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Abstract – Spectral causalities are now widely used in physical and biological sciences to char-
acterize directional couplings from time series. In particular, the Granger-Geweke spectrum is a
frequency decomposition of a Wiener-Granger causality measure. However, there are considerable
difficulties in their interpretation, so quite hot debates still arise. Here, the problem is studied
within the dynamical effects framework: spectral effects are introduced as long-term effects of rel-
evant parameter interventions. Quantitative relationships between the GG spectrum and certain
spectral effects are established for linear stochastic differential equations. It is also argued that
in general existing spectral causalities do not unambiguously relate to spectral effects. The latter
are shown to be as estimable from time series, at least for some simple systems.

Copyright c© EPLA, 2020

Introduction. – In the field of time series analysis,
two recent decades have exhibited wide and strong and
still rising interest in the problem of revealing directional
(causal) couplings in complex systems, as discussed, e.g.,
in the generalizing works [1–9]. The most widely used idea
seems to be the Wiener-Granger causality (WGC) [10,11]
which is, for a direction Y → X , a kind of partial corre-
lation [12,13] between the future of a system X and the
past of a system Y , given the past of X . After the linear
autoregression (AR) implementation [11], it has been de-
veloped in different ways including information-theoretic
versions [14–20] and their analysis [12,21–25] with applica-
tions ranging from physics [19] to biomedicine [4,6,15,21]
and climate [13,16,18,26–30]. In addition to a single value
quantifying the influence Y → X , it has been discov-
ered [31,32] a very promising opportunity of its frequency
decomposition which is now called the Granger-Geweke
(GG) spectrum and represents a well-established tech-
nique, as discussed and applied, e.g., in refs. [33–35]. Di-
rected transfer function (DTF) [36] and partial directed
coherence (PDC) [37] are somewhat similar, but simpler
spectral causalities [38], also very popular in various ap-
plications ranging from neural systems [39] to nuclear re-
actors [40]. Impressively, the GG spectra have become so
useful in neuroimaging studies that in a recent review [35]
they are considered as an equally important tool along
with basic fMRI, EEG, and MEG techniques.

It might then look surprising that these spectral causal-
ities are often difficult to interpret and their meaning is

still a subject of intense debate. Modifications of PDC are
suggested, e.g., to interpret it as true coherence [41] or to
compare its values at various frequencies [42]. Even a hot-
ter battle is occurring around the basic concept of the GG
spectrum. Stokes and Purdon [43] have addressed diffi-
culties of its interpretation: “causality measures . . . reflect
a combination of dynamics from the different components
of the system. How then do causality values relate to
the underlying structure or dynamics of the generative
system? . . .GG causality reflects only the dynamics of the
transmitter node and channel, with no dependence on the
dynamics of the receiver node. This suggests that, even in
simple bivariate AR systems, GG causality may be prone
to misinterpretation and may not reflect the intuitive no-
tions of causality most often associated with these meth-
ods”. Several authors have given justified replies [44–47]
but their argument that the GG spectrum represents in-
formation transfer rate [46,47] has met the objection [48]
that information transfer is then to be interpreted in its
turn. Interpretation and “intuitive notion of causality”
seemingly imply here that an abstract interdependence
measure should be related to a more concrete quantity
reflecting how some “cause” (a kind of independent in-
tervention) produces some “effect” (a kind of dependent
response). The non-finished character of these discussions
suggests that the entire topic needs further investigation.

A novel contribution of this letter consists in considering
the entire problem from the other side, within the dynam-
ical effects framework [8] inspired by Pearl’s interventional
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formalism [1], i.e., in i) taking generative equations for the
dynamics under study as known, ii) introducing “natural”
frequency-domain coupling quantifiers of practical inter-
est, and iii) studying which of them the GG spectra and
other existing spectral causalities are close to. This op-
portunity has been briefly mentioned in ref. [8] (sects. IIC
and IIIC). Somewhat similarly, the identification of gener-
ative equations has been used to estimate the GG spectra
via dynamical causal modelling [38], but no wider use of
the generative equations has been proposed and the GG
spectra have remained a final goal. An important state-
space approach has been developed to estimate the GG
spectra [49–51] and allowed to define multiscale charac-
teristics [52], but state space models have not been used
to study effects of coupling variations. Generative equa-
tions have been used for causal couplings quantification in
refs. [8,20,53], but not in the frequency domain.

