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Abstract: Irregularity is an important aspect of the cardiovascular system dynamics. Numerical
indices of irregularity, such as the largest Lyapunov exponent and the correlation dimension estimated
from interbeat interval time series, are early markers of cardiovascular diseases. However, there
is no consensus on the origin of irregularity in the cardiovascular system. A common hypothesis
suggests the importance of nonlinear bidirectional coupling between the cardiovascular system and
the respiratory system for irregularity. Experimental investigations of this theory are severely limited
by the capabilities of modern medical equipment and the nonstationarity of real biological systems.
Therefore, we studied this problem using a mathematical model of the coupled cardiovascular system
and respiratory system. We estimated and compared the numerical indices of complexity for a model
simulating the cardiovascular dynamics in healthy subjects and a model with blocked regulation of
the respiratory frequency and amplitude, which disturbs the coupling between the studied systems.

Keywords: cardiovascular system; complexity; nonlinear dynamics; mathematical modeling

1. Introduction

The origin of the irregularity or complexity of the heart period has been actively
discussed for more than 30 years [1,2]. The answer to the question about the origin of
irregular dynamics in the cardiovascular system (CVS) is fundamentally important for
understanding the CVS behavior [3–5]. Moreover, the measures of complexity correlate
with the physiological condition of the CVS [6–10] and are important for medical diagnostics
of several cardiovascular diseases, including arterial hypertension [11], coronary heart
disease and mortality from other causes [12]. Several authors have shown that the largest
Lyapunov exponent and fractal dimension are perspective measures for medical diagnostics
and therapy of the CVS [13–15]. However, researchers still debate the source of complexity
in the CVS.

The discussion is held around three possible sources of complexity in the CVS: deter-
ministic chaotic dynamics of the elements of the CVS, noise of a “central” origin and the
irregularity of respiration and cardiorespiratory coupling.

One of the possible sources of chaotic dynamics in the CVS is the deterministic chaotic
activity of the autonomic control of circulation [7,16–18]. Ernst [19] hypothesized that the
irregularity of the heart period is caused by the influence of the higher nervous centers.
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Earlier, we conducted a study on a mathematical model of the CVS [20] and showed that the
autonomic control of the circulation exhibits deterministic chaotic dynamics even without
the influence of the higher nervous centers.

Another possible source of the complexity is the heart itself. Experimental studies
have proved that disturbance of myocardial conductivity could lead to the generation of
chaotic dynamics. However, this behavior is caused by pathological changes in the heart
and is not typical for patients without cardiovascular diseases [21–24].

Noise also affects the dynamics of the CVS. It was shown that the power of noise in
the sequence of intervals between the R peaks of the ECG signal (RR intervals) decreases in
deep sleep. Since deep sleep is associated with a weaker influence of the central nervous
system on the circulation [2,25], the central nervous system is hypothesized to be the source
of this noise.

Cardiorespiratory coupling is another important factor in the dynamics of the
CVS [26–30]. Several authors suggested [3] that the irregularity of respiration and the
nonlinear nature of cardiovascular coupling are potential sources of the complexity in the
heart period.

In the literature, there are no quantitative estimations for the contribution of each afore-
mentioned factor, and many researchers are skeptical about the validity of complexity measure
estimation from experimental signals of biological origin, which are typically nonstationary
and noisy. These properties of biological signals complicate the interpretation of the results
and the experimental search for the source of complexity in the heart period [6,31–33].

Under such conditions, it seems promising to supplement experimental studies with
investigations of mathematical models of the CVS. Mathematical models based on physical
and physiological principles can be used to simulate experiments which are impossible
in vivo. When investigating the source of complexity in the heart rate, a model could
be used to simulate a series of active experiments with successive blockades of possible
sources of complexity, and after each test, the resulting changes in the complexity indices
can be measured.

Detailed models of particular elements and aspects of the CVS have been proposed,
which model the autonomic control of mean arterial pressure [17,18], impulse propaga-
tion in the myocardium tissue [34], gas exchange in the respiratory system [35] and car-
diorespiratory coupling [36]. There are also complex large-scale models that combine the
autonomic and humoral control of the circulation, respiratory system and central nervous
system [37,38]. Drawbacks of large-scale models are the problems with parameterization
and the simplified simulation of particular elements of the CVS. These shortcomings limit
the ability of such models to simulate several important effects, such as coupling between
the low-frequency (~0.1 Hz) oscillations in RR intervals and arterial pressure [39].

The model we developed for this study is intermediate in its complexity. The model
provides a detailed simulation of the autonomic control of the circulation, following the
models of [40,41], and also takes into account the nonlinear, self-exciting nature of the
autonomic control [17,18]. The results of Ben-Tal et al. [42] were the basis for our model
of the respiratory system. The model takes into account the influence of CO2 and O2
concentrations in the arterial blood on the amplitude and frequency of respiration. Car-
diorespiratory coupling was implemented following the Magosso and Ursino model [38],
in which the activity of the autonomic control is a function of the activity of not only the
baroreceptors but also the carotid and central chemoreceptors.

Earlier, we conducted a model study [20] which provided further arguments towards
the hypothesis that the complexity of the heart period originates from chaotic dynamics
of the autonomic control and “central” noises. We also found no significant effects of
respiration on the complexity of the heart period. However, this earlier model simulated
respiration as an external sine wave generator with a randomized frequency, which was
independent of the dynamics of the CVS.

In the present model study, a more detailed simulation of the respiratory system
allowed us to analyze the contribution of nonlinear bidirectional coupling between the
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respiratory system and the CVS to the complexity of the heart period. We investigated
this problem by blocking the regulation of the respiratory frequency and amplitude, thus
disturbing the coupling, and then measuring the changes in the complexity measures.

