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Abstract: We propose for the first time a method for extracting the instantaneous phases of respiration
from the signal of a photoplethysmogram (PPG). In addition to the instantaneous phases of respiration,
this method allows for more accurately extracting the instantaneous frequencies of respiration from
a PPG than other methods. The proposed method is based on a calculation of the element-wise
product of the wavelet spectrum of a PPG and the sequence of intervals between the heartbeats
extracted from a PPG, and a calculation of the skeleton of the resulting spectrum in the respiratory
frequency range. It is shown that such an element-wise product makes it possible to extract the
instantaneous phases and instantaneous frequencies of respiration more accurately than using the
wavelet transform of a PPG signal or the sequence of the heartbeat intervals. The proposed method
was verified by analyzing the signals from healthy subjects recorded during stress-inducing cognitive
tasks. This method can be used in wearable devices for signal processing.

Keywords: instantaneous phases; instantaneous frequencies; photoplethysmogram; electrocardio-
gram; respiration; RR intervals; wavelet transform; cardiorespiratory interaction; wearable devices

MSC: 37M10

1. Introduction

An interaction of the processes of respiration and autonomic control of blood circula-
tion can be considered an interaction of complex physiological systems, which represent
a network of coupled nonlinear oscillators. Therefore, investigations of coherence and
synchronization in such complex systems are an important task.

Cardiorespiratory interaction has thus attracted much attention from researchers.
Usually, a cardiorespiratory interaction is identified by analyzing the respiratory sinus
arrhythmia [1–3] and phase synchronization between the main heart rhythm and respira-
tion [4–9]. However, the interaction between respiration and the low-frequency component
of a heart rhythm, which is associated with the process of autonomic control of blood circu-
lation, also plays an important role in the cardiorespiratory interaction. It has been shown
that this type of cardiorespiratory interaction is important in studies of sleep [10–12] and
healthy aging [13–16], in the assessment of psychophysiological state [17], in the prediction
of complications of cardiovascular diseases [18,19], and in basic research [20,21].

Usually, the analysis of a cardiorespiratory interaction is carried out from the analysis
of bivariate data, i.e., simultaneously recorded signals of respiration and electrocardiogram
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(ECG). However, the cardiorespiratory interaction can be revealed from the analysis of
univariate data. In [9], we demonstrated that rhythm, reflecting some properties of the
breathing process, can be extracted from the sequence of intervals between the heartbeats.
The authors of [9] showed that from the sequence of intervals between the heartbeats, it is
possible to extract the main heart rhythm, respiration, and the process of controlling heart
rhythm with a frequency of about 0.1 Hz. Then, by determining the instantaneous phases
of these rhythms, one can study the cardiorespiratory interaction.

In [22–31], it was reported that the spectral components of the photoplethysmogram
(PPG) signal in the high-frequency (HF) range (0.15–0.4 Hz), associated with the frequency
of spontaneous respiration of healthy humans, are due primarily to the mechanical contri-
bution of respiration to the dynamics of a PPG. Such results show the promise of using the
univariate data of PPG signals for calculating some characteristics of respiration. This is
of particular interest in the development of small-sized ergonomic wearable monitoring
diagnostic devices [32].

A number of methods have been proposed for extracting the respiratory signal from a
PPG signal [33–46]. For example, the respiratory signal can be extracted using bandpass
filtering of a PPG with linear filters [33]; discrete wavelet transform [34], including the
automatic selection of the mother function for a wavelet transform [35]; a singular spec-
trum analysis [36]; and a principal component analysis [37] with its modifications: multi-
scale principal component analysis [38] and modified multi-scale principal component
analysis [39].