I would note that the entire polemic about inter-
pretations of causality spectra reminds that concern-
ing “reality” of the spectral components (side bands)
of a modulated radio signal, i.e., the question of
whether a Fourier series is only a formal decompo-
sition, which occurred on the pages of Nature in
1930 [54,55]. That polemic found also a detailed response
of Mandelshtam [56,57] who was together with his disciple
A. A. Andronov a founder of the widest research direc-
tion in nonlinear oscillations theory called [58] “Russian
school”. His answer to that question is achieved via phys-
ical arguments based on how the signal is intended to be
analysed. Similar arguments are given in the end of this
letter for interpreting spectral causalities. In essence, the
aim of this letter is to put the formal statistical problem
under study into the oscillation-theoretic context, or to
switch from the “logic of formal decompositions” to the
“logic of dynamical effects”.

Below, the spectral effects are first introduced for a sim-
ple, but general continuous-time stochastic system. The
GG spectra are then recapitulated and compared to the
spectral effects analytically and numerically, including ac-
cessibility from time series. Finally, other spectral causali-
ties and oscillation-theoretic interpretations are discussed.

Spectral effects. – Stochastic linear differential equa-
tions represent a model which is appropriate for a variety
of irregular real-world processes and widely used in phys-
ical community, e.g., [59]. To define spectral effects of
couplings and compare them to the GG spectrum, two
continuous-time subsystems X and Y are used below:

Lx(d/dt)x = Kxy(d/dt)y + ξx(t),
Ly(d/dt)y = Kyx(d/dt)x + ξy(t),

(1)

where x and y are observed variables, Lx, Ly, Kxy, and
Kyx are symbolic polynomials in the derivative operator,
their degrees are Px, Py , Pxy, and Pyx, respectively, with
Px ≥ 1, Py ≥ 1, Pxy < Py, Pyx < Px. Kxy and Kyx

describe directional couplings Y → X and X → Y . Sup-
pose that Lx(iω) and Ly(iω) as polynomials in ω have

no roots in the low half of the complex plane (ω is the
angular frequency, i is the imaginary unit), so the iso-
lated subsystems X and Y are stable, i.e., the isolated
subprocesses x and y are stationary. The noises ξx and ξy

with covariance functions 〈ξx(t)ξx(t′)〉 = Γxxδ(t − t′) and
〈ξy(t)ξy(t′)〉 = Γyyδ(t− t′) are taken below to be mutually
independent without any loss for the development of the
basic idea. The system (1) specifies a vector Markov pro-
cess of the dimension Px +Py, whose state vector consists
of x and y and their sequential derivatives. It describes
stochastic damped oscillators at Px = Py = 2 and over-
damped ones at Px = Py = 1.

Power spectral density (PSD) is a basic property of
the stationary Gaussian processes x and y, especially
in the oscillation-theoretic context, e.g., [56,57,60]. An
individual PSD is given by Wx(ω) = limT→∞〈x̂T (ω) ·
x̂∗

T (ω)〉/T , where 〈·〉 denotes the expectation and x̂T (ω) =
∫ T/2

−T/2
x(t)e−iωtdt. The cross-PSD reads Wxy(ω) =

limT→∞〈x̂(ω)ŷ∗(ω)〉/T and the coherence Rxy(ω) =

Wxy(ω)/
√

Wx(ω)Wy(ω). In order to evaluate the impor-
tance of coupling Y → X in the frequency domain, it
is natural to consider responses of Wx(ω) to changes in
Kxy or parameters of Y . Since PSD describes station-
ary dynamics, any such quantifier belongs to the class of
long-term [61] (or equilibrium [62]) dynamical effects of
directional coupling [8].