2. Materials and Methods
2.1. Mathematical Model

Figure 1 illustrates the structure of our model. Sections 2.1.1–2.1.3 of this article provide
a detailed description of the equations, and Table 1 lists the parameters of the model.
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Table 1. Parameters of the model.

Parameter Value Parameter Value Parameter Value

g̃nap 133.33 p0
o 40 nv 1.5

g̃L 98 L 1.712 × 108 kb
1 0.55

b̃L 0.6667 KT 1 × 104 kb
2 6.5 × 10−2

ẼL 0.212 KR 3.6 × 106 kb
3 100

θ̃hp 0.313 fom 0.21 kb
4 40

σ̃hp 0.04 fcm 0 kb
5 0.47

τ̃hp 10 kc
1 0.585 p0 50

θ̃mp 0.367 kc
2 61 v0

αs 1.2
σ̃mp −3.3 × 10−2 kc

3 20.7 v0
βs 0.94

Tr1 0.35 kc
4 0.442 kb

αs 2.5
Tr2 0.35 θvc 5 kc

αs 1
Tr3 0.5 ko

1 −0.5 kr
αs 0.1

Tr4 1 × 10−4 ko
2 −50 kb

βs 2.5
ε 1 × 10−5 ko

3 20 kc
βs 1.5

IL 0.99999 ko
4 0.496 kr

βs 0.1
kx

1 2 ko
5 −5 × 10−5 v0

p 0
kx

2 1 ko
6 5.3 × 10−2 kb

p 1.3
Pm 760 kg

o 60 kc
p 0.6

PL0 4.5 kg
c 20 kr

p 0.3
kp 2.5 kK

c 25 kξ
p 5 × 10−2

E 2.5 kK
o 7.5 a 0.97

Ra 1 g0 16 τc 1.8
Dc 7.08 × 10−3 K0 0.75 τv 2.0
Do 3.5 × 10−4 kIk

1 0.1 kS
c 1.2

Pw 47 kIk
2 0.1 kS

v 1.2
σc 3.3 × 10−5 T0, s 0.78 θc 2.65
σ 4 × 10−2 Tsys, s 0.125 θv 2.65
Vc 7 × 10−2 kB

p 0.5 kc
ϕ 2.1

Cu 25.45 S0 25 kp
ϕ 9.5

Th 2 × 10−3 Ŝ 70 ĉc 2
r2 0.12 kc

S 40 v̂p 2.5
l2 1.64 × 105 kt

S 10 ns 2
H 10−7.4

τ
(0)
v 2.2 np 2

δ 101.9 τv 1.5 θp 0.5
p0

c 46 ĉv 10
All parameters listed in Table 1 are explained in Section 2.1.

We propose a model which consists of two main parts, where one part models the
cardiovascular dynamics, and the other part models the respiratory system. The equations
modeling the cardiovascular dynamics are based on the models proposed in [20,41,42]. We
used two equations to model the heart. The “integrate and fire” generator set the heart
frequency, which was modulated by the sympathetic and parasympathetic loops of the
autonomic control of the circulation. The second equation describes the heart contractility,
i.e., how much blood it pumps during one cardio cycle. The heart contractility is also a
function of the autonomic control. The model does not simulate the blood hydrodynamics;
it only simulates blood pressure in the aorta using two equations. The first equation
describes the rapid growth of the blood pressure during the first 0.125 s of the cardio cycle,
which is caused by the blood being pumped into the aorta. The second equation describes
the slow decrease in blood pressure, caused by the blood flowing into the peripheral
arterial vessels.

The focus of the model was on the simulation of the autonomic control of the circu-
lation, which includes the sympathetic control of the heart period and arterial pressure,
and the parasympathetic control of the heart period. The sympathetic control is activated
when the blood pressure drops below normal values. Activation of the sympathetic control
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increases the frequency of heart contractions and heart contractility, and contraction of arte-
rial vessels. The combination of these factors causes the blood pressure to rise. Activation
of the parasympathetic control has the opposite effect and is caused by the arterial pressure
exciding the normal levels. The arterial pressure is measured by the baroreceptors, located
in the aorta.

The sympathetic control is simulated using delayed negative feedback loops. The
general structure of the autonomic control was adopted from [40,41]. However, we intro-
duced a more detailed nonlinear transfer function for the baroreceptors. We also introduced
separated control loops of the α-sympathetic and β-sympathetic regulation of the arterial
pressure and heart period.

The model of the respiratory system is based on the model proposed in [42]. It consists
of the central pattern generator, which dictates the frequency and amplitude of respiration;
gas exchange between the alveoli and arterial blood; and the loops of the autonomic control
of respiration. The autonomic control of respiration functions similarly to the autonomic
control of circulation and is activated by the increase in the CO2 concentration and the
decrease in the O2 concentration in the blood. Changes in the gas concentrations are sensed
by the central and carotid chemoreceptors. We modified the models for the chemoreceptors
by introducing more detailed transfer functions [43].

We introduced the cardiorespiratory coupling in the same way as it was done by
Magosso and Ursino [38], where the activation of the central chemoreceptors excites both
the sympathetic and parasympathetic control of the circulation.

The proposed model is a non-autonomous system of thirteen differential equations,
several of which contain delayed arguments, and one equation contains a stochastic term.
The equations were solved numerically, using the Euler approach with an integration step
∆t = 0.0001 s, as it was recommended in [42]; when switching from the integration step of
0.1 ms to the integration step of 0.2 ms, the average values of the considered indices change
by less than 1%.