To increase the accuracy of the estimation of the instantaneous frequency of respiration,
methods have been proposed using several surrogate respiratory signals obtained from
a univariate PPG [40–43]. In these papers, reference points (systolic and diastolic peaks,
etc.) of the PPG were detected and, then, the pulse rate variability, pulse amplitude vari-
ability, and pulse width variability were estimated using these reference points. In [40,41],
the authors averaged the periodogram pulse rate variability, pulse amplitude variability,
and pulse width variability and determined the instantaneous frequency of respiration
by analyzing the maximum power of the averaged periodogram in the frequency range
of spontaneous breathing. The authors of [42] proposed a method based on a mutual
frequency–time analysis of pulse rate variability and pulse amplitude variability. The
instantaneous frequency of respiration was determined using the maximum power of the
resulting coherence spectrum in the respiratory frequency range. The authors of [43] pro-
posed a method named secondary wavelet feature decoupling to extract the instantaneous
frequencies of the respiratory signal.

In [44], the empirical mode decomposition of the PPG signal was used to extract
the frequency of respiration. In [45], a neural network was built to extract the periods
of inhalation and exhalation from a contactless PPG signal. However, most of the above-
mentioned methods demonstrated large errors in the values of instantaneous frequencies
of respiration estimated from the PPG signal in comparison with a direct analysis of the
respiratory signal. Moreover, there are no studies aimed at extracting the instantaneous
phases of respiration from a univariate PPG. The instantaneous phase of the signal is
necessary for methods of detecting the phase coherence, phase synchronization, and
directed couplings between the elements of multicomponent systems [46]. Thus, the task
of extracting the characteristics of a respiratory signal from a univariate PPG signal is an
important problem. At the same time, despite a significant number of papers, the accuracy
of estimating the instantaneous frequencies of respiration in these studies is worse than
when using a direct analysis of the respiratory signal using multichannel data.

Therefore, the goal of this paper is to develop a method of determining the instanta-
neous phases and instantaneous frequencies of the respiratory signal from the univariate
data of a PPG.
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2. Materials and Methods
2.1. Design of the Study and the Experimental Data

We analyzed the records of 61 healthy men aged 21 ± 3 years (mean ± standard
deviation) with an average level of physical activity. The study protocol was as follows:
6 min resting period (R1), 6 min of the Stroop color word test (S1), 6 min resting period (R2),
and 6 min of the mental arithmetic test (S2). During the experiment, volunteers breathed
spontaneously. During stages R1 and R2, volunteers were asked to relax. The protocols for
performing the Stroop color word test and mental arithmetic test were taken from [47,48].

During the testing, we recorded the signals of respiration (BR) using a recursion sensor,
an ECG in standard Einthoven lead I, and a PPG from the distal phalanx of the left ring
finger with a reflected light sensor with a wavelength of 532 nm. All signals were recorded
using the standard certified digital electrocardiograph Encefalan_EEGR-19/26 [49] with a
250 Hz sampling frequency and a 16-bit resolution. The signals were filtered at a bandpass
of 0.016–70 Hz.

2.2. Methods

We extracted from the ECG signal a sequence of intervals between the heartbeats by de-
tecting the position of R peaks and calculating the time intervals between them (Figure 1a).
From the PPG signal, we extracted a sequence of intervals between the heartbeats as the
series of intervals between the local positive maximal PPG extremes in consecutive cardiac
cycles (Figure 1b). According to the recommendations in [50], nonequidistant sequences
of RR intervals and PP intervals were approximated by β-splines and resampled with a
frequency of 250 Hz. For brevity, such equidistant realizations obtained from the ECG and
PPG were called RR and PP, respectively (Figure 1c). The respiratory signal is shown in
Figure 1d.
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Figure 1. Experimental signals for subject No. 14 at stage R1: (a) ECG; (b) PPG; (c) RR and PP
intervals. Nonequidistant sequences of RR and PP intervals are shown with red and blue dots,
respectively. Approximations of these sequences are shown with red and blue lines, respectively;
(d) respiratory signal.

