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Abstract Inferring information about interactions
between oscillatory systems from their time series is
a highly debated problem. However, many approaches
for solving this problem consider either linear sys-
tems or linear couplings. We propose a method for
the reconstruction of ensembles of nonlinearly cou-
pled neurooscillators described by first-order nonlin-
ear differential equations. The method is based on the
minimization of a special target function for each oscil-
lator in the ensemble separately. To find the solution of
optimization problem the nonlinear least-squares rou-
tine is used. The method does not exploit any parame-
terization for approximation of nonlinear functions of
individual nodes. In addition, an original two-step algo-
rithm for the removal of spurious couplings is proposed
based on the clusterization of coefficients of the recon-
structed coupling functions and the analysis of their
variation. The method efficiency is shown for periodic
and chaotic vector time series for ensembles of different
size that contain from 8 to 32 oscillators. These oscil-
lators have a cubic nonlinearity and sigmoid is consid-
ered as a coupling function. The effect of measurement
noise on the results of coupling architecture reconstruc-
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tion is studied in detail and the method is shown to be
effective for relatively high noise (signal to noise ratio
equal to eight).
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1 Introduction

A complex dynamics may originate from very simple
systems, if they are coupled in a large network. There
are a lot of different examples of such a behavior [1].
The neural network models are of the particular inter-
est, since many neurological processes, both normal
and pathological ones are considered to be a network
phenomena [2]. One of the simplest models of neural
network (1) has been proposed by Sompolinsky et al.
[3]:

D
Xi = —xi + Z hi j(gx;),

j=1j#i
hi j(x) = k; j tanh(x), (1)
where i = 1,..., D, D is the number of neurooscil-

lators in the network, #; ; is a coupling function char-
acterizing the influence j — i, i.e., from the jth neu-
rooscillator to the ith one, g is a scaling factor, and ; ;
is a coupling coefficient characterizing the strength of
coupling j — i. It was analytically proven that in the
limit D — oo the network elements exhibit a chaotic
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behavior [3]. It was also shown numerically that net-
works composed of sufficiently large number of neu-
rooscillators (about 1000 nodes) can also demonstrate
a chaotic dynamics [3].

An approach to the reconstruction of the model
(1) from its chaotic vector time series has been pro-
posed recently [4]. This approach and other similar
methods [5-9] can be applied for the detection of
couplings between the network elements in climate
science [10], neuroscience [11], cardiology [12], and
some other fields along with the widespread meth-
ods like Granger causality [13,14], partial directed
coherence [15], directed transfer function [16], phase
modeling techniques [17-20], and other similar tech-
niques [21,22], including techniques specially devel-
oped for weak coupling [23,24]. Some of recently
proposed methods even offer possibility of analysis
online [25,26]. A new approach to the problem of
model reconstruction was proposed recently [27-30].
This approach considers all dynamical variables to be
measured, but nonlinear functions are unknown. Addi-
tionally, it is assumed that these functions can be well
approximated by a few of well known elementary func-
tions like polynomials (see [31]), sinusoids, logarithms
and so on. Therefore, the matrix of many different
approximations is fitted, but this matrix is considered to
be sparse. However, authors state [27] that the method
does not scale well for large systems (an ensemble is
considered as a single large system) due to very fast
growth of complexity with the increase in number of
equations.

Many methods for inferring the interaction topology
of networks usually have a number of limitations such
as an assumption of weak couplings between the nodes,
the need to know the structure of model equations, the
absence of noise, etc. [32-36]. For example, our recent
method [4] was developed for networks composed of
linear oscillators, which perform chaotic oscillations in
the absence of noise.

In the present paper, we extend our method [4] to
a more general situation. Instead of the linear oscilla-
tors, we consider the case where the intrinsic dynamics
of network nodes is described by a nonlinear equation.
Moreover, we consider now a more general type of the
coupling function, which is assumed to be a sigmoid.
Limitation to the class of sigmoid functions is essential
for the systems under study providing the ability for
parameterization in a special way of Richards’ curve
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[37] with a small number of parameters. The proposed
method is based on the minimization of a special tar-
get function for each oscillator in the ensemble. Since
the parameterization of Richards’ curve is nonlinear,
we use the nonlinear least-squares routines, namely
the Levenberg—Marquardt [38,39] algorithm and Trust
Region Reflective algorithm [40] for solving the opti-
mization problem instead of the usually used linear
least-squares method.

