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Abstract We present a study of quantitative characteristics of a test subject attention asso-
ciated with analysis of EEG-records in test subjects. Twelve overall healthy subjects 20–35
years old (5/7 male/female) with complaints about daytime sleepiness were included. Mul-
tichannel electroencephalography was conducted during the monotonous sound perception
test. The processing of the EEG signals was based on the adapted method for assessing
spatial patterns using the Karhunen–Loève transformation. We used descriptive statistics to
summarize our findings. All experimental time was classified into active stages with reac-
tion to sound stimuli and passive stages, in which subjects demonstrated drowsiness without
reaction to presented stimuli. An analysis of EEG activity in conjunction with assessment
of the patient response enabled us to identify a characteristic scenario of adaptation to the
task of maintaining attention to sound stimuli in this group. Active stages with a minimum
reaction time of response to the signal and maximum duration were preceded by an increase
in the spatial activity complexity on the EEG of the left hemisphere during the passive
stage without responses. The passive stage of drowsiness without response to stimuli was
actively involved in the process of adaptation to prolonged monotonic activity in patients
with increased daytime sleepiness.

1 Introduction

The surface electroencephalography (EEG) is widely used in studies of different physio-
logical states of both humans and animals. The method of obtaining objective information
about brain activity is convenient for investigators, as well as for study subjects, without
specific complications imposed on conducting experimental work or clinical research. EEG,
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compared to other methods— e.g., magnetic resonance imaging (MRI), has disadvantages
concerning deep spatial separation of brain activity zones. At the same time, high tempo-
ral resolution of EEG signals coming from the cerebral cortex surface is unattainable by
other techniques. All objectives of the contemporary EEG data study are roughly divided
into two major groups. The first group includes studying general patterns of brain activ-
ity accompanying different psychophysiological or neurological states of an animal, or a
human—e.g., search for the markers associated with pathological activity preceding seizures
[1,2], characteristic markers of the same type of cognitive processes in a person [3],or early
precursors of developing the impairments in the cognitive or emotional domain [4]). The sec-
ond group encompasses mathematical description of characteristic individual EEG patterns
in a conditionally normal action and further automatic detection of such EEG patterns in
brain–computer interface (BCI) systems [5–7]. As part of the latter, purely individual EEG
patterns are habitually identified for every test subject or patient [8]. Moreover, such patterns
frequently change with an increase in a subject’s fatigue [9–11], or adapt when a subject’s
emotional state fluctuates [12]. Hence, artificial neural network (ANN) approaches are often
used in the development of BCI systems [13–16].

At the same time, the contemporary methods of nonlinear dynamics are actively employed
to detect and describe statistically significant EEG patterns. EEG dynamics is estimated using
the methods of steady-state visually evoked potentials (SSVEP), or time–frequency domain
detection based, for instance, on wavelet transformation. These methods allow giving both
qualitative and quantitative assessment for oscillation energy of complex signals in different
frequency ranges [17]. There is a number of techniques aimed at specific spatial definition of
an EEG oscillation activity source, including independent component analysis (ICA) [18,19],
empirical mode decomposition (EMD) [20], wavelet approaches for image denoising [21],
etc. Identifying various parameter sets of spatial structures in EEG signals is yet another
scope of this task, including estimation of the pattern duration and stability. The latter may
be of interest for neurological diagnosing of pathological conditions [22,23] in terms of the
changes in the brain activity in various psychological tests [24,25].

In this publication, we propose an adaptation of the conventional mathematical method
based on the Karhunen-Loève decomposition (KL)—specifically, a proper orthogonal decom-
position method (POD) for the analysis of spatiotemporal data [26]. This technique is exten-
sively used to analyze the complex dynamics in various system types with both spatial and
temporal degrees of freedom, for example, in hydrodynamics, plasma physics, and microwave
optics [15,27]. Up to date, there were completed studies based on KL method for analyzing
EEG data—in particular, an adaptation of the KL method was employed to compress EEG
signals, while preserving spatial features [28], and an estimation of the spatial structure of
the complexity in the brain electrical activity was proposed [29–31].