From the RR, PP, and PPG signals, the instantaneous phases and instantaneous fre-
quencies of processes observed at characteristic respiration frequencies of 0.14–0.50 Hz
were extracted using wavelet transform [51]. The obtained time series were compared with
the realizations of the instantaneous phases and frequencies extracted directly from the
time series of the respiratory signal.
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We used the continuous wavelet transform of the signal x(t) defined as follows:

W(a, b) =
1√
a

∞∫
−∞

x(t)ψ∗(
t− b

a
)dt (1)

where ψ is a basis function; a is the scale variable defining the width of the wavelet; b is the
translation variable, which determines the shift in the basis function along the time axis;
and a and b are the coefficients of the wavelet transform [51]. As a complex basis function,
we chose the Morlet wavelet:

ψ(t) = π−1/4 exp(jkt) exp(−t2/2) (2)

where k is the wavelet parameter, t is a time, and j is the imaginary unit. The choice of
wavelet parameter k = 2π provided a relationship between the scale parameter and the
frequency of the spectral components of the signal f in the form a = 1/ f , allowing the
wavelet spectrum to be expressed in Hz.

In this case, the complex wavelet spectrum can be defined as follows:

W( f , b) = |W( f , b)| exp(−jΦ( f , b)) (3)

where |W( f , b)| is the amplitude wavelet spectrum (the absolute value of complex func-
tion |W( f , b)|) and Φ( f , b) = argW( f , b) is the phase wavelet spectrum. The amplitude
and phase wavelet spectra of the analyzed signals were used in our paper to extract the
instantaneous frequency and phase of the respiratory signal.

To extract the instantaneous frequency of the respiratory signal, the skeletons of these
spectra in the respiratory frequency range were calculated using the amplitude wavelet
spectra RR, PP, and PPG. To do this, in the specified range for each shift value b, the
maximum amplitude |W( f , b)| was determined. The frequency values corresponding
to the skeletons of the respiratory signals, RR, PP, and PPG— fBR(t), fRR(t), fPP(t), and
fPPG(t), respectively—were used in the paper as sequences of the instantaneous frequencies
of the corresponding signals. The instantaneous phases of the analyzed signals—ϕBR(t),
ϕRR(t), ϕPP(t), and ϕPPG(t), respectively—were determined from the phase spectrum as
phases Φ( f , b) calculated along the found skeletons.

Breathing is a nonlinear, nonstationary process. The manifestation of its oscillatory
activity in the PP and PPG signals is associated with distortions of various natures and
interference of components caused by respiratory activity with other processes that have
similar frequencies in these signals. We proposed a method aimed at clarifying the position
and shape of the instantaneous frequency skeleton in the wavelet spectra of the analyzed
PP and PPG signals. The method is based on known data suggesting that the breathing
process exhibits oscillatory activity both in the process of heart rate variability and in
oscillations of blood supply to the vessels of limbs [22–30]. Moreover, according to these
studies, the mechanisms leading to the projection of oscillatory breathing activity onto
oscillations in signals associated with heart rate variability and blood pressure fluctuations
are fundamentally different [31]. Therefore, we proposed to calculate the element-wise
product of the amplitude wavelet spectra of the PP and PPG under the assumption that the
frequency components common to these signals associated with respiratory activity will be
more contrastingly highlighted against the background of oscillations of a different nature,
not associated with the general respiratory signal.

For all time scales f and values of the shift parameter b, the following element-wise
product |W( f , b)|p was calculated as follows:

|W( f , b)|p = (|W( f , b)|PP � |W( f , b)|PPG) f b, ∀ f , b (4)

where � denotes the element-wise product and the brackets mean that we go through all
combinations of f and b.
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After such an operation, the skeleton |W( f , b)|p was calculated, similarly to the method
described above, as the maximum value of the amplitude spectrum |W( f , b)|p for each
value of the shift parameter b. Using the skeleton, the instantaneous frequency fp(t)
and instantaneous phase ϕp(t) of the breathing process were determined. The ratios of
instantaneous frequencies fBR(t)/ fPP(t), fBR(t)/ fPPG(t), and fBR(t)/ fp(t) were calculated
and compared with each other.

