine

symbol shows the signal generator used to initiate oscillations
in the ring (to switch between attractors). The places in the cir-
cuit from which the signals were measured are shown with blue
arrows

3 Experimental results

3.1 Procedure of recording

Data were recorded with an analog-digital converter
LCARD E14-140M (Russia) with the following char-
acteristics: number of channels—up to 32, sampling
frequency fs = 200 kHz for all channels, quantization
bit length—14 bits, dynamical range—±10 V. There
were different types of recordings. Most experiments
were recorded in two-channel regime with sampling
frequency 100 kHzper channel. First, we recorded vari-
able U from two neurons, mostly N1 and N5. This was
done to detect that all neurons behave similarly and that
phase shift betweenneurons in the ring is determinedby
the distance between them. Next, we recorded dynam-
ics of one neuron: both variables U and V. We also
combined these two types of experiments to record U
and V from two neurons together with sampling fre-
quency 50 kHz. Additionally, we recorded the postsy-
naptic voltage Us together with presynaptic variable
U in some preliminary experiments in all neurons in
order to control realization of the synapse (hyperbolic
tangent function).

The parameters of the circuit were set to a = −1.2,
b = 0.08, which corresponded to a stable focus attrac-
tor in a single uncoupled neuron. At the beginning of
the experiment there were no oscillations in the circuit.
Oscillations in the ring were excited via short in time
external harmonic driving of the amplitude 0.5 V with

the offset−0.5V (oscillation range [−1; 0]V)with the
frequency 200 Hz, which was applied to the inverted
input of the neuron N1. JUNTEK PSG9080 (China)
programmable signal generator was used to generate
the driving. This driving started by button press and
lasted for 5–20 periods (25–100 ms). The alternative
way to switch between attractors (from table point to
the limit cycle) was implemented for smaller (11 and
less neurons) networks by using one of the neurons as
an external driving instead of the generator of harmonic
oscillations; in this case the parameters of this single
neuronwere set to a = 0.8, b = 0, which corresponded
to a periodic regime. Both excitation approaches led to
the same regular autonomous dynamics (short in time
transient nonautonomous regimes under external driv-
ing were not considered).

3.2 Time series and phase plots

Time series of the neuron N1 at the parameters τ = 0.5
ms, D = 15, k = 0.6 were plotted on the Fig. 4a, and
the phase plot on the plane (U, V)—on the Fig. 4b.
The oscillation form and amplitude are typical for all
achieved regimes. One also can see that pulses (espe-
cially for U variable) are not completely identical. The
variation of the signal shape is determined by twomain
factors. First, there is evolution of parameters of semi-
conductor elements due to heating. Second, there are
significant real differences in parameters between neu-
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Fig. 4 Time series of variables U and V (a) and phase plot (b) for the neuron N1 at the parameters τ = 0.2 ms, D = 15, k = 0.6

rons. These two factors lead to continuous “synchro-
nization” (lag-synchronization) process between neu-
rons in the network. This “synchronization” is not a
classical synchronization described in [22,23], which
is leading to adjustment of oscillation rhythms of two
ormore coupled systems, since in our case each node of
the ring is in the non-oscillatory mode by itself. But if
we consider the ring without a single considered node
as a generator, this incomplete ring may be thought to
synchronize the considered node in the terms of forced
synchronization. Let us consider another interpretation.
If we consider the ring of identical oscillators as it was
studied theoretically in [24] andother similarworks and
replace one of them by an oscillator with somewhat dif-
ferent parameters, the dynamics of this oscillator will
be synchronized by the ring.

The effective difference in the neuron parameters is
distinguishable, see Fig. 5, where the series of three
neurons: N1, N6 and N11 were plotted for D = 15,
τ = 0.5, k = 1.0 (series of U and V for these 3 neurons
were measured with the sampling frequency 25 kHz).
In the Fig. 5a one can see that the time distance between
maxima of U for three considered neurons is close to
T/3, where T = 1/ f = 5.96 ms. In the Fig. 5b the
pulse of N11 is just preceding the pulse of N1, with
oscillation period being smaller T ≈ 4.4 ms. There
are also differences between neuron shape for D = 15
(Fig. 5a) and D = 11 (Fig. 5b): for the regime with
the smaller frequency there is an additional minimum

at the period (neurons have enough time to relax after
the stimulus).