KL technique allows interpreting complex brain dynamics from the prospective of exis-
tence and interaction of coherent orthogonal space-time structures. Using experimental data
as an example, we demonstrated an application of this method to investigating the changes in
the EEG activity of test subjects with sleep disorder (daytime sleepiness). The characteriza-
tion of this sleep disorder type is a daunting task for a sleep clinician, and such an assessment
requires an in-depth medical history and, in many cases, objective evaluation in the sleep lab-
oratory. An important and convenient practical tool for the clinical and scientific research of
somnology issues is the Multiple Sleep Latency Test (MSLT) [32–34]. In our study, we used
a specific variant of MSLT for conducting experimental recordings: the monotonous sound
perception test. After that, we introduced the KL method for mathematical analysis of the
EEG data in a group of overall healthy test subjects with complaints of daytime sleepiness.
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As a result, we could identify changes in the brain activity of these subjects, correlating with
improvement of a cognitive function of attention in our experiments.

2 Methods

2.1 Experimental design

Our experiments were conducted during the evening hours at a specially equipped laboratory,
where every participating volunteer was in a comfortable semi-lying position; and effects of
external stimuli, such as outside noise and bright light, were minimized. The experimental
design is presented schematically in Fig. 1c). At the onset of the experiment, 6–7 minutes
of EEG during passive wakefulness was recorded with participants’ eyes closed. Then there
were about 35 minutes of EEG recording during MSLT, followed by a repeated registration
of the background condition with eyes closed for the same duration as in the beginning of
the test.

During the active phase, every test subject was instructed to stay awake, largely with eyes
open. To control the state of a subject, we employed pressing a button on a remote control,
accompanied by beep sound. The sound signals were interspersed with pauses, the duration
of which was set randomly in the range of (5; 11) s. The experimental work was attended
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Fig. 1 a The scheme of the standard “10–10” EEG electrode arrangement. Different colors, pink and green,
correspond to the scalp spatial zones of left and right hemispheres, ZL and ZR , respectively. b Fragments
of EEG signals recorded during the experimental active stage. The signals are shown in colors in accordance
with their association with the ZL and ZR zones. c The arrangement of the experiments: a light gray rectangle
shows the first and last passive stages of the experiment (passive wakefulness with closed eyes), B1 and B2,
respectively; a light blue rectangle with white patterns AS corresponds to the active stage; beep—time moments
of sound stimuli; click—time moments of remote button pressing; ΔTresp—the response time duration of
a test subject for sound stimulus (beep). The total duration of active and passive stages is indicated on the
respective rectangles. The number of beeps during the active stage was about 500
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by 12 right-handed subjects 20–35 years old (5/7 male/female). The group of volunteers
included overall healthy individuals with subjective complaints of daytime sleepiness. On
the day before, and the day of the experimental work, none had an episode of a daytime sleep.
The night sleep prior to the experiment was approximately 7 hr.

The exclusion criteria were as follows: (i) the sleep apnea/hypopnea syndrome; (ii) strong
deviation from the age-specific norm of the cognitive status; and (iii) presence of emotional
disorders. To identify disorders of cognitive and emotional status, anamneses for neuro-
logical disorders and neuropsychological testing were used, based on Montreal cognitive
assessment (MoCA) [35] and Beck Depression Inventory [36].

During all experiments, the multichannel EEG data were obtained using the electroen-
cephalographic recorder Encephalan-EEGR-19/26 (Medicom MTD, Russia). Data were
recorded at 500 Hz sampling rate via the conventional monopolar registration method with
two references and multiple electrodes (N = 31), as shown in Fig. 1a. The adhesive Ag/AgCl
electrodes in special prewired headcaps were used to obtain EEG signals. Two reference elec-
trodes, A1 and A2, were located on mastoids, while the ground electrode, N, was placed above
the forehead. EEG signals were filtered by a bandpass filter with cutoff points at 0.5 Hz (HP)
and 300 Hz (LP) and a 50 Hz notch filter. Fragments of EEG signals are presented in Fig. 1b.

All subjects participated in the experiment on a voluntary and gratuitous basis. They have
signed an informed medical consent to participate in the experimental work, including their
agreement for further publication of the results, and received all necessary explanations about
the procedures. Collected experimental data were processed with respect to confidentiality
and anonymity of research subjects.

2.2 Data analysis

To study spatial EEG dynamics, we used the method of assessing spatial modes of the
Karhunen–Loève decomposition (KL). The orthogonal decomposition method sensu KL
presumes solving an integral equation of the following form:∫

K (x, x∗)Ψ (x∗)dx∗ = λΨ (x), (1)

where x is a spatial coordinate, t is the registration time, and K (x, x∗) is the kernel of the
equation, which can be presented as follows:

K (x, x∗) = 〈ξ(x, t)ξ(x∗, t)〉t . (2)

Here 〈...〉t means time averaging. We can choose the space–time distribution of physical
quantities as function ξ(x, t). In this case, prior to creating the matrix of the kernel K (x, x∗),
it is necessary to set the value of ξ(x, t) to zero mean.