In addition, for each instantaneous phase difference ϕBR(t)− ϕPP(t), ϕBR(t)− ϕPPG(t),
ϕBR(t)− ϕp(t), ϕBR(t)− ϕRR(t), and ϕp(t)− ϕPP(t), the phase coherence coefficient [52]
was estimated:

γ =

√
〈cos ∆ϕ(t)〉2 + 〈sin ∆ϕ(t)〉2 (5)

where the operator 〈〉 denotes an average over time and ∆ϕ(t) is the corresponding differ-
ence in the instantaneous phases of oscillations. The obtained values of γBR,PP, γBR,PPG,
γBR,p, γBR,RR, and γp,PP were compared with each other.

To compare our results from extracting the instantaneous frequencies of respiration
from the PPG signal with the results of other authors, we evaluated the root mean squared
normalized error (RMSNE) index, defined as follows:

RMSNEsignal =

√√√√∑n
i=1

( fBR(ti)− fsignal(ti)

fBR(ti)

)
n

2

· 100% (6)

where ti is the discrete time, n is the number of instantaneous frequency values, fBR(ti) is the
value of the instantaneous frequency of respiration extracted from the wavelet transform
skeleton of the respiratory signal, and fsignal(ti) denotes the instantaneous frequency of
respiration extracted in another way. “Signal” in (6) can be the PPG, PP, or p.

In addition to a direct comparison of the instantaneous phases and instantaneous
frequencies of the analyzed oscillatory processes, their dynamics were studied in the active
experiment, in which healthy volunteers completed cognitive tasks. In [17], we showed
a statistically significant decrease in coherence between the instantaneous phases of the
respiratory signal and RR intervals at stages S1 and S2 in comparison with R1 and R2,
respectively. In this paper, we compared the values of the phase coherence coefficient at
different stages of the experiments for the instantaneous phases of the analyzed processes,
extracted in various ways: from the RR and respiratory signals, as well as from the PP
and PPG signals. The median values γS1

BR,RR, γR1
BR,RR, γS2

BR,RR, γR2
BR,RR, γS1

p,PP, γR1
p,PP, γS2

p,PP, and

γR2
p,PP calculated at each stage of the experiment and the medians of individual differences

∆γS1
BR,RR = γS1

BR,RR − γR1
BR,RR, ∆γS2

BR,RR = γS2
BR,RR − γR2

BR,RR, ∆γS1
p,PP = γS1

p,PP − γR1
p,PP, and

∆γS2
p,PP = γS2

p,PP − γR2
p,PP were compared.

We compared the statistical moments of low orders for all indices calculated in our
study from experimental signals. During the statistical analysis of the results, the proportion
of humans was analyzed for which it was possible to identify a response to cognitive tasks
using experimental signals of respiration and RR, or only the univariate signal of PPG.

3. Results

Figure 2 shows the wavelet spectra of the respiratory signal, PP, and PPG, and the
element-wise product amplitude wavelet spectra of PP and PPG for subject No.14 at stage
R1. These results are typical for all experimental records. The wavelet spectra of signals
in Figure 2 make it possible to clearly trace the change over time in the intensity of the
oscillation amplitude of the wavelet transform coefficients at different frequency scales.
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Figure 2. Wavelet spectra of the signals for subject No. 14 at stage R1: (a) respiration; (b) PP;
(c) PPG; (d) element-wise product of amplitude wavelet spectra of PP and PPG. The color intensity is
proportional to the normalized value of the wavelet transform coefficients. The red dotted line marks
the skeleton of the respiratory signal. The white dotted line marks the skeleton in the respiratory
frequency range of 0.14–0.50 Hz.