The most direct and quite informative spectral effect,
which is often desired in practice, seems to be the dif-
ference between Wx at given parameters and the PSD
Wx|Kxy=0 under the condition of no coupling Y → X .
In case of two subsystems (1), Wx|Kxy=0 is just the “free”
PSD of an isolated subsystem X . In convenient relative
units, the suggested spectral effect reads

Sy→x(ω) =
Wx(ω) − Wx|Kxy=0(ω)

Wx|Kxy=0(ω)
. (2)

Thus, Sy→x evaluates the relative change of the PSD of
x under switching the coupling Y → X on. Below, this
coupling-on spectral effect is the main spectral causality
measure within the framework of dynamical effects.

As soon as the coupling Y → X is “on”, both the noise
intensity Γyy and the functions Kxy and Kyx contribute
to the PSD of x. Therefore, Sy→x combines effects of both
factors. For a more detailed characterization, let us define
“zero-noise coupling-on” spectral effect Cy→x to describe
the coupling role when ξy is absent, i.e., for Γyy = 0:

Cy→x(ω) =
Wx|Γyy=0(ω) − Wx|Kxy=0(ω)

Wx|Kxy=0(ω)
, (3)

where Wx|Γyy=0 is the PSD of x for zero noise ξy. Simi-
larly, the “noise-on” spectral effect can be defined as the
response of the PSD of x to switching the noise ξy on:

Gy→x(ω) =
Wx(ω) − Wx|Γyy=0(ω)

Wx|Γyy=0(ω)
. (4)
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All these spectral effects follow certain relationships.
To present them briefly, let us define the (unidirec-
tional) transfer function from Y to X as Hxy(ω) =
Kxy(iω)/Lx(iω), where Kxy(iω) is in fact the transfer
function from input to output of an isolated coupling
element Y → X (all the same for Hyx). Let us de-
note the characteristic determinant of the system (1)
as D(ω) = Lx(iω)Ly(iω) − Kxy(iω)Kyx(iω), that of
the uncoupled system as D0(ω) = Lx(iω)Ly(iω), and

D̃(ω) = D(ω)/D0(ω) = 1−Hxy(ω)Hyx(ω). The free PSDs
read Wx|Kxy=0(ω) = Γxx/|Lx(iω)|2 and Wy|Kyx=0(ω) =
Γyy/|Ly(iω)|2. The PSD of x is then expressed as

Wx(ω) =
Wx|Kxy=0(ω) + |Hxy(ω)|2Wy|Kyx=0(ω)

|D̃(ω)|2
. (5)

Then, one readily obtains the PSD of x for zero noise ξy as

Wx|Γyy=0 = Wx|Kxy=0/|D̃|2 and the PSD of x for unidirec-
tional coupling Y → X (i.e., for zero coupling X → Y ) as
Wx|Kyx=0 = Wx|Kxy=0 + |Hxy|

2Wy|Kyx=0. It follows that
the noise-on effect is Gy→x = |Hxy|2Wy|Kyx=0/Wx|Kxy=0

which is equal to the “unidirectional” coupling-on effect
Sy→x, i.e., to that obtained for Kyx = 0. Thus, the
relative contribution of ξy to Wx is independent of the
coupling X → Y . For bidirectional coupling, Gy→x dif-

fers from the coupling-on effects Cy→x = 1/|D̃|2 − 1 and

Sy→x = Cy→x + Gy→x/|D̃|2. Further algebra gives

Sy→x(ω) = (1 + Gy→x(ω))(1 + Cy→x(ω)) − 1. (6)

Hence, Gy→x(ω) ≈ Sy→x(ω) if |Cy→x(ω)| ≪ 1 which is
the case for a weak mutual coupling |Kxy(iω)Kyx(iω)| ≪

|Lx(iω)Ly(iω)|, i.e., for |D̃(ω)| ≈ 1. As |D̃(ω)| → 0, the
system (1) gets close to instability having Cy→x(ω) ≫ 1

and Sy→x(ω) ≫ Gy→x(ω). If |D̃(ω)| ≫ 1, Gy→x(ω) and
Sy→x(ω) can be even of different signs. Thus, different
spectral effects reflect different aspects of the coupling role.