Note that the KL decomposition is optimal, in sense that the eigenfunctions of Eqs. 1–2
form a basis such that the root-mean-squared error is minimized: ε = min〈‖ξ − ξ N‖〉, where
ξ is the exact solution, ξ N is approximate solution obtained for N basis dimension [37]. In
this case, the solution of Eqs. (1)–(2) is reduced to finding a set of eigenvalues {λn} and
eigenvectors {Ψn}.

Each eigenvalue λn matches a specific eigenvector Ψn , determining the nth KL—mode of
the oscillatory process. The value of λn is proportionate to the energy corresponding mode,
which is convenient to consider in the normalized form:

Wn = λn∑
i

λi
× 100%. (3)

123



Eur. Phys. J. Plus         (2021) 136:735 Page 5 of 11   735 

In our study, we choose time dependences of EEG recordings in different projection areas
of the cerebral cortex as a function ξ(x, t). The set (1)–(2) is a homogeneous Fredholm
integral equation of the second kind (see [38]). To find eigenvectors and eigenvalues, it is
necessary to represent the Eqs. (1)–(2) in a matrix form, and then the original equations can
be rewritten as follows:

n∑
p=1

n∑
q=1

K (xp, xq)Ψ
k(xq) =

n∑
p=1

λkΨ
k(x p), k = 1, n, (4)

K (xp, xq) = 1

T

T∑
m=0

(
ξ(x p, tm)ξ(xq , tm)

)
, (5)

where ξ(x p, tm) and ξ(xq , tm) are EEG signals, recorded from the scalp points x p and xq at
time tm ; and T denotes the time interval of a recording.

The eigenvalues and eigenvectors of the matrix (5) can be found via the implicitly shifted
QL-algorithm [39], after reducing the matrix K (xp, xq) to a tridiagonal form by the House-
holder’s method.

Mean, median, and standard deviation were used for the descriptive statistics of the data.
The numerical computation of the KL transformation, along with statistical analysis, were
conducted, using the original software developed in Fortran and Delphi systems.

3 Results

Let us consider the analysis of the behavioral characteristics of each tested subject’s response
to auditory stimuli. Figure 2a exhibits the smoothed dependence of the reaction time Tresp
of the test subject #3 to the stimulus experimental duration time t . The computation of
such smoothed Tresp dependence is based on estimating an average response time for each
set of five consecutive sound signals pooled together. At the beginning and at the end of
the experiment (areas on the graph, delineated by dotted lines), the subject rested without
undertaking any action. For convenience, sequential numbering denotes the areas of different
reactions of the subject to stimuli, whereas the numbers are not shown in the figure for narrow
areas. At some points in time, the response time was dropping to zero (indicated in the figure
by blue rectangles), which implied that no reaction to the stimulus from the subject was
reported. These stages are interpreted as episodic sleeping of the subject.

As for behavioral characteristics, the entire duration of the experiment was divided into 17
stages. Stages B1 and B2 corresponded to the states of the test subject with eyes closed at the
beginning and at the end of the experiment. We numbered the stages of the subject’s active
responses as A1–A8, where the number gradually increased in the course of the experiment,
and the stages of conditional falling asleep as S1–S8 (Fig. 1c).

3.1 Karhunen–Loève modes

We estimated the values of the normalized energy Wn Eq. (3) of the first five KL modes
(N = 5) for each of 17 stages of experimental work. The calculations were conducted
for EEG signals recorded from the channels of the left and right spatial zones, ZL and ZR ,
highlighted by different colors in Fig, 1a. In Fig. 2, the panels (b) and (c) present the histograms
of the normalized energy Wn distribution of the first five KL modes for each corresponding
stage of our experimental work. The height of each histogram column corresponds to the
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(a)

(b)

(c)

Fig. 2 Light gray rectangles indicate passive stages B1 and B2 with closed eyes of test subject. The active parts
of the experiment was divided into 15 stages. a The dependence Tresp(t) of the test subject’s response duration
to the sound stimulus during the experimental current time t . Vertical dashed lines indicate the beginning and
end of the active experimental stage AS. The stages, at which the subject did not respond to sound stimuli,
are shown in blue rectangles (S1 – S7). The experimental stages, at which the test subject actively responded
to sound stimuli, are indicated as A1 – A8. b, c The distribution of the normalized energy Wn of the first
five KL modes for experimental stages, for the left ZL and right ZR hemispheres, respectively. The height of
the histogram column corresponds to the energy value of the certain KL mode, the color matches the mode
number: mode 1—mauve, mode 2—green, mode 3— blue, mode 4—red, mode 5—yellow

energy of a particular mode, and the color matches the mode number. We assumed that KL
modes with Wn amplitude exceeding 0.1 % of the largest mode amplitude were significant.