As a result of the method application, we obtain
the recovered coefficients of bidirectional coupling
between each pair of oscillators in the ensemble. How-
ever, in a typical case, the oscillators in the ensem-
ble are not coupled all-to-all and some of the recov-
ered coupling coefficients are redundant. We propose
an original two-step algorithm for the removal of spu-
rious couplings based on the clusterization of coeffi-
cients of the reconstructed coupling functions and the
analysis of their variation. This algorithm allows one
to reconstruct the coupling architecture. The specific of
reconstruction for sparse networks was recently men-
tioned [28]. Therefore, removal of spurious couplings
can help in better reconstruction of nonlinear functions
of individual nodes and coupling functions.

Another distinction of our method from the method
[4] is its efficiency not only for chaotic time series, but
also for periodic and quasiperiodic regimes and tran-
sient processes. We study the dependence of the accu-
racy of our method on the length of time series and
the size of ensemble. The robustness of the proposed
approach to measurement noise is also considered. The
importance of testing reconstruction algorithms in the
presence of measurement noise has been pointed in a
number of recent works [9,41,42].

2 Method

We consider the following generalization of the original
model (1):

D
5 = fiti)+ Y hij(gj(xj()=xj0)) (2)

j=1i#i

where f; (x) is an arbitrary continuous function (nonlin-
ear in the general case), h; j(x) is an arbitrary sigmoid
coupling function, x; ¢ is a shift parameter, and g; is
an amplitude parameter.
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2.1 Target function

Assume that we have a vector time series {X(l‘n)}}]:,: | of
oscillations in all nodes of the ensemble (2) recorded
with a constant sampling time At = #,,41 — t,, where
X(tn) = (x1(tn), x2(t), ..., xp(ty)), n is the time
index, and N is the total number of samples for each
oscillator. For simplicity, let us denote x;(t,) = x; (n).
Then, for (m — 1)/2 < n < N — (m — 1)/2 we
find numerically the time derivatives x;(n) using the
Savitzky—Golay filter [43], where m is a number of
points used for smoothing. The filter is useful for reduc-
ing the impact of high-frequency noises that are always
present in the experimental time series. So, we can
rewrite (2) in the following form:

D
filxi(m) = %i(m)— > by j(gi(xj(m)—xj0)). (3)

j=1j#i

Following the recently proposed approaches [4,6],
for each oscillator, we sort the values of x; (n) in ascend-
ing order and denote this sorting as transformation
Q;, which assigns a point with the index Q;(n) in
the sorted time series to a point with the index n in
the original time series. We denote the inverse trans-
formation as Q; ' which assigns a point with the
index n in the original time series to a point with the
index Q;(n) in the sorted time series. Thus, we have
n= Ql._1 (Qi(n)). If some point has the index n in the
original time series and the index Q;(n) in the sorted
time series, then the neighbor point to the left of this
point in the sorted time series has the index Q;(n) — 1.
The index of this neighbor point in the original time
series is p;(n) = Ql._1 (Qi(n) — 1). The points with
the indices Q;(n) and Q;(n) — 1 in the sorted time
series are neighbors and the values x; in these points
are close under the assumption that f; is a continuous
function. Consequently, the values of the dynamical
variable in the points with the indices n and p;(n) in
the original time series are also close and the function
values f;(x;(n)) and f;(x;(p;(n))) must be close. We
denote the difference between these function values as
8i(n).

8i(n) = fi(xi(n)) — fi(xi(pi(n))) = Ax;(n)
D
- > A,
J=1j#i
Axi(n) = x;(n) — xi(p;i(n)),

Ah; j(n) = h; j(xj(n)) — hi j(x;(pi(n))). 4)

If N — oo, all §;(n) approach zero under the
assumption of the finite variance of x;. However, if the
oscillation regime is rather complex, then the close val-
ues of x;(n) and x; (p;(n)) does not necessarily imply
the proximity of x; () and X; (p; (n)). Hence, the right-
hand side of Eq. (4) can tend to zero for N — oo only
as a sum of all its terms. Let us assume that sigmoid
coupling function #; ; depends on the parameters ¢;.
Then, these parameters ¢; must be set in a proper way
to provide the convergence to zero of the right-hand
side of Eq. (4) with the increase in the number of sam-
ples N.