Granger-Geweke spectrum. – Based on the WGC
idea and spectral decompositions of the prediction er-
ror [60,63] and mutual information [64], the GG spectrum
has been introduced [31] for the AR process,

lx(b)xn = kxy(b)yn + ζx,n,
ly(b)yn = kyx(b)xn + ζy,n,

(7)

where n is the discrete time (denote one time step as Δt
in units of the above continuous time), bxn = xn−1 is
the lag operator, lx, ly, kxy, and kyx are polynomials with
kxy(0) = 0 and kyx(0) = 0. White noise (ζx, ζy) is the zero
mean with component variances γxx, γyy and covariance
γxy. If γxy = 0, the system (7) is completely analogous to
eqs. (1) with mutually independent noises, so all the above
spectral measures can be defined via the same formulas
with e−iω∆t instead of iω as the argument of the poly-
nomials and [−π/Δt, π/Δt] instead of the entire real axis
as the domain of ω. Small letters are used here to denote
characteristics of the discrete-time system. Being sampled

at intervals Δt, the process (1) can be exactly represented
in the form (7), e.g., [51], where in general the degrees of
lx, ly, kxy, and kyx are infinite and γxy 	= 0 [24,51].

For the system (7), the GG spectrum in the direction
Y → X is defined [31] as log (1 + gy→x(ω)), where

gy→x(ω)=
Wx(ω)

Wx(ω) − γyy

(

1−
γ2

xy

γxxγyy

)

|hxy(ω)|2
−1, (8)

and hxy(ω) = kxy

(

e−iω∆t
)

/lx
(

e−iω∆t
)

. Integrating
log (1 + gy→x(ω)) over frequency, one gets the WGC as
logarithm of the ratio of prediction error variances for the
univariate and bivariate AR models [31]. However, any
decomposition of a single number into an integral is ob-
viously non-unique, so the second requirement underlying
the definition is that gy→x(ω) relates to a decomposition
of the PSD of x into a sum of two terms each related to
one of the subsystems. Indeed, the PSD of x takes directly
such form at γxy = 0: wx(ω) = wx|kxy=0(ω)(1+gy→x(ω)),
where gy→x(ω) = |hxy(ω)|2wy|kyx=0(ω)/wx|kxy=0(ω). For
convenience, gy→x itself is called GG spectrum below.

The quantity log (1 + Gy→x) integrated over ω gives the
WGC rate for the system (1) with Px = Py = 1 [51]. For
higher-order systems such a proof has not been provided,
but due to the separation of two terms in Wx (5), the
quantity Gy→x = |Hxy|2Wy|Kyx=0/Wx|Kxy=0 is conceptu-
ally a direct analogue to gy→x in any case. Therefore, for
the continuous-time system (1) with mutually indepen-
dent noises, Gy→x(ω) is called below the GG spectrum
which thus represents the noise-on spectral effect.

For that system, the relationship between Gy→x and

Sy→x is not simple (6), and one can further derive |D̃|2 =
(1 − |Rxy|2)(1 + Gx→y)(1 + Gy→x), so eq. (6) gives

Sy→x(ω) =
1

(1 + Gx→y(ω))(1 − |Rxy(ω)|2)
− 1. (9)

Thus, the GG spectrum in the other direction and the
coherence |Rxy(ω)| can be used to compute Sy→x(ω). Let
us further check how strongly Gy→x and Sy→x can differ.

Minimal example. – The simplest system (1) widely
used in mathematical modelling and statistical testing
consists of overdamped oscillators, i.e., Lxx = αxx + ẋ,
Lyy = αyy + ẏ, Kxyy = cxyy, Kyxx = cyxx. In this case,
all spectral measures are found explicitly. In particular,
the characteristic determinant is D(ω) = (αx + iω)(αy +
iω) − cxycyx and the condition of weak coupling |1 −

D̃(ω)| ≪ 1 becomes |cxycyx| ≪ αxαy. Figure 1 illustrates
two typical situations for αx = αy = 1 and Γxx = Γyy.