We discovered that the spatial EEG dynamics was significantly heterogeneous at various
time intervals of the experiment. The number of significant modes for the regions under
consideration varied from one to five. We estimated the number of NL ,R

K L KL modes, char-
acterizing the dynamics of each experimental stage for left and right hemispheres, ZL and
ZR , respectively. In Fig. 3a, we demonstrate the dynamics of this parameter as a measure of
the signal set complexity. In other words, the number of observed modes, when calculating
the KL transformation, was increasing with the number of coherent patterns simultaneously
developed in a given spatial zone of the brain projection, and also with complexity of the
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Fig. 3 Color and symbols denotations for various experimental stages in accordance with Figs. 1 and 2. a
The number of NL ,R

K L significant spatial KL modes for the left and right hemispheres zones ZL (pink line) and

ZR (green line), calculated for different stages of experimental work; b the difference ΔN R−L in the number
of coherent spatial patterns for the zones ZL and ZR ; c the duration of continuous stages identified in the
experiment: B1, A1–A8, S1–S7, B2; d median MTresp and the average

〈
Tresp

〉
reaction time of the subject,

estimated for each experimental stage

EEG activity in this zone. To make the spatial dynamics comparison in the left vs. right
hemispheres, we estimated the parameter: ΔNR−L = N R

K L − NL ,R
K L (Fig. 3b.

The structure of spatial activity in the right hemisphere demonstrated a large number
N R
K L of KL modes at seven stages of the experiment and, in addition, the average number〈
N R
K L

〉 = 4.13. For the left hemisphere, the complexity of EEG activity increased just at four
stages, and the average number

〈
NL
K L

〉 ≈ 3.69.
During the first two stages (B1, A1) of the experiment, the activity in the ZL and ZR

zones exhibited the maximum effort. After that, the spatial EEG dynamics of the ZR zone
increased the complexity, in comparison with the ZL area, for the stages of episodic sleep
up to A4, which is indicated by the arrow in Fig. 3b. Next, in the course of stages S4 and A5,
the number of coherent patterns for the left and right hemisphere zones became the same,
whereas during the stages S5, A6 and S6, the complexity of the spatial dynamics increased
in ZL . However, further on, the complexity of the structure in the left hemisphere declined
to a minimum, and the spatial activity could be described by the KL modes 1 and 2.

For further analysis of the spatial EEG activity, we compared the EEG records with an
independent assessment of a subject’s response to sound stimuli. For each experimental stage,
we calculated the duration Tstage, the median MTresp and the average reaction time of a test
subject response to the stimuli,

〈
Tresp

〉
, as shown in Fig. 3c and d.

As for our results, there are several important points we would like to highlight: (1) We
observed that duration of continuous wakefulness stages Tstage increased steadily after the
stage A5, reaching a maximum at the stage A7 (351 s). Similarly, the duration of episodic sleep
stages was not constant and varied from 46.239 s (stage S1) to 72.594 s (stage S6); (2) During
the stage A5, the estimates of the mean and the median of a patient reaction time of response
to the sound stimuli coincided, after reaction time demonstrated the minimum values until the
end of the experiment (MTresp = [1.367; 1.444; 1.3275], 〈

Tresp
〉 = [1.428; 1.448; 1.3275]);

(3) It is worth noting that stages A5 and A7 are characterized by virtually identical values
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Table 1 Characteristics of EEG spatial activity and reaction time of the subjects: #—sequential number of
test subject; S#—sequence number of stage S for which the condition ΔNR−L < 0 is satisfied; A#—sequence
number of stage A for which the minimum of MTresp is observed; BAS—the number of experimental stages
for test subject #

# S#, A#, BAS # S#, A#, BAS
ΔNR−L < 0 min MTresp ΔNR−L < 0 min MTresp

1 8 10 19 7 3 6 9

2 3 4 7 8 12 13 17

3 5 6 17 9 5 6 9

4 4 6 10 10 4 6 9

5 8 6 18 11 6 7 10

6 − − 3 12 5 7 18

of the median and the mean. Hence, for these stages, we can claim the subject reaction time
distribution is approaching the normal distribution. However, this finding did not apply to
stages A preceding the stage S5; (4) In subject #3, stage A8 was too short (39.661 s) to be
included into the analysis.