Thus, given a time series of sufficiently large length
N, the sum of squares of all §;(n) values can be con-
sidered as a target function S;:

N

Sieiy = Y

n=1,0Q;(n)#1

87 (n), (5)

where N is the number of samples. The minimization of
(5) allows one to determine all unknown parameters ¢;
of coupling function and to define the coupling function
hi,;j explicitly. Then, the function f; can be tabulated
using, e.g., (3) for all considered n.

2.2 Approximating coupling functions

Let us here consider the task of coupling function
approximation in detail. An arbitrary sigmoid func-
tion can be satisfactory approximated with a Richards’
curve [37]:

Cli,j

(14 c2,i,j exp(cs,i,jx)

hij(x) = +ocsij. (6)

)0441',/'

In particular, the hyperbolic tangent is a special case
of Eq. (6), while arctangent and error function can be
approximated by Eq. (6) with a good accuracy, but not
exactly.

Since the minimization of the target function (5)
implies the fitting of many coupling functions simulta-
neously, in the presence of measurement noise, a cer-
tain simplification of Eq. (6) is necessary. Without large
loss of generality, we set ¢4 ; ; = 1 and ¢5; ; = 0, and
rewrite Eq. (6) as follows:

@ Springer
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Clij -,

() = e m !

( +C2.i,j eXP(C3,1,jx)) 0¢i3j+1 (1 +¢i3j+2 exp(c,-,3j+3x))

/!
SO L =h .(c3; 1
The first simplification reduces the approximating hi j(esjers m), (10)
power of the algorithm a little bit, but it helps much dhij(x) _ Ci3j+1€Xp(ci3j+3%)
in convergence, since it removes a parameter of power 9¢i3j42 (14 ci3j+2exp(ci3j+s x))2
in denominator. The second simplification is forced b
¢ Simp ; Y = hj j(c3j42.1). (11)

the fact that Eq. (2) contains a sum of coupling func- oh
tions, and therefore, there is no need to have many inde- i.j (%) _ _Ci3j+1Gi3j42X exp(ci3; +3x2)
pendent constants. Therefore, the original driving term 9¢i3j+3 (1 + ¢i3j+2€xp(ci3j+3x ))

introduced in [3]) is a special case of sum of (7) if one
takes into account that the constant can be included into
the nonlinear function f;.

To be able to apply the numerical minimization algo-
rithms, all unknown coefficients must be rewritten in
the form of a single vector. Since the reconstruction is
performed independently for each ith neurooscillator,
it is possible to have a matrix of unknown coefficients,
composed of columns, corresponding to different oscil-
lators. Thus, let us rewrite the 3D array ¢y ;, ; in the form
of matrix as follows:

Ci3j+k = Chki,i,j>
k=1,2,3. (8)

Using (8) the formula (7) can be rewritten in the
following form:

Ci3j+1
1+ ci3j42exp(ci3j43%))

hi j(x) = ( (€))

2.3 Target function optimization

The target function (5) depends on the parameters
¢i3j+2 and c¢;3j43 nonlinearly, when the coupling
functions are approximated as (9). Therefore, using lin-
ear least-squares routine as in some previous studies
[4,7] is not possible. The nonlinear optimization tech-
niques first demand some reasonable starting guesses
for all parameters ¢; (this can be done from a priori
knowledge or just arbitrary) and second demand to pro-
vide some way to calculate the Jacobi matrix J for the
target function S.