At weak symmetric coupling cxy = cyx = 0.1 (fig. 1(a)),
the GG spectrum Gy→x and the spectral effect Sy→x are
both maximal at 0, differing three times in their values.
The difference rises as cxycyx → αxαy and so |D̃(0)| → 0.
Figure 1(b) shows that Sy→x(0) ≈ 50 (Wx rises 50 times
due to coupling) for cxy = cyx = 0.9, while Gy→x(0) is only
0.8. The coupling-on effect on the variance of x [61] equals
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Fig. 1: Spectral effects (solid lines) and GG spectra
(dashed lines) for the system (1) with Lxx = αxx + ẋ,
Lyy = αyy + ẏ, Kxyy = cxyy, Kyxx = cyxx, αx = αy = 1:
(a) cxy = cyx = 0.1, (b) cxy = cyx = 0.9, (c) cxy = −cyx = 0.1,
(d) cxy = −cyx = 0.9.

1/(α2
x/c2

xy −1) ≈ 4, i.e., large Sy→x at low frequencies are
partly compensated by negative Sy→x at higher ones.

For “anti-symmetric” coupling cxy = −cyx, fig. 1(c), (d)
shows that Sy→x is negative at low frequencies and
positive at higher ones contrary to the above case, the
coupling-on effect on the variance of x being zero. This
coupling gives birth to a peak in the PSD of x at some fre-
quency ω0 (in the noise-free case the frequency of decaying
oscillations would be

√

|cxycyx|), so Sy→x(ω0) is positive
and large. Sy→x(0) tends to −1 as the coupling increases
indicating that such coupling suppresses power of x at
low frequencies. The GG spectrum does not exhibit such
behaviour, being maximal at 0 and always positive.

To generalize, strong differences between Gy→x and
Sy→x occur under one of the two conditions: i) the
system (1) approaches the boundary of its stability
domain, i.e., |D̃(ω)| ≪ 1 at some ω (at ω = 0 above),
where Sy→x(ω) ≫ Gy→x(ω); ii) a new characteristic
oscillation frequency ω0 arises as a result of the “stable
node-stable focus” transition occurring when the cou-
pling coefficient increases from zero to a given value,
so Sy→x(ω0) ≫ Gy→x(ω0), while Sy→x(0) ≈ −1 and

Gy→x(0) ≈ 1 since |D̃(0)| ≫ 1.

Finite sampling rate. – In practice, a system is typ-
ically analysed from a time series xn = x(nΔt). Prob-
ably, the basic reason why the suggested spectral effects
have not yet attracted much attention is that the gen-
erative equations are usually supposed to be necessarily
known for their estimation. However, the GG spectrum
Gy→x is also not directly estimable from a time series,
only its discrete-time counterpart gy→x being readily avail-
able [49,50]. As for Sy→x, two approximations can be
suggested. First, by computing the PSD of x for the
AR process (7) and for this AR process with kxy = 0
and substituting these PSDs into eq. (2), one gets the
spectral effect sy→x which is a proxy for Sy→x. Second,
eq. (9) can be used where the continuous-time quantities
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Gy x
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Fig. 2: Spectral effects and GG spectra for the system (1) with
Lxx = αxx + ẋ, Lyy = αyy + ẏ, Kxyy = cxyy, Kyxx = cyxx,
αx = αy = 1, Γxx = Γyy (solid lines) and for its AR version
(dashed lines, circles): (a), (b): cxy = 1, cyx = 0, Δt = 0.2;
(c), (d): cxy = −cyx = 0.9, dashed lines for Δt = 0.1, circles
for Δt = 0.5.

are replaced with their discrete-time counterparts giving
the proxy s′

y→x. A practical question is whether Sy→x

can be estimated from sampled data with errors not much
greater than those for Gy→x. To check inevitable influ-
ence of finite Δt, it is helpful to find analytically for the
above overdamped oscillators how strongly sy→x and gy→x

diverge from Sy→x and Gy→x with the rise of Δt.

