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Abstract: An approach to solve the inverse problem of the reconstruction of the network of time-delay
oscillators from their time series is proposed and studied in the case of the nonstationary connectivity
matrix. Adaptive couplings have not been considered yet for this particular reconstruction problem.
The problem of coupling identification is reduced to linear optimization of a specially constructed
target function. This function is introduced taking into account the continuity of the nonlinear
functions of oscillators and does not exploit the mean squared difference between the model and
observed time series. The proposed approach allows us to minimize the number of estimated
parameters and gives asymptotically unbiased estimates for a large class of nonlinear functions. The
approach efficiency is demonstrated for the network composed of time-delayed feedback oscillators
with a random architecture of constant and adaptive couplings in the absence of a priori knowledge
about the connectivity structure and its evolution. The proposed technique extends the application
area of the considered class of methods.

Keywords: adaptive dynamical networks; coupled oscillators; time-delay systems; parameter
estimation

1. Introduction

Networks consisting of interacting oscillatory elements are extremely widespread
in nature and technology. When studying spatially developed systems, it is necessary
to take into account that signals propagate in them with a finite speed and, therefore,
need time to overcome distances [1–3]. Moreover, many self-sustained oscillation systems
of various natures (physical, chemical, climatic, and biological) are characterized by the
presence of time-delayed feedback [4–6]. Thus, the use of time-delay oscillators as network
nodes brings the studied model systems closer to real objects of nature and human-created
network structures.

In general, oscillatory networks may have a complex architecture of connections
between nodes and, along with network nodes, couplings between the nodes can also
have their own dynamics and exhibit evolution over time. Such adaptive dynamical
networks, in which the topology of connections can be rearranged and the intensities of
connections have their own dynamics, are widespread in the real world, for example, in
neurodynamics and power supply networks [7–11]. The topology of couplings plays an
important role in the occurrence of a particular type of collective dynamics, while the
dynamics of nodes and couplings affects the restructuring of the topology, i.e., there is a
mutual interaction between the network dynamics and the evolution of network topology.
The processes of information spreading in networks, synchronization of network elements,
and the reliability and stability of the network with respect to external disturbances depend
on the architecture and intensity of couplings [12–14].
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Thus, it is important to know the architecture of couplings in the studied network
of oscillators. A correlation and spectral analysis, information-theoretic and nonlinear
dynamic characteristics are widely used to identify dependencies between the interacting
systems. However, to evaluate directional couplings, that is, to answer the question of
whether one node affects another one and with what strength, the most suitable approach
is often to reconstruct the operator of evolution from the observed time series of oscil-
latory systems [15–20]. More general approaches such as different versions of Granger
causality [21–25], phase dynamics modelling [26–28], partial directed coherence [29], trans-
fer entropy [30], and other methods [31–34] are also used to reconstruct couplings in
multi-element systems.

It should be noted that most methods for identifying directional couplings in networks
of oscillators are developed for the case of a constant topology of connections within the
network. However, as noted above, adaptive networks with time-varying connections
between the nodes are widespread in the real world. Such networks are the most difficult
to reconstruct. To solve the ambitious task of reconstructing directed couplings in adaptive
dynamical networks consisting of systems with an internal time delay, we propose an
original approach based on a piece-wise linear interpolation of coupling dynamics in time,
optimization of a specially constructed target function, and the separation of the recovered
coupling coefficients into significant and insignificant coefficients.

2. Method

Let us consider a network of linearly coupled first-order time-delay oscillators:

εi ẋi(t) = −xi(t) + fi(xi(t− τi)) +
D

∑
j=1,j 6=i

ki,j(t)
(
xj(t)− xi(t)

)
, (1)

where xi(t) is the observed variable of the i-th oscillator, D is the number of oscillators, τi
is the delay time, the parameter εi characterizes the inertial properties of the oscillator, fi
is a continuous nonlinear function, ẋi(t) is a time derivative, and ki,j(t) are the varying in
time coupling coefficients characterizing the strength of influence j→ i, i.e., from the j-th
oscillator to the i-th one. It is assumed that the variation of ki,j(t) occurs slowly compared
to the main time scale of oscillations, which is mainly determined by the delay times τi.

Following [18], we divided the reconstruction procedure into two main steps. First,
the model for each oscillator was reconstructed individually with all possible couplings
ki,j. Second, insignificant (spurious) coupling terms were detected by the special algorithm
and removed from the model, and the reconstruction for each oscillator was performed
once again.