While the Jacobi matrix J always can be approxi-
mated by finite differences, this implies additional com-
putational errors, demands to provide a reasonable step
in the parameter space and increases calculation time.
For the considered case, JJ can be written analytically.
Letus differentiate the coupling function (9) forc; 311,
¢i3j+2, and ¢; 313 separately:
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= h; ;(c3j43,n). (12)

The Jacobi matrix consists of (N —6; —1) x3(D—1)
elements. Its element with indices n and [ can be written
in the following form:

Jna = h]j(crn) — b (cr. pi(m). (13)

Further, the numerically highly efficient MINPACK
[44] realization of the Levenberg—Marquardt algo-
rithm [38,39] was mostly used for the nonlinear least-
squares. If this approach failed to converge, the Trust
Region Reflective algorithm [40] realized in popular
Pyhton numerical library scipy.optimize [45]
was used.

2.4 Removal of spurious couplings

In a typical case, a node in an ensemble is not con-
nected to all other nodes and some couplings are miss-
ing. Therefore, after the model (2) reconstruction, some
coupling functions can be superfluous. These functions
make a small contribution to the target function. Since
the amplitude of coupling function 4; ; is determined
mostly by the parameter ¢; 341, the K-nearest neigh-
bors approach was used to split the couplings into
two clusters, namely the cluster of actual couplings
and the cluster of spurious couplings. Analogously to
the previously proposed technique for time-delayed
feedback oscillators [6], clusterization was performed
based on values of z; ; which are the logarithms of
absolute values of each of D(D —1) coefficients ¢; 341
Vi,j=1,...N,i # jin the ensemble:

zi,j = In(l¢i3j+10)- (14)

To start the K -nearest processing, the initial guesses for
means were chosen as the maximum and the minimum
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values of z; ; for the cluster of actual and spurious cou-
plings, respectively. Since the task is one-dimensional,
the choice of a way to determine a distance is not impor-
tant, because all known ways in one-dimensional case
come to the absolute value of the difference.

After clusterization, the superfluous coupling func-
tions were removed from the model (2), and reconstruc-
tion was performed once again. Let us denote the new
estimates of coupling function coefficients ¢;, obtained
after the removal of superfluous functions, as c;’3 i
r = 1,2, 3 (for this reduced set, some (i, j) pairs cor-
responding to excluded functions are not allowed) and
the original estimates as ¢; 34

However, the numerical experiment has shown that
a lot of spurious couplings still stay in the model in
most cases, while there are only very few erroneously
removed couplings. To correct this, the second step
of removal was proposed. The idea of this step is to
compute some relative variance measure of all cou-
pling coefficients for the current coupling function /; ;,
using, for example, the following formula:

3

. (Ci3j+r
AGij=),

Ciai
—1 i,3j+r

/
- Ci,3j+r)

5)

If the coupling function k; ; is not spurious, then it
reflects some actual coupling mechanism, and there-
fore, the corresponding variance measure Ac; ; should
be small. However, for spurious couplings Ac;, ; should
be high, since existing of these coefficients is mostly
determined by noise and the method imperfectness, and
therefore these coefficients have to be essentially differ-
ent for different coupling architectures. The threshold
value of Ac; j = 0.25 was used to distinguish between
the coefficients to be kept and to be removed. After
this second removal, the model reconstruction was per-
formed once again, resulting in new estimates, denoted
further as c;f3j+r.

For the second reconstruction (after the K-nearest
neighbors removal), the estimates ¢; 3 4 obtained after
the first reconstruction (complete ensemble with all
possible couplings) were used as initial guesses. For
the third reconstruction, the estimates obtained at the
second step, i.e., 62’3 4 Were used as initial guesses.
Such an approach reduced the time of reconstruction
significantly and improved the convergence of nonlin-
ear least-squares routines.

3 Results

Cubic parabolas were used as functions f; (16). Cou-
pling functions were chosen as hyperbolic tangent like
in the original Eq. (1), but with variant scale parameter
gj and variant shift parameter xo; as it was proposed
in (2):

fi(x) = —yix + aix?, (16)
hi j(x) = k; jtanh(g;(x — x0,;)). 17)

Following the original study [3], the values of coupling
coefficients k; ; were generated from the normal dis-
tribution with a zero mean and the standard deviation
equal to J/ \/5, where J = 6 was mostly used. Then,
some couplings were randomly set to zero. The values
of the parameters x; 0, y;, & and «; were generated
from the uniform distributions in the ranges [—1; 1],
[0.5; 1.5], [0.5; 1.5], and [0; 1], respectively.