2.1.1. Central Pattern Generator of the Respiratory Rhythm

The model for the central pattern generator of the respiratory rhythm consists of
two main parts. The first one—the pre-Bötzinger complex (pre-Bötc)—is a population of
neurons in the medulla that activates and generates the spikes during inspiration. The
second part—the rostral ventral respiratory group (rVRG)—integrates the spikes from the
pre-Bötc complex and transmits them to the spinal cord, by which the electric signal reaches
the neurons of the diaphragm. Then, the diaphragm contracts and initiates inspiration.
During expiration, the central pattern generator of the respiratory rhythm is inactive, and
elastic forces relax the diaphragm [43]. The model did not simulate the activity of the
Bötzinger complex and also did not account for the pons and retrapezoid nucleus effects on
the respiratory center, since these factors only play a major role during forced breathing [43],
which is beyond the scope of the model. For the same reason, the model did not simulate
the intercostal muscles. When describing the equations, we used terminology similar to
that used in [42].

We adopted a model for pre-Bötc in such a way that it ensures an independent control
of the respiratory frequency and depth. The variable B(t) in Equation (1) denotes the mean
instantaneous firing frequency of the pre-Bötc neuron population. B(t) = 0 corresponds to
the absence of any neuronal activity, and B(t) = 1 corresponds to the synchronous firing of
each neuron from the pre-Bötc population at the highest frequency. B(t) is described by the
following equation:

.
B(t) = α(t)(1− B(t))− βB(t) + γ, (1)

where α(t)(1− B(t)) is the activation rate, βB(t) is the inactivation rate, γ is the external
drive, which can inhibit or excite the population of neurons, α(t) = g̃napmp(t)hp(t), β =

g̃t(t) + g̃L and γ = b̃g̃t(t) + ẼL g̃L are the functions of the excitatory and inhibitory drives,
g̃nap,g̃L, b̃L and ẼL are parameters that link B(t) to the average voltage, produced by the
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pre-Bötc neuron population [42], g̃t(t) is the variable regulating the respiratory frequency
(a higher g̃t(t) leads to more frequent inspirations and a somewhat lower amplitude of
respiration), hp(t) is the variable representing the inactivation gating of the persistent
sodium current and mp(t) is the variable representing the activation gating of the persistent
sodium current. .

hp(t) = αhp(t)
(
1− hp(t)

)
− βhp(t)hp(t), (2)

where

αhp(t) =
exp

(
−B(t)

)
2τ̃hp

, (3)

where B(t) =
(

B(t)− θ̃hp

)
/2σ̃hp,

βhp(t) =
exp

(
B(t)

)
2τ̃hp

, (4)

where θ̃hp, σ̃hp and τ̃hp are parameters.

mp(t) =
1

1 + exp
(

B̃(t)
) , (5)

where B̃(t) =
(

B(t)− θ̃mp

)
/2σ̃mp, θ̃mp and σ̃mp are parameters.

The output signal of rVRG is modeled using the following expressions:

Rp(t) =


K(t), if B(t) > Tr1 and Rp(t− ∆t) < Tr4,
Ip(t), if B(t) > Tr1,
0, if B(t) ≤ Tr2,
Rp(t− ∆t), if Rp(t− ∆t) > Tr1 and

∣∣∣ B(t)−B(t−∆t)
∆t

∣∣∣ < ε,

(6)

where

Ip(t) = IL

(
(B(t− ∆t) + B(t))

∆t
2

+ Rp(t− ∆t)
)

(7)

is the integral, which is calculated using the trapezoidal rule of integration, ε is a small
positive value and K(t) is the variable affecting the amplitude of respiration [42]; the
equation for K(t) is shown in Section 2.1.3.

2.1.2. Mathematical Model of the Lungs

The diaphragm is modeled using a linear equation for a spring, which is compressed
by the external force Rp(t) representing the output of the rVRG complex:

.
xm(t) = −kx

1xm(t) + kx
2 Rp(t). (8)

The pleural pressure PL(t) is described by the following expression:

PL(t) = Pm − PL0 − kpxm(t), (9)

where Pm is the mouth pressure, PL0 is the residual air pressure in the lungs after expiration
and kp is the transfer coefficient. Gas pressure in the alveoli PA(t) is described by the
following expression:

.
PA(t) =

PmE
PA(t)

QA(t) +
.
PL(t), (10)

where E is the lung elasticity, and QA(t) is the total gas flow into the alveoli:

QA(t) = q(t) + Dc(pc(t)− pac(t)) + Do(po(t)− pao(t)), (11)
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where q(t) = (Pm − PA(t))/Ra is the gas flow in the mouth (q(t) > 0 corresponds to
inspiration, and q(t) < 0 corresponds to expiration), Ra is the resistance of the airways, Dc
and Do are the diffusion capacities, pc(t) and po(t) are the partial pressures of CO2 and O2
in the blood, respectively, and pac(t) and pac(t) are the partial pressures of the same gases
in the alveoli:

pac(t) = fc(PA(t)− Pw), (12)

poc(t) = fo(PA(t)− Pw), (13)

where Pw is the pressure of water vapor at 37 ◦C. The partial pressures pc(t) and po(t)
were set to values p0

c and p0
o , respectively, (see Table 1) after each heart contraction, and in

between the contractions, they were modeled using the following equations:

.
pc(t) =

Dc

σcVcCu
(pac(t)− pc(t)) + δ

(
l2z(t)H
σc

− r2 pc(t)
)

, (14)

.
po(t) =

Do

σVcCu

(
1 + 4

Th
σ

dF
dp
∣∣p0

)
(pao(t)− po(t)), (15)

where σc and σ are the solubilities of CO2 and O2, respectively, in blood plasma, Vc is the
total volume of the lung capillaries, Cu is the molar volume of the gas at 37 ◦C and 760 mm
Hg and Th is the concentration of hemoglobin. The blood concentration of bicarbonate z(t)
was set to the fixed value z(t) = z0 = (46σcr2)/(l2H) after each heart contraction, and in
between the contractions, it was modeled using the following equation:

.
z(t) = δ(r2σc pc(t)− l2z(t)H), (16)

where r2 and l2 are the speed of dehydration and hydration reactions, respectively, H is the
concentration of H+ and δ is the speed of the chemical reaction of bicarbonate (HCO3

−),
H2O and CO2 [42].