Since we considered fi to be an unknown nonlinear continuous function, there were
two main possible approaches to its reconstruction. First, one can use series expansion
with polynomials [35] or with trigonometric series [36]. This approach can be named as
“explicit” due to the explicit approximation of an unknown nonlinear function. The target
function for optimization in such a case is usually constructed using the difference between
the state vector components and their approximated values. Another approach was first
proposed in [37] and with some changes used in [17,18]. It exploits the target function that
is constructed taking into account the continuity of nonlinear function. In this case, no
explicit approximation is necessary: the nonlinear function is obtained as a table, being
calculated in a finite set of argument values. This approach does not require an explicit
approximation of fi and can be named as “implicit”. Its shortcoming is that the obtained
estimates of parameter are only asymptotically unbiased with N → ∞, where N is the
length in points of the observed time series. We followed the second approach here because
of its efficiency for other applications [17,18] and since it significantly reduces the number
of parameters to be fitted to data.
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We can rewrite (1) as follows:

fi(xi(t− τi)) = xi(t) + εi ẋi(t)−
D

∑
j=1,j 6=i

ki,j(t)
(
xj(t)− xi(t)

)
. (2)

Let us assume that we had the time series {xi(tn)}N
n=0 measured at tn = t0 + n∆t, where

∆t is the sampling time. We denoted xi(n) = xi(tn). Then, we applied the smoothing
polynomial of order B fitted to the observable using the least-squares in each data point n,
where (m− 1)/2 6 n 6 N − (m− 1)/2 and m is the number of points with the n-th point
as a central one. The values of the derivative ẋi(n) can be estimated by differentiation of
this polynomial. This approach is known as the Savitzky–Golay filter [38].

If each ki,j(t) is a continuous, relatively slow function of time, the simplest possible
approximation is a piece-wise linear (3), where the time series of all oscillators are divided
into L fragments having the length Nl ,

ki,j,l(t) = ki,j,l + k′i,j,l(t− tl), (3)

where ki,j,l is the mean value at the l-th fragment, k′i,j,l is the slope, and tl is the central
point of the l-th fragment. One can use another approximation, but (3) gives a clear under-
standing of both ki,j,l and k′i,j,l . The approximation (3) also provides good computational
properties, since it minimizes the range of normalized time at the l-th fragment. At each
fragment, one has to estimate 2(D− 1) coupling coefficients.

We considered the reconstruction of network for each time fragment separately. Let
us denote αi,0,l = εi, αi,j,l = −ki,j,l , and αi,j+D−1,l = −k′i,j,l for the l-th fragment and rewrite
Equation (2) as follows:

fi(xi(n)) = xi(n + θi) + αi,0,l ẋi(n + θi)

+
D

∑
j=1,j 6=i

αi,j′ ,l
(

xj(n + θi)− xi(n + θi)
)

(4)

+
2D−1

∑
j=D,j 6=i

αi,j′ ,l
(
xj(n + θi)− xi(n + θi)(n + θi)∆t

)
,

where θi = bτi/∆tc, n = −(Nl − 1)/2, . . . , (Nl − 1)/2, j′ = j if j < i and j′ = j − 1 if
j > i. For simplicity, we considered the situation where τi/∆t is an integer and all Nl were
odd numbers.

Then, we considered transform Qi,l , which maps the number n of the value xi(n) in
the l-th fragment of the original time series to its number Qi,l(n) in the time series of the l-th
fragment sorted by the increase in xi. The inverse map we denoted as Q−1

i,l . Let us denote
pn = Q−1

i,l (Qi,l(n) + 1), which is the original number of value next to xi(n) in the sorted
time series. Since we considered functions fi to be continuous, small absolute differences
between xi(pn) and xi(n) resulted in small absolute differences between fi(xi(pn)) and
fi(xi(n)). Actually, δi(n) = | fi(xi(pn)) − fi(xi(n))| → 0 ∀n ∈ (νl−1; νl ] for Nl → ∞,
where νl = ∑l

l′=1 Nl′ is the number of the final time moment at the l-th fragment. Since the
coupling was assumed to be nonstationary, we could not use a very long time of observation
in order to increase Nl . Instead, we could increase Nl by decreasing the sampling time, i.e.,
by ∆t→ 0.

Using all the values of δi,l(n) for the chosen i and l, we constructed the following
scalar function that depends on the vector~αi,l = (αi,0,l , . . . , αi,2D−1,l):

S(~αi,l) =
νl

∑
n=νl−1+1,Q(n) 6=νl

δ2
i,l(n). (5)
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Note that for every ε2
i and for all natural l, there is Nl such that S(~αi,l) in (5) is smaller

than ε2
i if the following conditions are true:

1. (xi(n)) is bounded in n;
2. fi(xi(n)) is continuous on [inf{xi(n)}; sup{xi(n)}];
3. xi(t) is continuous on [t0, tN ];
4. fi(xi) = O(xPi

i ) as Nl → ∞ with Pi ≥ 1, where Pi is the order of polynomial used for
the expansion of fi.