3.3 Generator frequency as it depends on ring size
and delay time

Based on experiments done for all possible combina-
tions of 1 � D � 15 and τ ∈ {0.1, 0.2, 0.3, 0.4, 0.5}
ms we constructed the dependencies of the main oscil-
lation frequency f on the number of elements in the
ring D and on the delay time τ . These dependencies
were plotted in Fig. 6. Studywas performed for two dif-
ferent values of k: k = 0.6—see Fig. 6a and k = 1.0—
see Fig. 6b. These two diagrams aremostly similar with
the following differences:

– the frequencies for k = 1.0 are somewhat larger
than for k = 0.6, this was the case for every D and
τ for which the oscillatory activity in the ring was
possible;

– there is an oscillatory regime for τ = 0.2 ms and
D = 11 for k = 0.6mswhich is absent for k = 1.0.

Speaking in terms of lag-synchronization, we may
note that increasing k leads to reduce of lag.

The dependency of the main frequency f of oscil-
lations on D and τ plotted in Fig. 6 may be approx-
imated by a hyperbolic function, as it was done for
model ring consisted of Hodgkin–Huxley neurons in
[25]. To make the approximation problem linear let us
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Fig. 5 Time series of U variable for three neurons: N1, N6 and N11 for τ = 0.5 and different numbers of neurons: D = 15 (a) and
D = 11 (b), k = 1.0 for both subplots

Fig. 6 Dependencies of the main oscillation frequency f in the circuit on the number of elements in the ring D and on the delay time
τ : a before the driving; b after the driving. The color indicates the oscillation frequency occurring in the ring

consider dependence of the oscillation period T = 1/ f
rather than frequency. Following [25] let us consider the
following dependency:

Tfit(D, τ, k) = T0(k) + γ (k)τD + ε(k)D, (2)

where Tfit = 1/ ffit is the approximation of the period
T measured experimentally, T0, ε and γ are constants,
depending only on k, with T0 and ε having the dimen-
sion of time and γ being dimensionless. The parameter

ε can also be considered as a parameter of inertia of a
single neuron.

We fitted the parameters T0, ε and γ to experimen-
tal data for both considered k = 0.6 and k = 1.0 sep-
arately. All frequency values obtained in each exper-
iment (Z = 27 for the experiment with k = 0.6 and
Z = 28 for the experiment with k = 1.0) were used for
this fitting at once. The results together with a relative
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Table 1 Values of the parameters T0, ε and γ in the formula (2)
fitted for different k with the mean squared normalized error of
approximation σ 2

appr

k T0, ms γ ε, ms σ 2
appr

0.6 2.35 3.22 · 10−4 0.088 0.0193

1.0 2.13 3.01 · 10−4 0.106 0.0077

mean squared approximation error (3) are shown in the
Table 1.

σ 2
appr = 1

Z

15∑

D=8

τmax∑

τ=τmin

(
fexp − ffit

)2
, (3)

where Z is the total number of pairs τ and D for which
oscillatory regime was reachable (Z = 28 for k = 0.6
and Z = 27 for k = 1.0), τmax = 0.5 and τmin is
different for different D and k, see Fig. 6 for details.

Based on the values of approximation error we may
conclude that the analytical formula (2) pretty well
describes the results of the experiment, though for
the mathematical model considered in [25] this errors
was 10 times smaller. The particular values for experi-
mentally observed frequency and its approximation are
given in the Fig. 7 (we plotted only part of values as
dependencies on τ for the maximal used D = 15 and
on D for the maximal used τ = 0.5 ms). The differ-
ences between the formula and the experiment seem
to be caused by nonidentity of neurons and synapses.
Themost noticeable differences betweenmeasured and
fitted frequency values correspond to the smallest fre-
quencies at the the boundary of oscillatory mode on
the parameter plane (D, τ ), with experimental values
being usually smaller than fitted ones. Regimes at the
boundary of the oscillation region are most vulnerable
to non-identity of network elements and are the first
to collapse or distort. This could at least partly explain
larger errors of fitting for these regimes.

However, in general the approximation shows that
for a certain chosen value of k the generator frequency
may be well predicted and calculated for given D and
τ if one has at least three measurements for different
D and τ values to estimate the parameters T0, ε and γ .