The wavelet spectrum of the respiratory signal (Figure 2a) demonstrates clear and
contrasting changes over time in the instantaneous frequency of respiration. However, in
the spectra of the PP (Figure 2b) and PPG (Figure 2c), the respiratory components, although
traceable, are significantly less contrasting. The skeleton of the respiratory signal is shown
in Figure 2a–c with a red dotted line. The white dotted line in Figure 2a–c marks the
skeleton in the respiratory frequency range of 0.14–0.50 Hz. These figures allow us to
trace over time the dynamics of instantaneous frequencies of respiration estimated from
various signals. However, a comparison of Figure 2a with Figure 2b,c shows that nonlinear
distortions and stochastic influences lead to visually noticeable distortions of the skeletons
obtained from the PP and PPG signals with respect to the respiratory signal itself. At the
same time, the analysis of the element-wise product and the skeleton calculated from it
(Figure 2d) shows, when compared with the wavelet spectrum of respiration (Figure 2a),
much better correspondence to the reference respiratory signal.

To compare the capabilities of the wavelet transform in extracting the instantaneous
frequencies and instantaneous phases of the breathing process from various signals, we
calculated from the skeletons the ratios of instantaneous frequencies of the PP, PPG, and
element-wise product to the instantaneous frequency of respiration, as well as the differ-
ences between the instantaneous phase ϕBR(t) and instantaneous phases ϕPP(t), ϕPPG(t),
and ϕp(t) (Figure 3).
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subject No. 14 at stage R1.
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From Figure 3a, it can be seen that the ratio of instantaneous frequencies fBR(t)/ fp(t)
remains close to unity throughout the entire record. It indicates a good agreement between
fBR(t) and fp(t). In this case, the ratios fBR(t)/ fPP(t) and fBR(t)/ fPPG(t) demonstrate
large oscillations (Figure 3a). The ratio fBR(t)/ fPP(t) turns out to be close to unity only at
certain time intervals. The values of fPPG(t) demonstrate slightly better correspondence to
fPP(t) than fBR(t) (Figure 3a).

Phase difference ϕBR(t)− ϕp(t) fluctuates around a constant value throughout the
entire record (Figure 3b). This behavior of the phase difference indicates a high coherence
(the coherence value is 0.86) of the phases ϕBR(t) and ϕp(t), and their closeness. Phase
differences ϕBR(t)− ϕPP(t) and ϕBR(t)− ϕPPG(t) show qualitatively different behaviors
(Figure 3b). It can be seen that epochs in which the differences of these phases remain on
a flat plateau alternate with epochs of rapid growth of phase differences, corresponding
to incoherent behavior. The shortest sections of coherent behavior and rapid increase in
the phase difference over time are observed for ϕBR(t)− ϕPP(t) (Figure 3b). The coherence
between ϕBR(t) and ϕPP(t) was 0.09, while the coherence between ϕBR(t) and ϕPPG(t)
was 0.14.

The results of a quantitative comparison of the capabilities of wavelet spectra in ex-
tracting the instantaneous frequencies and instantaneous phases of respiration from PP and
PPG at stage R1 are presented in Figure 4 for the entire ensemble of experimental records.
Figure 4a shows that the ratio of instantaneous frequencies fBR(t)/ fp(t) for the entire
ensemble is significantly closer to 1 (1.05(1.01;1.12), median, first and third quartiles) than
fBR(t)/ fPP(t) (1.42(1.22;1.62)) and fBR(t)/ fPPG(t) (1.65(1.42;1.86)). The last ratio shows the
worst correspondence between fPPG(t) and fBR(t) among the compared pairs. An analy-
sis of the phase coherence coefficient (Figure 4b) also confirms the previous conclusions.
On average, for the ensemble, the respiratory phase ϕBR(t) shows the highest coherence
with ϕp(t) (0.29(0.17;0.47)) and the lowest coherence with ϕPPG(t) (0.06(0.03;0.14)). The
coherence between ϕBR(t) and ϕPP(t) was 0.12(0.07;0.24).
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Figure 4. Results of a quantitative comparison of the ratios of instantaneous frequencies and
phase coherence coefficients for the ensemble of experimental signals at stage R1: (a) fBR(t)/ fPP(t),
fBR(t)/ fPPG(t), and fBR(t)/ fp(t). (b) γBR,PP, γBR,PPG, and γBR,p. The box boundaries are the first
and third quartiles, the horizontal line is the median, and the whiskers are the 5 and 95 percentiles.