This means that lim
Nl→∞

S(~αi,l) = 0 if | fi(xi)| increases faster than
√

xi and the range of

xi is bounded which is true for real physical processes.
Indeed, if fi(xi) = O(xPi

i ), then δ2
i (n) = ( fi(xi(pn))− fi(xi(n)))

2 = O(∆x2Pi
i ) as

Nl → ∞, where ∆xi(n) = xi(pn)− xi(n) = O(1/Nl). Therefore, δ2
i (n) = O(N−2Pi

l ) and
S(~αi,l) = O(Nlδ

2
i (n)) = O(N1−2Pi

l ), which implies the asymptotically uniform estimate for
a given Nl and N′l > Nl : (

N′l /Nl
)1−2Pi < Cε2

i (6)

with a certain C > 0. Therefore:

N′l > Nl

(
1

Cε2
i

) 1
2Pi−1

. (7)

The inequality (7) gave us an estimate of N′l for Nl matching the desired accuracy for
estimation of parameters αi,j,l using the minimization of the target function S(~αi,l). As far
as S(~αi,l) is a positively defined quadratic form of αi,j,l , it has a unique extremum, which is
the minimum, and this minimum can be found using the linear least-squares.

After the network reconstruction, the statistical significance of all coupling coefficients
was evaluated for each time fragment l as it was proposed in [18]. In particular, logarithms
of absolute values of all ki,j,l for the fixed l were considered as a set, sorted, and divided
into two clusters using the standard K-means algorithm. The coefficients in the first cluster
with the higher values of log(|ki,j,l |) were believed to be significant, while the coefficients
from the second cluster were declared to be insignificant. If ki,j,l belonged to a significant
cluster for at least one l, it was considered as significant for the entire time series. We
assumed that a coupling coefficient could increase from zero or decrease to zero during the
observation time. We did not evaluate the statistical significance of coefficients k′i,j,l . At the
next step, the significant coupling coefficients ki,j(t) were excluded from the model (1) and
the reconstruction was performed once again for the reduced model.

The proposed method assumed the delay times τi to be known. However, in general
case, τi can be unknown. To solve this problem, special techniques can be used [39]. The
proposed approach can also solve this problem by constructing the dependency of target
function on the trial delay time θ′i . Since each oscillator was reconstructed independently
and the delay time could be adjusted with an accuracy up to ∆t, a simple linear search for
θ′i in the range from 1 to some θ′i,max was possible. In such a case, the delay time would
be O(θ′i,max). Since the core part of the algorithm was the well-known linear least-squares
problem for which the efficient solvers were available [40], this extension was acceptable.

3. Results
3.1. Simulation

To test the proposed technique, we considered a network of eight nonidentical oscilla-
tors (1) with a quadratic nonlinear function:

fi(xi) = λi − x2
i , (8)

where λi is the parameter of nonlinearity. The values of the network parameters were taken
the same as in the paper [18]: λi = 1.78 + 0.02i, τi = (225 + 25i)∆t, εi = 0.0011 + 0.0004i,
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where i = 1, . . . , 8, and ∆t = 10−4. The equations (1) were solved using the Euler method
with the time step equal to the sampling time ∆t. After the transient process, the time series
of all oscillators were recorded. The length of time series was N =100,000.

Each oscillator in the network was affected by two other oscillators; Figure 1. In
particular, the first oscillator was affected by the fourth and eighth oscillators, and its model
equation contained two nonzero coupling coefficients k1,4(t) and k1,8(t). The presence of
unidirectional couplings from the fourth oscillator to the first oscillator and from the eighth
oscillator to the first one is illustrated in Figure 1 by the two black squares in the first row
that correspond to the coupling coefficients k1,4(t) and k1,8(t).

The total number of couplings in the network was equal to 16. The values of 14 cou-
pling coefficients were randomly chosen from the interval (0.08; 0.18) and they were
constant during the simulation. Two couplings varied in time. The coupling coefficient
k3,5(t) was a piece-wise linear. It was equal to zero in the first third of the observation
time, then it increased linearly from zero to 0.13 during the second third of the observa-
tion time, and was equal to 0.13 in the last third of the observation time. The coupling
coefficient k5,7(t) varied by a sine law with the period equal to the time of observation T:
k5,7(t) = 0.1(sin(2πt/T) + 1).

1 2 3 4 5 6 7 8

i

1

2

3

4

5

6

7

8

j

Figure 1. Coupling architecture. Black squares show the existing (nonzero) couplings from the j-th to
the i-th oscillator and white squares correspond to nonexisting (zero) couplings.

Figure 2 shows the part of the simulated chaotic time series for all eight oscillators.