F(p) =
LKTσp(1 + KTσp)3 + KRσp(1 + KRσp)3

L(1 + KTσp)4 + (1 + KRσp)4 , (17)

where L, KT and KR are parameters.
The dynamics of the relative concentration of CO2 and O2 are described as follows:

.
f o = [Do(po(t)− pao(t)) + q(t)( foi(t)− fo(t))−

− fo(t)(Do(po(t)− pao(t)) + Dc(pc(t)− pac(t)))]/VA(t),
(18)

.
f c = [Dc(pc(t)− pac(t)) + q(t)( fci(t)− fc(t))−

− fc(t)(Do(po(t)− pao(t)) + Dc(pc(t)− pac(t)))]/VA(t),
(19)

where foi and fci are the relative concentrations of CO2 and O2, respectively, in the in-
spired air:

foi(t) =
{

fom, q(t) > 0
fo(t), q(t) ≤ 0

, fci(t) =
{

fcm, q(t) > 0
fc(t), q(t) ≤ 0

, (20)

where fom and fcm are the relative concentrations of CO2 and O2, respectively, in the mouth.
The lung volume VA was calculated as follows:

VA(t) = (PA(t)− PL(t))/E. (21)

2.1.3. Control of Respiration

When modeling the control of respiration, we preserved the general structure of the
control system but replaced the linear models of the chemoreceptors, which were used
in [42,44], with the nonlinear sigmoidal transfer functions [43]. Following [37,38], we refer
to the chemosensitive area of the respiratory center as the central chemoreceptors. Since
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these chemoreceptors are mainly stimulated by the changes in the CO2 concentration in
the arterial blood, we refer to them as the central CO2 chemoreceptors. The activity of the
central CO2 receptors in the medulla is modeled as follows:

vc(t) = kc
1th((pce(t− θvc)− kc

2)/kc
3) + kc

4, (22)

where kc
1, kc

2, kc
3 and kc

4 are parameters, and θvc is the time delay due to the finite speed with
which blood flows from the aorta to the brain.

The activity of carotid O2 receptors is modeled as follows:{
vo(t) = ko

1th
(
(pco(t)− ko

2)/ko
3
)
+ ko

4, pce(t) ≤ 100,
vo(t) = ko

5 poe(t) + ko
4, pce(t) > 100.

)
(23)

Then, following the results of Ben-Tal et al. [40], the activity of the receptors controls
the frequency and depth of respiration:

g̃t(t) = g0 + kg
c vc(t) + kg

o vo(t), (24)

K(t) = K0 + kK
c vc(t) + kK

o vo(t) + Ik(t), (25)

where Ik(t) is the integral sum of chemoreceptor activity:

Ik(t) = kIk
1 ∆t

(
vc(t) + vc(t− ∆t)

2

)
+ kIk

2 ∆t
(

vo(t) + vo(t− ∆t)
2

)
. (26)

In this study, we used the proposed model to simulate the cardiovascular dynamics
in healthy subjects and subjects with blocked control of the respiratory frequency and
amplitude and, therefore, disturbed cardiorespiratory coupling. When simulating the
blockade, we set the parameters kg

c , kg
o , kK

c , kK
o , kIk

1 and kIk
2 to zero.

2.1.4. Model of the Cardiovascular System

The model of the cardiovascular system is based on the model proposed in our earlier
study [20]. Here, we closely follow this description, except for the aspects of the model
which were changed to integrate with the model of the respiratory system.

We used an “integrate and fire” model to simulate the beating heart:

.
ϕ(t) =

1
T0

fs(t) fp(t), (27)

where ϕ(t) is the phase of the sinus node, and T0 is the heart period, which is modulated
by the sympathetic and parasympathetic factors fs(t) and fs(t), respectively. Without the
autonomic control, the sinus node generates periodic saw-like impulses with a constant
period of T0 seconds.

The arterial pressure is modeled using the following two expressions. Expression (28)
describes the arterial pressure during the first Tsys seconds (0.125 s) after the initiation of
the heart cycle, and during that time, the arterial pressure rapidly grows:

psys(t) = Di−1 + S(t)
(t− Ti−1)

Tsys
exp

(
(t− Ti−1)

Tsys

)
+ kB

pVA(t), (28)

where Di−1 is the systolic pressure at the end of the previous cardiac cycle, Ti−1 is the
moment in time when the previous cardiac has ended, Tsys is a fixed duration of this
systolic phase and S(t) is the cardiac contractility [40] defined as

S(t) = S′(t) +
(
Ŝ− S′(t)

) S′nc(t)
Ŝnc + S′nc(t)

, (29)



Mathematics 2022, 10, 1088 9 of 18

where S′(t) = S0 + kc
Scc(t) + kt

SLi−1. Here, S0 is the heart contractility without the auto-
nomic control, Ŝ, kc

S and kt
S are parameters, cc(t) is the concentration of noradrenaline in

the blood that circulates in the heart and Li−1 is the duration of the previous cardiac cycle.
After Tsys seconds, the systolic phase of the cardiac cycle ends and the arterial pressure

begins to slowly decrease following the Windkessel model [45]:

.
pdia(t) = −

pdia(t)
τv(t)

, (30)

where τv(t) is the function of the vascular concentration of noradrenaline (cv(t)):

τv(t) = τ
(0)
v − τv

[
cv(t) + (ĉv − cv(t))

cv(t)
nv

ĉvnv cv(t)
nv

]
, (31)

where τ(0)v , τv, ĉv and nv are parameters.
The absolute value and rate of change in arterial pressure [40] are sensed by the

baroreceptor located in the carotid sinus nodes. To incorporate the nonlinear properties of
the baroreceptors, reported in [46], we also introduced the following sigmoidal nonlinearity.
To preserve the stationarity of the model, we also excluded the Brownian noise introduced
into this equation by Kotani et al.:{

vb(t) = kb
1th
(

p(t) + kb
2

.
p(t)− kb

3

)
/kb

4 + kb
5, p(t) ≥ p0

vb(t) = 0, p(t) < p0 = 50
, (32)

where kb
1, kb

2, kb
3, kb

4 and kb
5 are parameters of the nonlinearity, fitted to the data in [46], and

p0 is the lowest pressure baroreceptors react to [47].
The higher nervous centers process the inputs of the baroreceptors and adjust the

activity of the heart period autonomic control and the vessel tone autonomic control.
Seidel et al. [40] introduced an expression to calculate the efferent sympathetic nervous
activity vs(t) as an averaged firing rate of this population of neurons, similar to how the
neurons of the pre-Bötc complex were modeled in [42]. We mostly followed this approach
but separated the α-sympathetic activity vαs(t), mostly affecting the vessel tone, and the
β-sympathetic activity vβs(t), mostly affecting the heart period [37,38,46]:

vαs(t) = v0
αs − kb

αsvb(t) + kc
αsvc(t)− kr

αsVA(t), (33)

vβs(t) = v0
βs − kb

βsvb(t) + kc
βsvc(t) + kr

βsVA(t), (34)

where v0
αs and v0

βs describe the activity of the sympathetic control under resting conditions,
and kb

αs, kc
αs, kr

αs, kb
βs, kc

βs and kr
βs are the coefficients that reflect the influence of baro- and

chemoreceptor activity. Following the models from [37,38], we simulated the excitatory
influence of the central CO2 chemoreceptors on both the sympathetic and parasympathetic
branches of the autonomic control of the circulation. To simplify the model, we did not
simulate the effect of carotid O2 receptors on the autonomic control. According to the
experimental data, this influence is much weaker than the influence from the central
CO2 chemoreceptors when the blood concentration of O2 is normal or above the norm.
Activation of the parasympathetic autonomic control is described as [42]{

vp(t) = vp
′(t), vp

′(t) > 0
vp(t) = 0, vp

′(t) ≤ 0
, (35)

where vp
′(t) = v0

p + kb
pvb(t)+ kc

pvc(t)− kr
pVA(t)+ kξ

pξ(t), v0
p is the parasympathetic activity

under resting conditions, kb
p, kc

p and kr
p are the coefficients that reflect the influence of the

higher nervous centers on the parasympathetic control of the heart period and ξ is red
noise of a “central” origin [2,25], which is related to the influence of the higher nervous
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centers on the parasypathetic branch of the autonomic control. To preserve the simplicity
of the model, we introduced the noise only to the parasympathetic branch of the autonomic
control, but the attribution of the noise of a central origin to the parasympathetic loop
only is an incomplete interpretation [48]. To generate the noise, we used the first-order AR
model: ξt = aξt−1 + ξn, where a = 0.97, and ξn is the normal noise with zero mean and
dispersion of unity. Changes in the sympathetic activation affect the cardiac and vascular
concentrations of noradrenaline:

.
cc(t) = −

cc(t)
τc

+ kS
c vβs(t− θc), (36)

.
cv(t) = −

cv(t)
τv

+ kS
vvαs(t− θv), (37)

where τc and τv are the time constants, and θc and θv are the time delays caused by the
finite speed of the neural transition and the finite speed of noradrenaline turnover. Changes
in the concentration of noradrenaline and the activity of the parasympathetic control affect
the heart period:

fs(t) = 1 + kc
ϕ

(
cc(t) + (ĉc − cc(t))

cns
c (t)

ĉns
c + cns

c (t)

)
, (38)

fp(t) = 1− kp
ϕ

(
vp
(
t− θp

)
+
(
v̂p − vp

(
t− θp

)) v
np
p
(
t− θp

)
v̂

np
p + v

np
p
(
t− θp

))F(ϕ(t)), (39)

where θp is the delay time. No separate equation is introduced to model the changes in
the concentration of acetylcholine (parasympathetic transmitter) because the rate of its
turnover is faster than the dynamics on which the model is focused. The phase effectiveness
curve represents the changes in the sinus node sensitivity to the parasympathetic control
throughout the cardiac cycle:

F(ϕ) = ϕ1.3(ϕ− 0.45)
(1−ϕ)3

0.008 + (1−ϕ)3 . (40)

To block the regulation of the respiratory frequency and amplitude, the parameters kg
o ,

kg
c , kK

c , kK
o , kIk

1 and kIk
2 were set to zero, while the other parameters were left unchanged.

2.2. Complexity Indices

To measure the complexity of RR intervals in the model, we used the correlation
dimension [49] and the largest Lyapunov exponent [50]. In our earlier study [20], we
already used these measures to estimate the complexity of the model and experimental RR
intervals. Here, we closely follow the description of the measures provided in [20].