For the unidirectional coupling Kxyy = cxyy, Kyx = 0,
one has Sy→x = Gy→x. Already for moderate Δt = 0.2,
less than the characteristic time 1/αx = 1, gy→x is not
an accurate approximation of Gy→x as shown in fig. 2(a).
This is because in the AR representation, which is here
a first-order AR process, the coupling term cxyy is partly
“transferred” to the noise covariance γxy leading to un-
derestimation of the coupling role. This is not as notable
for sy→x which is a much more accurate proxy (fig. 2(b)).
Indeed, one can show that sy→x is of the second-order ac-
curacy in Δt, while gy→x is only of the first-order accuracy.
The proxy s′

y→x coincides with sy→x in fig. 2(b), (d).

For the antisymmetric coupling, where Gy→x and Sy→x

strongly differ, the error |Gy→x−gy→x| is still greater than
|Sy→x−sy→x| as shown by the dashed line in fig. 2(c), (d).
The circles in fig. 2(c), (d) show that even at large Δt = 0.5
the spectral effect Sy→x around its maximum (and even
minimum) is reasonably well approximated with sy→x,
while gy→x as a proxy for Gy→x is stronger biased. Thus,
here the spectral effect should be estimable from a time
series with even higher accuracy than the GG spectrum.

Weakly damped oscillators. – The overdamped os-
cillators are a system with completely observed state space
(x, y) and, in this sense, a singular case. Let us check a
more general situation of subsystems X and Y with higher
state space dimensions Px > 1 and Py > 1, where the full
state of Px +Py coordinates cannot be precisely computed
from the observables x and y. The simplest example is
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the damped oscillators (1) with Lxx = ω2
xx + 2δxẋ + ẍ,

Lyy = ω2
yy + 2δyẏ + ÿ. Let us specify couplings again as

Kxyy = cxyy, Kyxx = cyxx, set ωx = ωy = 1, Γxx = Γyy,
and let the damping to be weak δx = δy = 0.1.

The exact AR representation (7) is not available
here. Therefore, to compute spectral measures for the
sampled processes, two numerical techniques are used:
i) covariance functions for the system (1) are computed,
e.g., [8,24], the Yule-Walker equations are solved to
derive coefficients in the AR equations (7) of a trial order
(increased until saturation of the results) and the above
formulas are applied to get gy→x, sy→x, and s′

y→x; ii) the
algebraic Riccati equation is solved [49,50] to get gy→x

and s′
y→x.

For moderate Δt = 0.6 < 2π/ωx and couplings cxy =
cyx = 0.1 which are weak relative to ω2

x, the spectral ef-
fect Sy→x is quite non-trivial (fig. 3(a)). This is because
eigenfrequencies of the coupled system (1) diverge from
the natural frequency of an isolated subsystem ωx when
the coupling increases. Two positive peaks of Sy→x in
fig. 3(a), (b) point to these eigenfrequencies, while the
negative trough corresponds to ωx where the PSD de-
creases. These features are not revealed by the GG spec-
trum, which is positive and maximal at ωx. Figure 3(b)
exhibits even stronger differences between Sy→x and Gy→x

for stronger coupling cxy = cyx = 0.9. Figure 3(c), (d)
shows that Sy→x is recovered using both sy→x and s′

y→x

with accuracy not worse than that for Gy→x recovered
using gy→x. Similar results are observed for many other
sampling rates and coupling strengths. Thus, the spectral
effect estimates again should not be less accurate than the
GG spectrum estimates.

Three subsystems. – Here, the definition of the GG
spectrum is more complex [32] and its interpretation is
far more troublesome. As an exemplary system, con-
sider discrete-time overdamped oscillators with generative
equations

xn = axxn−1 + cxyyn−1 + cxzzn−1 + ζx,n,
yn = ayyn−1 + cyxxn−1 + cyzzn−1 + ζy,n,
zn = azzn−1 + czxxn−1 + czyyn−1 + ζz,n.