3.2. Identification

The time series of oscillators were divided into L = 20 not overlapping fragments
each containing Nl = 5000 points. In Figure 2, the first three fragments of time series are
presented. The boundaries between the fragments are shown with bold gray vertical lines.
The fragment length was chosen as a compromise between the desired time resolution
and the number of points necessary for the estimation of 2D(D − 1) + D = 120 model
coefficients for the fixed l: D(D − 1) coefficients ki,j,l , D(D − 1) coefficients k′i,j,l , and D
coefficients for εi. We also took into account that each fragment had to contain at least
5–6 oscillations, otherwise the sorting map Qi,l would not be efficient.

In the present paper, we did not focus on the reconstruction of individual node
parameters that were recovered with good accuracy. Delay times τi were identified with
an error not larger than one time step ∆t, while the parameters εi were estimated with an
error of less than 1%. An even better accuracy of reconstruction could be achieved if longer
series were used.

The results of coupling identification are presented in Figure 3. This Figure shows
only significant coupling coefficients. Comparing Figure 3 to Figure 1, one can see that
the architecture of couplings in the network was accurately reconstructed. Actually, all
16 existing couplings were detected and nonexisting couplings were not detected. Each
coupling coefficient ki,j in Figure 3a corresponds to the black square in Figure 1. For
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example, the coupling coefficients k1,4 and k1,8 in Figure 3a correspond to the black squares
in the fourth and eighth line, respectively, in the first row in Figure 1.

2
0
2

x 1

2
0
2

x 2

2
0
2

x 3

2
0
2

x 4

2
0
2

x 5

2
0
2

x 6

2
0
2

x 7

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
t, s

2
0
2

x 8

Figure 2. Time series of all eight oscillators.

Figure 3a shows that 14 coupling coefficients were constant and two coefficients
(k3,5 and k5,7) noticeably changed their values during the observation time. In Figure 3b,
the values of k′3,5 and k′5,7 exhibited the largest difference from zero over all k′i,j. Note
that Figure 3a,b agree very well between themselves. Figure 3 indicates that variation of
couplings can be easily detected by inspecting the mean value and the slope of coupling
coefficients (3). However, the slope k′i,j was not very stable for the used length of fragments
and errors were present at some l.

Figure 3. Reconstructed values of couplings coefficients. (a) Mean values ki,j of couplings (3) for
different fragments l. (b) Slopes k′i,j of couplings (3) for different fragments l.
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We obtained qualitatively similar results of coupling identification for networks con-
taining a different number of oscillators and a different number of couplings within
the network.

4. Discussion and Conclusions

In the previous studies, where the specially developed implicit approaches were ap-
plied to systems of different natures, including time-delay oscillators [17,18], generalized
van der Pol equations [41], and first-order neurooscillators [42,43], the coupling architecture
and strength were assumed to be constant during the entire time of observation. However,
for many real-world networks, this assumption is a significant disadvantage, since cou-
plings can evolve over time. Moreover, the identification of evolving couplings can be an
even more important task than the reconstruction of the oscillator parameters. For adaptive
networks, specially designed time-variant versions of the Granger causality [44,45] and
related techniques such as partial directed coherence [46] and transfer entropy [47] are
usually used in neuroscience together with simpler nonlinear measures such as mutual
information [48] and nonlinear correlation [49].

Since Granger causality uses general models in the form of multidimensional linear or
nonlinear autoregressive processes, this study is the first in which the temporal evolution of
couplings was included in a specially developed method of reconstruction for networks of
time-delay systems. The inclusion of the temporal evolution of couplings in the model can
be performed in two ways. First, one can use an explicit but parameterized law of evolution
of the coupling coefficient for the entire time series, for example, polynomial, harmonic, or
sigmoidal. Second, one can divide the time series into fragments and propose some simple
formulas for the coupling at each fragment. For example, the coupling can be constant
at the fragment of time series or can vary by linear, quadratic, or another law. The first
approach provides statistically more accurate parameter estimates because it typically uses
fewer model coefficients. Moreover, increasing the length of the time series can improve the
accuracy of the method. However, this approach requires a priori knowledge of the law of
coupling evolution, so it lacks generality. Here we implemented the second approach using
a linear function with two coefficients (mean and slope) that needed to be estimated at each
fragment. The use of linear approximation for each coupling is also advantageous because
it gives a clear interpretation for both coefficients: ki,j,l characterizes the mean coupling
strength for the particular time fragment, while k′i,j,l showing whether this coupling is
constant, increases, or decreases during this time fragment.

It should be noted that the target function construction and the approximation of
coupling coefficients in the proposed method did not depend on the presence of time-
delayed feedback in the network nodes. Therefore, the proposed technique can be applied
for the identification of couplings not only in networks of time-delay systems, but also in
networks composed of other types of oscillators.
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