To compare our results of extracting the instantaneous frequencies of respiration from
the PPG signal with the results of other authors, we calculated the RMSNE measure (6);
see Figure 5. This figure shows that the values of RMSNEp are significantly closer to
0 (1.7(0.7;3.0)) than RMSNEPPG (16.0(10.0;20.7) and RMSNEPP (11.2(6.3;17.8). Using a direct
analysis of the skeleton of the PPG wavelet transform to extract respiration, the authors
in [35] estimated the median value of RMSNE as 2.37, which is inferior to our results.
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Figure 5. Statistics of the values of RMSNE index at stage R1 for the ensemble of experimental signals:
(a) histograms of the probability density function of RMSNEsignal , (b) box–whisker diagram for the
indicated distributions. The box boundaries are the first and third quartiles, the horizontal line is the
median, and the whiskers are the 5 and 95 percentiles. The horizontal line above RMSNE represents
the median value obtained for the RMSNE estimation in [35].

Thus, the proposed method of extracting the instantaneous frequencies and phases
of respiration from the wavelet spectrum |W( f , b)|p skeleton made it possible to obtain a
noticeably better correspondence to fBR(t) and ϕBR(t), than when using other methods of
extracting the instantaneous frequencies and phases of respiration from PPG.

To assess the possibility of analyzing the instantaneous phases of respiration using a
univariate signal of the PPG, the proposed method of ϕp(t) extraction was used during
the analysis of cardiorespiratory interaction in an active biophysical experiment with a
cognitive task. Such physiological tests demonstrated a significant decrease in coherence
between ϕRR(t) and ϕBR(t) in the majority of subjects during the stages of cognitive task
compared to the stages of rest [17].

The experimental signals were analyzed in accordance with the algorithm proposed
in [17], with calculations of coherence γBR,RR at all stages of the experiment. From the
ensemble of 61 analyzed records, 50 records (82%) were selected that demonstrated a
response to cognitive load with a decrease in γBR,RR at least at one of the test stages—S1
or S2—compared with R1 or R2, respectively. For these 50 records, the ability to detect a
cognitive load response from a univariate PPG signal using the calculation of γBR,RR and
γp,PP was compared.

In accordance with our results obtained in [17], we expect a decrease in the calculated
indices at the stages of cognitive load and negative values of individual differences in the
indices calculated at the stages of cognitive load and rest. The results of such an analysis and
comparison are presented in Figure 6. Figure 6a shows the values of γBR,RR, while Figure 6b
shows the values of γp,PP. It can be seen that both indices demonstrate a pronounced
response to cognitive load, decreasing during the transition from R1 to S1 and during the
transition from R2 to S2 (Figure 6a,b). An analysis of the statistics of individual differences
in coherence coefficients during the transition from rest to cognitive load confirms these
conclusions (Figure 6c,d). It can be seen that ∆γBR,RR (Figure 6c) demonstrates a slightly
more pronounced decrease than ∆γp,PP (Figure 6d). However, the qualitative results of
comparing the response to cognitive load for the compared indices are similar.

Among the records of 50 subjects, 35 (70%) subjects showed negative values of index
∆γS1

BR,RR at stage S1, among which 29 (83%) subjects showed negative values of index
∆γS1

p,PP. At stage S2, among these 50 subjects, 40 (80%) subjects showed negative values of

index ∆γS2
BR,RR, among which 28 (70%) subjects showed negative values of index ∆γS2

p,PP.
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Figure 6. Results of calculating coherence indices from bivariate records of RR and respiration, and
univariate record of PPG for an ensemble of 50 volunteers: (a) γBR,RR and (b) γp,PP. Individual
differences in coherence indices: (c) ∆γBR,RR and (d) ∆γp,PP. The box boundaries are the first and
third quartiles, the horizontal line is the median, and the whiskers are the 5 and 95 percentiles.