To reconstruct the phase space, we used the method of delays as recommended in [50].
The correlation dimension d was estimated from the correlation integral C(l) [49]:

C(l) = lim
n→∞

n(l)
N2 , (41)

where n(l) is the number of points in the reconstructed attractor, for which the Euclidean
distance to the nearest neighbor is smaller than l. The values of l were varied from 0.1 to
0.3 of the standard deviation of the RR intervals. N = 4000 is the number of points used for
calculation. For dynamical systems, C(l) ~ ld and d can be calculated as

d =
ln(C(l))

ln(l)
. (42)
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To estimate the largest Lyapunov exponent, we used the Rosenstein algorithm [50]
since it can be applied to short time series. In the first step of the Rosenstein algorithm, we
found the nearest neighbor of each point on the attractor, and then neighbors close in time
were excluded [50]. For the dynamical system, the distance between nearest neighbors
increases as follows:

ln(L) ≈ ln(L0) + λ0t, (43)

where L0 is the initial distance, λ0 is the largest Lyapunov exponent and t is the time. Then,
λ0 can be calculated as

λ0 =
〈ln(L)〉

t
. (44)

Parameters of the methods were estimated in our previous study [20]. They are
listed in Table 2, where D is the embedding dimension, τ is the delay time used for the
reconstruction of the embedding space and l is the maximal Euclidean distance between
the nearest neighbors in relation to the standard deviation of the sequence of RR intervals.

Table 2. Parameters of the methods for calculating the correlation dimension and the largest Lyapunov
exponent.

Correlation Dimension The Largest Lyapunov Exponent

D 13 D 13
τ (s) 0.04 τ (s) 1

l 0.1–0.3 t (s) 0.6
Window length (s) 1000 Window length (s) 1000

Since the model is limited to the simulation of processes with frequencies of 0.04–0.4
Hz, as this is the time scale of the autonomic control of the circulation, the RR intervals
were filtered using a 0.04–0.4 Hz bandpass filter.

3. Results

In this study, we used the proposed model to simulate the cardiovascular dynamics
in healthy subjects and subjects with blocked regulation of the respiratory amplitude and
frequency and, therefore, disturbed cardiorespiratory coupling.

Figures 2–4 show the time series and power spectra of the model RR intervals, arterial
pressure signals and lung volume signals for a healthy subject and a subject with blocked
regulation of the respiratory amplitude and frequency. Table 3 lists the spectral indices,
statistical indices and complexity measures estimated from these signals.
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Figure 4. Time series (a) and Fourier power spectra (b) for the model signals of lung volume. The
black bold lines correspond to a healthy subject, and the red thin lines correspond to the simulation
of the blockade of the regulation of respiratory amplitude and frequency.

Table 3. Spectral and statistical indices and complexity measures estimated from the model data.

Indices Healthy Subject
Control of Respiratory

Amplitude and Frequency Is
Absent

Significance
Level

Minute volume of
ventilation, l 5.09 ± 0.002 12.7 ± 0.0001 p < 0.05

Blood concentration
of CO2, mmHg 40.8 ± 0.0005 34.7 ± 0.0006 p < 0.05

Blood concentration
of O2, mmHg 100 ± 0.01 126 ± 0.003 p < 0.05

Depth of respiration, l 0.17 ± 0.0001 0.40 ± 0.0001 p < 0.05
Heart frequency, Hz 1.05 ± 0.0003 1.07 ± 0.0006 p < 0.05

SAP, mmHg 138 ± 0.02 136 ± 0.01 p < 0.05
DAP, mmHg 94 ± 0.02 94 ± 0.007 p < 0.05

LF, ms2 954 ± 33 118 ± 4 p < 0.05
HF, ms2 725 ± 20 630 ± 6 p < 0.05
λ0 0.07 ± 0.002 0.07 ± 0.003 p = 0.10
d 4.70 ± 0.27 4.89 ± 0.22 p = 0.27

SAP is the systolic arterial pressure in the aorta, DAP is the diastolic arterial pressure in the aorta, λ0 is the largest
Lyapunov exponent, d is the correlation dimension, LF is the power in the 0.04–0.15 Hz range of RR intervals
and HF is the power in the 0.15–0.4 Hz range of RR intervals. The values of the indices are listed as the mean ±
standard error of the mean. We used the Mann–Whitney test to compare the data.

The power spectra and statistical and spectral indices agreed well with the experi-
mental data in the 0.04–0.4 Hz range, which is related to the autonomic control of the
circulation [46,51,52]. The model did not simulate the very low frequency rhythms
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(0.003–0.04 Hz) related to the humoral control of the circulation, which Kotani [40] modeled
by adding the Brownian noise to Expression (32). We excluded the noise because it led to
the nonstationarity of the model at the time scale of hundreds of seconds. Additionally, the
simulation of the humoral control is beyond the scope of the model.

The power spectra in Figures 2b and 3b show that the blockade of the regulation of
the respiratory frequency and amplitude led to more narrow respiration-related peaks at
approximately 0.3 Hz. A similar change can be seen in the power spectrum of the lung
volume time series (Figure 4b). The respiration became very regular because, after the
blockade of the regulation of the respiratory amplitude and frequency, the RR intervals
were no longer affecting the frequency or amplitude of the respiratory signal.