(10)

For mutually independent white noises ζx, ζy, and ζz , the
conditional GG spectrum gy→x|z(ω) reads [32,49]

gy→x|z =
γ′

xx

γ′
xx − γyy|h̃xy(ω)|2 − γzz |h̃xz(ω)|2

− 1, (11)

where γ′
xx is the noise variance in the bivariate AR model

without y, i.e., γ′
xx = var(xn|xn−1, zn−1, xn−2, zn−2, . . .),

h̃xy(ω) and h̃xz(ω) are the components of the matrix
product of the inverse transfer function of the bivariate
AR model and the sub-matrix of the transfer function of
eq. (10) [49]. Namely, log(1 + gy→x|z) is a frequency de-
composition of the logarithmic prediction improvement of
x achieved with the use of y, gy→x|z 	= 0 if and only if
cxy 	= 0. Spectral effects can be defined via the same for-
mulae (2) and (4).
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Fig. 3: Spectral effects and GG spectra for the system (1)
with Lxx = ω2

xx + 2δxẋ + ẍ, Lyy = ω2

yx + 2δy ẏ + ÿ, Kxyy =
cxyy, Kyxx = cyxx, ωx = ωy = 1, δx = δy = 0.1, Γxx =
Γyy: (a) cxy = cyx = 0.1, (b)–(d) cxy = cyx = 0.9. (a), (b):
Spectral effects (solid lines) and GG spectra (dashes); (c), (d):
spectral measures for the system (1) (solid lines) and for its
AR representation at Δt = 0.6 (thick dashed lines for sy→x,
thin dashed lines for s′

y→x, obtained with the technique i), see
the main text).

Interpretation of gy→x|z as a spectral effect is possible
only under strong restrictions on the coupling structure
even for this simple example. Namely, take the simplest
structure without loops: czx = czy = cyx = 0 and cxy =
cxz = cyz = C > 0. Specify ax = ay = az = A > 0 and
γxx = γyy = γzz . Compare gy→x|z to the spectral effect (2)
given by sy→x = (Wx(ω)−Wx|cxy=0(ω))/Wx|cxy=0(ω) . It
can be shown that for weak couplings C ≪ 1−A, the GG
spectra approach the respective coupling-on spectral ef-
fects: gy→x|z ≈ gy→x ≈ sy→x and gz→x|y ≈ gz→x ≈ sz→x.
However, stronger couplings change the situation drasti-
cally. For A = 0.9 and C = 1 − A = 0.1, two of the GG
spectra exhibit counterintuitive closeness to the spectral
effect from another subsystem: gz→x = sy→x (fig. 4(a))
and gy→x|z = sz→x (fig. 4(b)). The other two GG spec-
tra are even less clear: gy→x is roughly close to sz→x

(fig. 4(b)), while gz→x|y is far from any spectral effect
(fig. 4(a)). Hence, under the increase of C from 0 to 1−A,
some GG spectra transit from one kind of spectral effect
to another kind, while some mix takes place in between.

For the above simplest structure, gy→x|z appears equal
to sy→x obtained for cxz = cyz = 0, i.e., for an isolated
pair (X, Y ). However, for bidirectional coupling between
Y and Z and especially for loops involving X , the interpre-
tation of any GG spectrum in the direction of X in terms
of dynamical effects directly becomes impossible. Under
an increase of the number of subsystems and interconnec-
tions, difficulties of interpreting the GG spectra only rise.
In contrast, the spectral effects possess the same unam-
biguous interpretation discussed in more detail below.

Discussion. – The GG spectrum is interpreted as in-
formation transfer rate [46,47], since it is a frequency
decomposition of the WGC quantified as conditional
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Fig. 4: Spectral effects (solid lines) and GG spectra (circles
for bivariate and dashed lines for conditional ones) for the sys-
tem (10) with czx = czy = cyx = 0, cxy = cxz = cyz = 0.1, and
ax = ay = az = 0.9. The technique ii) is used, see main text.

mutual information [12,14,23,31,32]. However, as shown
above, such formal decompositions generally do not reflect
spectral effects of parameter interventions (2), (3), and (4).
Thus, when one calls the GG spectrum “an effect, not
mechanism” (title of ref. [65]), even this modest formula-
tion seems to be exact in a rather restricted sense. Namely,
the GG spectrum is non-zero if and only if the coupling
Y → X is non-zero in a model equation and, hence, it
directly reflects the presence of coupling and is a result of
it. However, its further quantitative interpretation as a
spectral effect requires special conditions and efforts.