4. Discussion

We have proposed a new method of determining the instantaneous frequencies and
instantaneous phases of the respiratory signal from the PPG signal. The proposed approach
increases the accuracy of assessing these characteristics by combining the information about
the dynamics of the breathing process extracted from PPG and the sequence of intervals
between the heartbeats.

According to a number of studies [22–31], the breathing process manifests itself in PPG
as a result of mechanical leakage caused by changes in intrathoracic pressure transmitted
along the arterial tree and vasoconstriction of the arteries during inspiration [53] with
breathing movements. There is evidence that a decrease in the stroke volume of the heart
during inspiration due to changes in intrathoracic pressure, which reduces the amplitude
of blood pressure oscillations, also contributes to this process [54].

The mechanisms of manifestation of respiratory activity in the dynamics of the du-
ration of time intervals between the heartbeats are fundamentally different. According
to [28,29], there is a complex network of couplings between the structures of the brain stem
involved in the regulation of the breathing process and the elements of the parasympathetic
and sympathetic branches of the autonomic nervous system, which modulate the heart rate
by influencing the pacemakers of the sinoatrial node.

Such qualitatively different mechanisms lead to different nonlinear transformations of
the respiratory signal when it is projected into the PPG signal and the sequence of intervals
between the heartbeats. In these cases, various stochastic factors act on the path of the respi-
ratory signal. However, information from the sequence of intervals between the heartbeats
and from the PPG in the range of respiratory frequencies complements each other, allowing
us to extract common components caused specifically by the dynamics of respiration and
to weaken the signal components caused by noise and the influence of other processes not
related to respiration but with a similar spectral composition: parasympathetic activity,
higher harmonics of sympathetic oscillations, etc. The proposed method is based on such
reasoning, and in our opinion, the obtained results confirm its promise.
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The element-wise product of the amplitudes of the PP and PPG wavelet spectra is the
basis of our approach. Such an operation apparently introduces some correlations with
these processes into the resulting instantaneous phase.

We believe that this is precisely what accounts for the slight increase in absolute values
of γp,PP compared to γBR,RR (Figure 6a,b). At the same time, this artificially introduced
coherence practically did not interfere with the detection of various states of subjects in
the active experiment (Figure 6c,d). The higher dispersion ∆γp,PP compared to ∆γBR,RR is a
consequence of a worse signal-to-noise ratio when analyzing the univariate signal of PPG.

Extracting the sequence of intervals between the heartbeats from PPG remains a
subject of debate. There are a number of papers that discuss the influence of the modulation
of arterial vasomotor tone under the influence of autonomic regulation processes and
humoral factors on the signals received from a PPG [26–30]. However, apparently, such
influences manifest themselves predominantly in other frequency ranges compared to the
respiratory range we are considering, since our comparison of the components of the RR
and PP intervals in the analyzed range showed their good quantitative agreement. Minor
differences, in our opinion, are due to the greater influence of noise and artifacts on the
PPG, which reduce the accuracy of identifying the extremes of this signal compared to the
sharply defined R peak of the ECG of healthy subjects. In addition, the analysis of heart rate
characteristics based on a single PPG signal, despite the above-mentioned discussion in the
literature, is currently widespread, thanks to the wide use of gadgets such as smart watches
and fitness bracelets, as well as other wearable devices [55–61]. Hundreds of techniques
have been developed to extract the sequence of intervals between the heartbeats from a
PPG, including those that work effectively in real time in such wearable devices [62].