Another qualitative change caused by the blockade was the decrease in the power
in the LF frequency range of RR intervals (Figure 2b), which is also evident from the
decrease in the LF index (Table 3). This effect was caused by an increase in the depth and
frequency of respiration (Figure 4a), which led to a higher than normal concentration of O2
in the arterial blood (125.80 ± 0.003 mm Hg versus 100 mm Hg) and a lower than normal
concentration of CO2 (34.65± 0.0006 mm Hg versus 40 mm Hg) (Table 3). This inhibited the
activity of the central CO2 chemoreceptors and, therefore, the activity of the sympathetic
and parasympathetic control of the heart period and arterial pressure, because the activity
of these systems is directly proportional to the activity of both the carotid baroreceptors
and the central CO2 chemoreceptors [38] (Equations (33) and (34)). From a physiological
standpoint, we interpret these results as follows. The blockade of the regulation of the
respiratory amplitude and frequency inhibited the cardiovascular system’s ability to adapt
to the physiological changes. As a result, the frequency and amplitude of the respiration
exceeded the required values, which decreased the concentration of CO2 in the arterial
blood below the normal values and increased the concentration of O2. These changes led to
the deactivation of the chemoreceptors, which, in turn, decreased their excitatory influence
on both the sympathetic and parasympathetic control of the circulation.

A similar effect inhibited the activity of the parasympathetic control of the heart
period (Equation (35)), and, since noise of a “central” origin affects the autonomic control
through the parasympathetic control loop [41], the influence of noise on the circulation
was also inhibited. This change is evident from the power spectra of the model signals
(Figures 2b, 3b and 4b), as the baseline power is lower in the case of the blocked regulation
of the respiratory frequency and amplitude.

The blockade of the regulation of the respiratory frequency and amplitude also slowed
down the heart and decreased the heart rate variability and blood pressure in the aorta.
However, seemingly paradoxically, the estimations of the correlation dimension and the
largest Lyapunov exponent did not change (Table 3). The results shown by our previous
model [20] may suggest an explanation for this intriguing effect. In [20], we showed that
the blockade of the autonomic control of the circulation increased the λ0 and d to higher
than normal values. At the same time, when the dispersion of the noises was set to zero,
both λ0 and d became lower than normal values. In the active test with the blockade of the
regulation of the respiratory frequency and amplitude, both the activity of the autonomic
control and the power of the “central” noise decreased, compensating for each other’s
influence on the complexity measures.

4. Discussion

Investigation of mathematical models of biological systems has several advantages
over the analysis of experimental data. The models are stationary and can simulate active
tests which are dangerous for the health of a real subject. However, it also has limitations.
Every model of a complex biological system is a compromise between the complexity
of the model and its ability to reproduce the dynamics of the system. Simpler models
cannot simulate and explain certain features of the dynamics of the studied systems, but
overcomplicated models cannot be properly calibrated and produce unreliable results.
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The proposed model focuses on the nonlinear properties of the autonomic control
of the circulation, because these nonlinear properties are necessary to explain several
important features of cardiovascular coupling [20,53,54]. For the same reason, we adapted
the nonlinear control loops for the respiratory frequency and amplitude.

At the same time, our earlier results show that detailed modeling of the heart and the
blood hydrodynamics is not essential to simulate the important features of cardiovascular
coupling [20,53,54]. Based on these results, we kept simplified models for these elements.

The main limitation of the model of the respiratory system is its inability to simulate
deep and fast breathing, which requires modeling of additional sections of the respiratory
center and additional respiratory muscles. This simplification limits the model’s ability to
simulate breathing under stressful conditions, during exercises or in diseases such as sleep
apnea. However, simulation of these effects is not required to investigate cardiorespiratory
coupling.

Despite the adopted simplifications, the proposed model still has a high number of
free parameters. This complicates the process of their calibration. However, as shown in
Section 3, the model still quantitatively reproduces the average characteristics of a healthy
subject.

Earlier, we used a mathematical model to investigate the contributions of the deter-
ministic chaotic dynamics of the autonomic control, noises of a central origin and the
irregularity of respiration to the complexity of the heart period [20]. The model we inves-
tigated in [20] was proposed from the “first principles”, and we consider it an adequate
representation of the cardiovascular system because it previously simulated several impor-
tant effects, including a passive orthostatic test [53], arterial hypertension [54], blockade
of the autonomic control [54] and cardiorespiratory synchronization [54]. However, this
model has one important limitation: it is a simplified model of respiration. We modeled
the respiration using a sinusoidal signal, and the model supported two types of respiration:
with a constant frequency, or with a randomized, normally distributed frequency of respi-
ration. The model did not account for the regulation of respiration, and because of that, the
cardiorespiratory coupling was only one-directional.

In the model with a simplified simulation of respiration, we observed several inter-
esting effects: the complexity of the heart period persisted even after the dispersion of
the “central” noises was set to zero; blockade of the autonomic control led to higher than
normal values of complexity measures; the values of complexity measures became lower
than normal when the dispersion of the “central” noises was set to zero. Finally, we did
not observe any changes in the complexity measures in the presence of switching from
respiration with a randomized frequency to respiration with a constant frequency.

In the present study, we aimed to investigate the contribution of nonlinear bidirectional
coupling to the complexity of the heart period and used a more detailed model of the
respiratory system from [42]. The modified model accounted for the control of respiration,
which is based on the heart period and concentrations of CO2 and O2 in the arterial blood.
However, even in this modified model, we did not observe any changes in the complexity
measures after the blockade of the regulation of the respiratory frequency and amplitude.
At the same time, we detected changes in spectral and statistical characteristics of the
model signals. We think that the results we obtained in this study and our previous study
contribute to the discussion about the advantages of complexity measures over the classical
statistical and spectral indices. We present a summary of this debate in the following two
paragraphs, and the role of our results is discussed after that.