4 Conclusion and discussion

The novelty of this study is as follows. First, the elec-
tronic model of an individual neuron was taken from

[15], but a delay was introduced in the coupling, which
simulates a real delay in a chemical synapse. The delay
was implemented in the form of a tunable Bessel fil-
ter, where one of the resistors was replaced by a poten-
tiometer. Thedelay in the synapse significantly expands
the set of modes which can exist in a network of cou-
pled electronic neurons. Theoretically, very similar sys-
tem of two neurons was studied in [17], but Heviside’s
function was used to approximate the synapse instead
of sigmoid. Second, while developing the scheme, we
succeeded to reproduce the results of previous work
on mathematical [26] and SPICE [18] modeling. We
aimed to obtain a specific mode of behavior in a unidi-
rectionally coupled ring of neurons, in which the fre-
quency of periodic pulse oscillations is controlled by a
delay in couplings and depends on the number of ele-
ments and coupling coefficient k, which was set by a
potentiometer. This was achieved for sufficiently large
delay values for eight or more neurons: in total, in 28
different combinations of the number of elements D
and delay time τ for k = 0.6 and 27 for k = 1.0.
There was also possible to obtain oscillatory regimes
for even smaller coupling k � 0.4.We have shown that
at this specific coupling architecture at least two sta-
ble regimes (fixed point and periodic attractor) coexist,
with switchingbetween thembeingpossible via short in
time external driving of various type and length. Third,
wehave performed an approximation of the lawaccord-
ing towhich the frequency of generation depends on the
number of neurons and the coupling delay time at the
given k. This approximation showed that the law writ-
ten in [25] for the ensemble of mathematical Hodgkin–
Huxley neurons is able to describe the similar depen-
dency for electronic FitzHugh–Nagumo neurons in a
real world experiment and is likely to be universal.

From our point of view, the hardware implementa-
tion of neurons has exactly that main advantage over
the mathematical modeling, which allows us to par-
tially reproduce the difficulties inherent in the study
of biological neurons. All neurons and synapses in the
electronic circuit are not identical in parameters (this
led to somedifferences in signal shape), they do not per-
fectly repeat the mathematical model, their parameters
change over time, including due to heating. Therefore,
the fact of detection of the desired modes indicates
the great structural stability of the proposed genera-
tion mechanism. This means that in a biological sys-
tem,where the role of non-identity and non-stationarity
is even greater, one can still expect to observe such
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Fig. 7 Experimentally observed fexp (cyan) and approximated
f f i t (orange) values of the generation frequency for different
values of k: subplots (a) and (b) correspond to k = 0.6, subplots
(c) and (d) correspond to k = 1.0. Subplots (a) and (c) were

constructed for the same value of D = 15 and different τ , sub-
plots (b) and (d) were constructed for the same τ = 0.5 ms and
different values of D

modes. The role of the studied regimes can be very great
for the formation of the limbic epilepsy basic rhythm.
According to modern concepts, a very small network
of hippocampal neurons can be responsible for it [27].
In contrary to microscopic silicon implementations of
neurons [28,29]which are preferred if a large ensemble
is desired, the parameters of the macroscopic models
[8,15,30] can be well controlled. This makes possi-
ble specifying parameters for a particular neuron type:
for pyramid neurons and interneurons of neocortex and
hippocampus, thalamoctical neurons and reticular tha-

lamic nucleus neurons, which is valuable for microcir-
cuit modeling and would be a next step in modeling
both limbic and thalamocortical brain systems.

In limbic epileptic seizures, the oscillation fre-
quency can change both smoothly [31] and abruptly
[32]. In the presented model, these two ways of fre-
quency evolution are reproduced by smooth chang-
ing the resistance of the potentiometer and decreas-
ing/increasing the number of neurons in the network
by switching the electronic key correspondingly. How-
ever, the constructed generator may be useful regard-
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less of its biological prototype as a source of multi-
frequency periodic pulse signals.

The number of neurons examined in this study
increased 7.5 times compared to [15]. This shows the
scaling capabilities of the circuit proposed in [15].
Since the complexity of implementation and consider-
ation of all possible coupling architectures within the
singleworkwould be excessive,we limited ourselves to
studying only one coupling architecture (unidirectional
ring), which is very important from physiological rea-
sons.

Compared to earlier studies [8,11], in the present
experiment all synaptic couplings were analog devices
rather than microcontroller based connections using
digitized signals; in [30] the coupling was also ana-
log, but it was linear and therefore not synaptic-like.
The synaptic analog coupling, on the one hand, is much
more complicated for implementation. But on the other
hand, such an implementation is much closer to bio-
logical experiment. The possible next step is switch-
ing from hardware realization of FitzHugh–Nagumo
model to the Morris–Lecar like model which is known
as a simplest biologically proven model (some first
implementation of which was published in [33]).
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