We believe that the proposed method for determining the instantaneous phases and
instantaneous frequencies of respiration from a univariate signal of PPG may be important
for expanding the capabilities of non-invasive ergonomic diagnostics of a human psy-
chophysiological state, primarily using common household wearable devices. In addition,
technologies for the contactless registration of PPG using videocameras have recently
appeared [63–66].

We used the Morlet wavelet, since it allows one to normalize the scale parameter in Hz.
This is convenient for analyzing the values of instantaneous frequencies of respiration. At
the same time, the use of another wavelet can potentially increase the accuracy of extracting
the characteristics of a respiratory signal from a PPG. The issue of choosing the wavelet
mother function was considered in [35] and deserves a separate additional study.

We studied processes with fairly low characteristic frequencies, which were below
0.5 Hz. Therefore, we believe that the sampling rate when implementing the method on
wearable devices can be significantly reduced to increase processing speed.

Important issues that we did not consider in our study are the dependence of the
obtained results on the PPG sensor placement in other anatomical locations (ear, forehead,
forearm, shoulder, wrist, sternum, etc.), the use of sensors with different wavelengths [67],
sensor configuration (use of reflected or transmitted light), as well as the impact of mo-
tion artifacts on the results, to which the PPG signal is more susceptible than ECG and
respiratory signals. We plan to explore these issues in the future.

5. Conclusions

The method of determining the instantaneous phases and instantaneous frequencies
of the respiratory signal from the univariate data of a PPG was proposed. This method
was based on the element-wise product wavelet spectra of a PPG and the sequence of
intervals between the heartbeats extracted from the PPG with the calculation of the skeleton
of the resulting spectrum in the respiratory frequency range. The instantaneous phases and
instantaneous frequencies of respiration were extracted from the PPG wavelet spectrum
along the found skeleton.

It was shown that this element-wise product makes it possible to more accurately
identify the instantaneous frequency and instantaneous phase of respiration than can be
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achieved using other methods. The ratio of instantaneous frequencies extracted directly
from the respiratory signal and using the proposed method was 1.05(1.01;1.12) (median
(Q1;Q3)), while the ratio of instantaneous frequencies extracted from the respiratory signal
and from PPG was 1.65(1.42;1.86) and the ratio of instantaneous frequencies extracted from
the respiratory signal and from the PP intervals was 1.42(1.22;1.62).

A comparison of the proposed method with other methods using the wavelet trans-
form with various mother functions also showed the advantage of our approach. The
median value of the RMSNE index was the lowest, equal to 1.7, for our method, while for
the methods based on the analysis of the PPG or PP intervals, the median values of the
RMSNE index were 16.0 and 11.2, respectively.

In our study, we extracted for the first time the instantaneous phases of a respi-
ratory signal from the univariate signal of a PPG. The proposed method demonstrates
high coherence (0.29(0.17;0.47)) of the instantaneous phases extracted directly from the
signal of respiration and from the signal of a univariate PPG. In the case of the direct
analysis of the PPG and PP intervals, the coherence takes the values 0.06(0.03;0.14) and
0.12(0.07;0.24), respectively.

The proposed method was verified by analyzing the data of healthy subjects in the
active experiment while completing cognitive tasks. An analysis of the changes in the
values of coherence for the instantaneous phases of the process of controlling the heart rate
in the HF band and respiration, extracted from a univariate PPG, showed a decrease in
coherence at the stages of the experiment with cognitive loads with respect to the rest stage.
For the stage of cognitive load, this change in coherence was −0.05(−0.13;0.01) for the
Stroop color word test and −0.06(−0.13;−0.02) for the mental arithmetic test. At the same
time, among 50 volunteers for whom such dynamics were identified from the sequence
of RR intervals and respiration, the presence of a cognitive load was detected from the
univariate PPG signals for 83% of the subjects for the Stroop color word test and 70% of the
subjects for the mental arithmetic test. Therefore, the proposed method can be useful for
developers of wearable monitoring diagnostic devices.
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