Both classical indices and complexity measures have their advantages and disadvan-
tages. It is mostly accepted that the LF and HF indices are related to the modulation of the
sympathetic and parasympathetic branches of the autonomic control, and some active tests,
such as the passive orthostatic test [52], support this hypothesis. However, spectral and
statistical indices do not linearly correlate with other measurements of autonomic activ-
ity, such as sympathetic nervous outflow [55] or norepinephrine spillover [56]. This fact
suggests that the relationships between the RR intervals and the activity of the autonomic
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control of the circulation are nonlinear, and that nonlinear measures of complexity applied
to the analysis of RR intervals can be a better marker of overall cardiovascular health and
its adaptability to external stress and internal challenges [57,58].

However, several researchers advise being cautious when interpreting the complexity
indices estimated from experimental data of a biological origin, because at least some ele-
ments of the underlying system are not deterministic, but stochastic. Some authors suggest
that stochastic elements of the cardiovascular system cause inconsistency in complexity
measures [31]. For example, the experimental studies [58,59] showed no clear correlation
between the blockade of the sympathetic control and complexity measures. Our results
suggest that the inconsistency in the complexity measures estimated from experimental
data can be caused by different regulatory responses taking place simultaneously, and
that under such conditions, the complexity measures should be used in conjunction with
the statistical and spectral indices that provide different important information about the
dynamics of the autonomic control of the cardiovascular system. Parallel investigation of
mathematical models can also help with the interpretation of the results.

5. Conclusions

We investigated the contribution of bidirectional cardiorespiratory coupling to the
complexity of the heart period, using a mathematical model of the cardiovascular and
respiratory systems to simulate an active experiment, which involved the blockade of the
regulation of the respiratory frequency and amplitude and disturbance of the bidirectional
cardiorespiratory coupling. Well-known spectral indices, statistical indices, the largest
Lyapunov exponent and correlation dimensions were estimated to measure the changes
that occurred in the dynamics of the model and in the complexity of the heart period.

Blockade of the regulation of the respiratory frequency and amplitude slowed down
the heart, decreased the heart rate variability and aortic arterial pressure, inhibited both
the sympathetic and parasympathetic control of the circulation and inhibited the effects
of “central” noise on the circulation. However, we detected no changes in the correlation
dimension or the largest Lyapunov exponent.

Our earlier model study showed that the values of complexity measures increase after
the blockade of the autonomic control of the circulation. On the contrary, the values of
complexity measures decrease when the power of central noises decreases. These effects
took place simultaneously after the blockage of the autonomic control of respiration and
compensate for each other’s influence on the complexity of the heart period.

The obtained results indicate that complexity measures should be used together with
classical statistical and spectral indices when analyzing the dynamics of the cardiovascular
and respiratory systems under different physiological conditions, and that mathematical
modeling helps to interpret the results.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/math10071088/s1, Source code for the proposed model; description
of the proposed model.
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36. Kapidžić, A.; Platiša, M.M.; Bojić, T.; Kalauzi, A. RR interval–respiratory signal waveform modeling in human slow paced and

spontaneous breathing. Respir. Physiol. Neurobiol. 2014, 203, 51–59. [CrossRef]
37. Cheng, L.; Ivanova, O.; Fan, H.H.; Khoo, M.C. An integrative model of respiratory and cardiovascular control in sleep-disordered

breathing. Respir. Physiol. Neurobiol. 2010, 174, 4–28. [CrossRef]
38. Magosso, E.; Ursino, M. A mathematical model of CO2 effect on cardiovascular regulation. Am. J. Physiol. Heart Circ. Physiol.

2001, 281, H2036–H2052. [CrossRef]
39. Karavaev, A.S.; Prokhorov, M.D.; Ponomarenko, V.I.; Kiselev, A.R.; Gridnev, V.I.; Ruban, E.I.; Bezruchko, B.P. Synchronization of

low-frequency oscillations in the human cardiovascular system. Chaos 2009, 19, 033112. [CrossRef] [PubMed]
40. Kotani, K.; Struzik, Z.R.; Takamasu, K.; Stanley, H.E.; Yamamoto, Y. Model for complex heart rate dynamics in health and diseases.

Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 2005, 72 Pt 1, 041904. [CrossRef]
41. Seidel, H.; Herzel, H. Bifurcations in a nonlinear model of the baroreceptor-cardiac reflex. Phys. D 1998, 115, 145–160. [CrossRef]
42. Ben-Tal, A.; Smith, J.C. A model for control of breathing in mammals: Coupling neural dynamics to peripheral gas exchange and

transport. J. Theor. Biol. 2008, 251, 480–497. [CrossRef] [PubMed]
43. Guyton, A.C.; Hall, J.E. Chapter Regulation of respiration. In Textbook of Medical Physiology, 12th ed.; Saunders: Philadelphia, PA,

USA, 2010; pp. 505–513.
44. Molkov, Y.I.; Shevtsova, N.A.; Park, C.; Ben-Tal, A.; Smith, J.C.; Rubin, J.E.; Rybak, I.A. A closed-loop model of the respiratory

system: Focus on hypercapnia and active expiration. PLoS ONE 2014, 9, e109894. [CrossRef] [PubMed]
45. Frank, O. The basic shape of the arterial pulse. First treatise: Mathematical analysis. J. Mol. Cell Cardiol. 1990, 22, 255–277.

[CrossRef]
46. Guyton, A.C.; Hall, J.E. Chapter Nervous Regulation of the Circulation, and Rapid Control of Arterial Pressure. In Textbook of

Medical Physiology, 12th ed.; Saunders: Philadelphia, PA, USA, 2010; pp. 201–211.
47. Warner, H.R. The frequency-dependent nature of blood pressure regulation by the carotid sinus studied with an electric analog.

Circ. Res. 1958, 6, 35–40. [CrossRef]
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