All equations were solved numerically with the
fourth-order adaptive Runge-Kutta algorithm, using
ODE solver odeint included in scipy.
integrate package [45], with the sampling interval
At = 0.01.

The ensembles of D = 8, 12, 16, 20, 24, and 32 neu-
rooscillators were considered. In the original study [3],
the ensemble of 1000 neurooscillators was considered
and chaotic behavior was detected. In the recent paper
[4], the ensembles of sufficiently smaller size (from
D = 16 to D = 64) were found be able to produce
chaotic oscillations. Here, due to the use of nonlinear
functions f; instead of the linear ones, we revealed the
chaotic behavior even for 8 oscillators in the case of
35 nonzero couplings, but this behavior occurred very
seldom. In the case of 16 oscillators, the quasiperiodic
behavior was also detected.

All regimes were detected after a long transient
process of 2!7 sampling intervals, i.e., about 1300
units of dimensionless time. The periodic regimes were
detected using a rule that for the chosen oscillator num-
ber i, all values from some parts of time series repeated
themselves at least twice with a precision 107, To dis-
tinguish between quasiperiodic and chaotic regimes the
largest Lyapunov exponent A; for the whole ensemble
was estimated on the interval of 4000 units of dimen-
sionless time using the algorithm described in [46]. For
chaotic regimes, the typical values of A; estimates lied
in the range [0.12; 0.22]. The regular regimes were
characterized by A; € [—0.05; 0.06], assuming that
nonzero values appeared due to the finite length of
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time series and other algorithm imperfections. Since
the ranges corresponding to the chaotic and periodic
regimes did not overlap, we considered this technique
to be robust enough for detecting the type of the regime.

Usually, one half or 5/8 of possible couplings were
kept nonzero in the current study. For the ensembles
with small number of nodes (D < 16), the further
reduction of the number of nonzero couplings caused
some oscillators to be excluded from the network, and
the total network complexity occurred to be not enough
to produce chaotic or complex regular oscillations, or
even to establish long enough transient process.

The starting guesses for parameters ¢; 341, ¢i,3+2.
and c¢; 343 were set as 0, 1, and 2, respectively. Such
a choice corresponds to the not scaled and not shifted
hyperbolic tangent.

3.1 Reconstruction of small ensembles in periodic
and chaotic regimes

First, let us consider small ensembles of D = 8 neu-
rooscillators, since they are more suitable for illustra-
tion of results of the method application, and focus on
the most typical regimes (periodic and chaotic ones),
described also in [3] for original Eq. (1). Figure 1 shows
the times series for all oscillators in the ensemble for the
cases of periodic regime (Fig. 1a) and chaotic regime
(Fig. 1b) in the absence of measurement noise.

The results of nonlinear functions f; reconstruction
for all eight nodes in the presence of additive mea-
surement noise with standard deviation o;,,;5, = 0.05
are plotted in Fig. lc for the periodic regime and in
Fig. 1d for the chaotic regime. The standard deviation
of noise was in the range 1.6%-5.3% for the chaotic
regime and in the range 1.9%-5.1% for the periodic
regime, depending on the amplitude of oscillations for
a particular neurooscillator.

One can see that the reconstruction is successful
even for a complex periodic regime. The Savitzky—
Golay filter based on averaging over m = 13 points
and m = 17 points was used to improve the estimates
of derivatives for the chaotic regime and the periodic
regime, respectively. In few cases, the removal of super-
fluous couplings can help in better nonlinear function
reconstruction (see results of f, reconstruction for the
periodic regime in Fig. 1c).

The quality of reconstruction of coupling architec-
ture depends on the noise level and the oscillation
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regime. Since all oscillators in the ensemble have to
be reconstructed in order to detect the coupling archi-
tecture, the possibility to reconstruct the entire ensem-
ble completely is mostly determined by one or some
oscillators with the minimal signal to noise ratio.