Table 1 gives numerical summary of the spatial EEG patterns for a group of volunteers. For
every test subject with a sequential number #, the sequential number of stage S is given, during
which the spatial activity in the left ZL zone demonstrated a large complexity in relation to
the spatial activity in the right ZR zone – i. e., ΔNR−L < 0; and the sequential number of
stage A with the minimal reaction time of response, Tresp , of a volunteer is presented in the
Table 1 as well. Additionally, we provide the full number of experimental stages for every
test subject, BAS. It should be noted that subject #6 avoided episodes of a daytime sleep
during the active phase of the experiment.

4 Conclusion

In our experiments, we observed changes in the structure of the EEG spatial activity in
the hemispheres and simultaneous changes in quantitative characteristics of a test subject’s
attention, such as an ability to stay continuously awake (Tstage) and the reaction time of the
patient’s response to an auditory stimulus, Tresp . We discovered that a subject’s reaction was
becoming faster from the stage A4 on. Concurrently, the complexity of the left hemisphere
spatial activity was growing as well. With an increase in the complexity of the left hemisphere
activity during a short sleep (stages S5 and S6), we observed the minimal reaction time of a
subject at the active stages A6 and A7, along with an increase in the duration of continuous
wakefulness. The observed pattern was expressed in the sequential dynamics of the analyzed
parameters: after a certain stage S with complications in the spatial activity of coherent
patterns (KL modes), located in the left hemisphere zone, ZL , the stage A emerged, which
implied the minimal reaction time of response, distribution of the reaction time of response
to stimuli close to normal, and increase in a continuous activity duration.

We investigated the repeatability of this scenario in the group of test subjects (Table
1). For 92% of those, we noticed a similarity in observed parameters of the spatial EEG
activity and duration of reaction time of response to auditory stimuli. We assumed that
an emergence of such spatial activity scenario was associated with the processes of brain

123



Eur. Phys. J. Plus         (2021) 136:735 Page 9 of 11   735 

activity optimization providing an increase in the efficiency of cognitive processes, which
was expressed in a reduction in a reaction time of response, and an augmented duration of
continuous stages of active wakefulness. The observed effect of the brain activity pattern
resembled the detected scenarios of the spatial activity development shown in [24], in which
higher speed and quality of a test solving procedure correlated with emergence of a more
distributed functional network, forming solid connections within the nodes. We did not reveal
any significant gender-related differences in the statistical analysis of observed EEG patterns
and structures. However, the sample size was too small to exclude the possibility that a gender
could constitute a lurking variable. Much larger sample would be required to prove otherwise
in a further study.

Also, the high degree of homogeneity in the scenario of coherent spatial pattern develop-
ment, observed in this study, could be, perhaps, associated with a presence of an essential
feature in overall healthy volunteers—particularly, of a subjectively experienced excessive
daytime sleepiness. High homogeneity of the group was established by the fact that 92% of
test subjects demonstrated multiple stages of episodic daytime sleep without responses to
stimuli. As shown in [25], subjects with similar psychological traits demonstrated similar
electrical activity of the brain, recorded on their EEGs, in the course of taking complicated
cognitive tests.

Cognitive activity parameters of subjects improved significantly after restructuring their
brain activity during a sleep episode. For the group of 11 subjects with sleep stages S, the
minimum values of the median MTresp and the mean

〈
Tresp

〉
belonged to the ranges [1.1; 1.745]

and [1.04; 1.75], respectively. However, the test subject #6 without episodic sleep stages had
significantly smaller median and mean of reaction time of response to stimuli: MTresp = 0.9,〈
Tresp

〉 = 0.89. Indirectly, such increase in response times in a group of test subjects with
daytime sleepiness may indicate an early stage of attention disorder—i.e., it is disguised for a
subjectively perceived increase in a subject’s daytime sleepiness. At the same time, absence
of complaints for cognitive problems on the part of participants in the experimental group
and the fact that such deviations were not exposed during a standard neuropsychological
examination, present definite interest requiring further investigation.
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