The debates around interpretations remind those ini-
tiated by a famous radio engineer, J. A. Fleming [54].
He claimed that spectral components (side bands) of an
amplitude-modulated radio signal are just formal and do
not “really exist”, only modulation depth being real. If so,
one should not reserve a minimal frequency bandwidth
for a radio channel. The incorrectness of this view was
pointed out by several authors [55] and discussed in detail
by Mandelshtam in his 1930–1932 lectures on oscillations
which were published much later [56]. He stresses that
this question is ill-posed, since one should say which sys-
tems are used to analyse the radio signal. Spectral com-
ponents are quite real, if one uses the signal as an input to
a narrow-band filter which gives at its output a narrow-
band component of the original signal. Summed outputs
of a set of filters covering the entire frequency axis give the
total power of the original signal and, thereby, its PSD is
directly visible and actual. Still, the reality of spectral
components was often discussed again, e.g., in [57]. In
our case, due to the linearity of the system (1), the spec-
tral effect Sy→x(ω′) represents the response of Wx to in-
serting/removing a narrow-band (ω′ ±Δω) rejecting filter
on/out of the way Y → X . If such a filter is removed, the
relative change of Wx(ω′) is given by Sy→x(ω′). Similarly,
Gy→x is the spectral effect of removing a narrow-band re-
jecting filter out of the way ξy → y. Such interpretations
are valid for an arbitrary number of subsystems, but gen-
erally not for the GG spectra.

As for the DTF, its interpretation is straightforward.
For an arbitrary number N of subsystems, the DTF
is defined via factorization of the PSD matrix [36]:
W(ω) = H(ω)ΓH∗T(ω), where T means transposition

and Γ is the noise intensity matrix. For mutually
independent noises, the normalized DTF in the direction
m → n defined as Γmm|Hnm|2/

∑N
j=1

Γjj |Hnj |
2 (called

informational DTF [41] or directed coherence [37]) is
equivalent to the noise-on spectral effect Gm→n (4). Such
a relation was also outlined in ref. [43]. As for the PDC,
it is defined via a similar factorization of the partial
coherence matrix [37] and has no direct interpretation as
a spectral effect. But the non-normalized PDC [43] in the
direction m → n is just Knm(ω), a transfer function of an
isolated coupling element m → n. Thus, any PDC relates
to the spectral effect of the input of a coupling element on
its output, without more detailed interpretation. Only for
N = 2 the informational DTF and generalized PDC [41]
coincide with the GG spectrum and, hence, with the
noise-on spectral effect.

The suggested approach to studying spectral effects of
couplings can be generalized to i) cross-correlated noises
in subsystems, ii) arbitrary state vectors rather than only
sequential derivatives, iii) larger ensembles of subsystems,
iv) nonlinear systems with the use of relevant parameter
estimation (e.g., [3,66]) and identification (e.g., [38,52,67])
procedures. Another useful line of research seems to be the
study of quantitative conditions under which the spectral
effect estimation is reliable. All that will allow to under-
stand better the meaning of the GG spectra (and DTF
and PDC) and to more reliably estimate spectral effects.

Conclusions. – It is shown that the spectral effects in-
troduced within the dynamical effects framework may well
be more desirable for coupling characterization than the
GG spectrum and other spectral causalities, though prob-
ably less accessible from data. Thus, further studies of
the relationships between the two types of characteristics
should improve the interpretation of the latter and accessi-
bility of the former. To a significant extent, the suggested
view resolves the interpretational difficulties debated in
refs. [43–48]. This step has appeared possible because the
formal statistical problem under study has been consid-
ered in the oscillation-theoretic spirit, via switching from
the logic of formal decompositions to the logic of dynam-
ical effects. The suggested view does not replace the GG
spectra and other existing spectral causalities, but com-
plements them and may serve to develop a more diverse
set of spectral characteristics capable of answering quite
different questions about the coupling role in dynamics.

∗ ∗ ∗

The work is done within the framework of a state task.
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