Figure 2 shows the results of coupling architecture
reconstruction for both the periodic (upper row) and the
chaotic (lower row) regimes for ensembles of eight neu-
rooscillators. The indicated noise levels correspond to
the oscillator with the minimal signal to noise ratio. The
reconstruction can be successful, even in the presence
of high-level noise, especially for a chaotic regime.
In this particular case, the time series consisting of
N = 2% points (Fig. 1a, b) were used.

It should be noted that using longer time series
mostly results in reduction of the number of errors in
the coupling architecture recovery for chaotic regimes,
since new additional information about network
dynamics is provided. For instance, for the case consid-
ered in Fig. 2, the missing coupling from the sixth to the
fourth oscillator in the chaotic regime can be detected
correctly if the length of time series is increased in
eight times or more. To characterize the dependence
of results of reconstruction on the time series length
we also introduced the mean error of reconstruction
of the coupling coefficients k; ;. If the actual coupling
function is hyperbolic tangent, it can be estimated as
—2c¢;,3j+1 using the approximation (9). So, the mean
relative error for coupling magnitude reconstruction
can be calculated as follows:

D D "
- kij +2¢i551,
(Bhij)=) > | ="
i=1 j=1,j#i LJ
if kj j #0and ¢;3j41 # 0. (18)

Note that this mean error does not reflect the errors in
coupling architecture reconstruction. The dependence
of (Alzi, ;) on the length of time series for three different
noise levels is shown in Fig. 3 for the same ensembles
as considered above.

The dependence (AIE,; j)(N) is flat for the noise level
equal to 1%. For the larger noise levels, the results more
depend on the guesses for initial conditions, and finding
a global minimum becomes a challenge, especially for
a chaotic regime. The same problem was previously
mentioned for another reconstruction technique [47],
for which the use of very long time series was shown
to be inefficient due to the existence of many local min-
ima of the target function. This problem can be partly
addressed using some special fraction techniques [48].



econstructio

=

n of ensembles of nonlinear neurooscillators

2109

| | |
o S N o N N o

[ 1 1
IwN»—non—-Nw | AN ON B | AN ON B
L L

[
Ioo-lsoboo

Periodic regime

N o L | |
e | 1

| T T T T T | |
0 20 40 60 80 100 120 140 160

Chaotic regime

| | |
o B N o N B o

|
I@bNONbO\

| |
| S N o N » |

| |
| S N o N »

[
| S N o N B
T T T T
|
| ‘ _
| ] |
-.
Il
o
1 1 1

()

Fig. 1 Time series of the ensemble (2) of D = 8 neurooscil-
lators with 35 nonzero couplings (5/8 of the maximal possible
number) in the periodic regime (a), and in the chaotic regime (b),
for which the reconstruction was successful. Reconstructed cou-
pling functions of all 8 neurooscillators for the periodic regime
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(c) and for the chaotic regime (d); original functions are shown
in black and the functions reconstructed in the presence of mea-
surement noise are shown in green (before removal of spurious
couplings) and in red (after removal). (Color figure online)
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Fig. 3 Dependence of the mean error in the coupling coefficient reconstruction (18) on the length of time series N for the periodic
regime (a) and for the chaotic regime (b) for three noise levels: 1%, 2.5%, and 5% with respect to the signal standard deviation

To estimate the efficiency of the reconstruction pro-
cedure, 100 different ensembles with nonequilibrium
behavior were simulated. Only four from these 100
ensembles demonstrated a chaotic dynamics. For all
of these four ensembles, the reconstruction was suc-
cessful, including the reconstruction in the presence of
additive 2—12% measurement noise (e. g., see Fig. 2).
The reconstruction was also successful for two complex
periodic regimes. One of them is shown in Fig. 1a. For
most of other periodic regimes, the reconstruction of
equations was successful only for part of nodes. The
main reason for this is that some oscillators demon-
strated too simple dynamics. Usually, successful recon-
struction in periodic regime was possible, when each

@ Springer

period included at least eight or ten oscillations (we
consider one oscillation to be a part of series between
two local minima or maxima in the absence of mea-
surement noise).

Figure 4 depicts all coupling functions reconstructed
in the presence of 5% measurement noise for the
chaotic ensemble, which time series are plotted in
Fig. 1b. One can see that most functions are recon-
structed with a good accuracy. Sometimes, the func-
tions obtained after removal of spurious couplings
occur to be closer to the original ones (for instance, see
h73 and hy46) than the same functions reconstructed
before the removal. For periodic regimes, the results of
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Fig.4 Original (black), reconstructed (green), and reconstructed
after removal of spurious couplings (red) coupling functions A;, ;
for the ensemble of 8 nodes in the chaotic regime, which time

the coupling function reconstruction are usually similar
to those presented in Fig. 4 for the chaotic regime.

3.2 Reconstruction of large ensembles for periodic
and chaotic regimes and for long transient process

Consideration of larger networks with more than 8
nodes is important due to two reasons: first, the method
scalability is demonstrated, second, the larger net-
works can produce greater number of different regimes.
In the current study, we focused on the long tran-

series are plotted in Fig. 1b. In most cases, all these three lines:
black, green, and red are overlapping because of accurate recon-
struction. (Color figure online)

sient processes in addition to chaotic and periodic
regimes, since transient processes are of great impor-
tance in many practical applications, especially in biol-
ogy. We detected transients by considering very long
time series, at the end of which a fixed point or simple
periodic solution was found. Then, only a part of this
realization having the same length as the considered
chaotic and regular regimes was used for the ensemble
reconstruction. We also kept in mind that some very
long transients could behave as chaotic regimes. There-
fore, for chaotic regimes we examined the Lyapunov
exponents twice using the first and the second half of

@ Springer
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Fig. 5 Schemes of coupling architecture reconstruction for the
periodic regime (left column), chaotic regime (center column),
and transient process (right column) for ensembles of D = 16
neurooscillators for two different levels of noise indicated in
percent. The numbers of driving oscillators are shown on the

the time series separately. If the Lyapunov exponent
decreased significantly in the second half of the time
series, it could be the sign of nonstationarity and could
be the marker of possible transient. As a result of this
approach application, we excluded one chaotic regime
and classified it as a transient process.

In this subsection, we consider the reconstruction of
ensembles with the number of nodes from 12 to 32 for
the cases of different noise levels. The series of the same
length (N = 214y as for the case of 8 neurooscillators
were considered. Generally, the maximal noise level,
for which the reconstruction of the whole ensemble
can be successful, occurs to be less for larger number
of nodes. For 16 nodes, the noise level of 3.6%—4%
occurs to be critical.

@ Springer

horizontal axis, while the numbers of driven oscillators are
shown on the vertical axis. Detected existing couplings (black),
removed from the model nonexisting couplings (white), spuri-
ously detected couplings (green), and missed existing couplings
(red) are plotted by squares. (Color figure online)

The results of coupling architecture reconstruction
for the three considered regimes are plotted in Fig. 5
for two different levels of noise. It can be seen that
the number of missed existing couplings is greater for
D = 16 than for D = 8. It is explained by two main
reasons. First, the number of couplings for D = 16
is greater than for D = 8 at the same length of time
series. The second reason is partial synchronization of
some nodes in the ensemble at D = 16, which makes
it impossible to distinguish between some candidates
for driving nodes. The presence of both factors makes
it hard to find some weak couplings.

Note that smoothing significantly contributes to
results of the coupling reconstruction, i.e., varying m
one can increase or decrease the number of false posi-



Reconstruction of ensembles of nonlinear neurooscillators

2113

chaotic

20 EEEEE B =N
C I | L

driven oscillator number, ¢
2.5% noise
=
o

EFNWRARUONOOOO

n
[ |
|
[ |
—

Fig. 6 Schemes of coupling architecture reconstruction for an
ensemble of 20 nodes in the chaotic regime (a), and for an ensem-
ble of 24 nodes in the periodic regime (b). The numbers of driving
oscillators are shown on the horizontal axis, while the numbers

tives in 1.5-2 times. Usually, better results correspond
to larger smoothing, but very high smoothing disturbs
the signal shape and, therefore, leads to problems with
convergence.

In addition to the cases of D = 8 and D = 16,
we performed successful reconstruction for ensembles
of 12, 20, 24, and 32 neurooscillators in chaotic and
periodic regimes. For D = 12, we found one transient
process, which evolved to a periodic regime in con-
trast to a transient process, which evolved to a stable
fixed point for D = 16. The results for 20 oscillators
in the chaotic regime and for 24 oscillators in a peri-
odic regime for 2.5% relative measurement noise are
shown in Fig. 6. The number of errors in the coupling
architecture reconstruction (only missed couplings, no
spurious ones) is less than 10% in both cases: 17 errors
for 190 actual couplings for D = 20 and 26 errors
for 276 actual couplings for D = 24. In the absence
of noise, there were no errors in the coupling archi-
tecture reconstruction for both ensembles considered
in Fig. 6. We obtained a qualitatively similar result for
the ensemble consisting of 32 oscillators. However, the
scheme of the coupling architecture reconstruction is
very large in this case, and we do not present it.

periodic

AFANNTNONO0OOANMSTNONOOO
A A A A Al N

oscillator number, j (b)

of driven oscillators are shown on the vertical axis. Detected
existing couplings (black), removed from the model nonexist-
ing couplings (white), and missed existing couplings (red) are
plotted by squares. (Color figure online)

4 Discussion

A number of specialized approaches were proposed
recently for the reconstruction of ensembles of cou-
pled neurooscillators of different nature from their time
series [4—7]. Since the inverse problem is generally
ill-defined, these techniques intensively use a priori
knowledge about the motion equations for individual
nodes and coupling functions [41,49]. Being developed
for model neurooscillators, they aim applications to real
data as ultimate goal. While some electronic system
equations were already successfully reconstructed [6]
from experimental data, the application of the method
to objects of another nature, such as neuroscience and
climatology, is still not straightforward. We can men-
tion the three main problems:

1. the individual node equations are too simple and
do not match the specifics of experimental sys-
tems;

2. the coupling organization, including type of cou-
pling functions is practically unknown;

3. the measurement noise is significant in real appli-
cations, but its effects are not tested well.

@ Springer
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In the current research, we focused on developing
and improving the approach recently proposed [4] for
the first-order neurooscillators [3] in order to increase
its practical value. We addressed all three mentioned
problems:

1. the approach was tuned to deal with nonlinear
functions instead of the linear function in the
autonomous part of equations;

2. the parameters of nonlinear sigmoid coupling
functions were considered to be unknown and
reconstructed from data;

3. the effects of measurement noise were studied in
detail.

We showed the possibility to reconstruct the network
of 8 neurooscillators from their time series containing
212214 time points and 1040 oscillations in the pres-
ence of sufficiently high level of noise (up to 12%).
This result can be compared to the task of processing
records from the real neuroscience intracranial animal
experiment [50], where eight brain areas were recorded
with the frequency of 2048 Hz and digitized by 16-bit
ADC with noise occupying lower 4-5 bits, and then
analyzed in the moving window of 0.5-2 s length. Our
task is even closer to the task of studying the coupling
in stationary physiological states like sleep or epilep-
sies, which average length is greater (e. g., about 6 s for
the absence epilepsy [51]).

The possibility to reconstruct larger networks of 16
and even 32 neurooscillators is of potential interest
for human studies, including magnetoencephalography
data analysis, or experiments using novel techniques
[52], which allow more electrodes to be implemented.

While many researchers prefer to escape applying
nonlinear least-squares routine, since it may not con-
verge and its results can depend on initial guesses for
coefficients, we show here the successful application
of this routine in the case of relatively large number
of coefficients (up to 168 in the case of D = 8§ and
up to 720 in the case of D = 16, i.e., 364-768 data
points per one coefficient), 2/3 of which enter equa-
tions nonlinearly in the presence of noise, and for not
very long time series (from 2!* to 2!® points). Possi-
bly, the efficiency of least-squares algorithms can be
partly explained by the fact that sigmoid functions are
bounded and simple.

The ability of the proposed approach to operate effi-
ciently with recordings from periodic regimes and tran-
sient processes is also very important for further practi-
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cal applications since such types of activity are consid-
ered as very common in neuroscience. Though applica-
tions to real data demand additional technology tuning
and optimization, especially choosing better equations
for individual nodes, we believe that obtained progress
is significant and promising.
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