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Abstract Diagnostics of the psychophysiological state at rest and under stressful conditions is an important
problem. We tested various biomarkers of the psychophysiological state of healthy volunteers at rest and
while completing stress-inducing cognitive tasks, namely the Stroop color word test and mental arithmetic
test. We tested the biomarkers based on the analysis of electroencephalograms, respiratory signals, and
the signals of cardiovascular system. We investigated both the individual characteristics of these signals
in the low-frequency range (less than 0.5 Hz), and characteristics of their interaction. According to our
results, the most sensitive biomarkers of cognitive task stress are nonlinear phase coherence between the
0.15 and 0.40 Hz oscillations in the respiratory signal and heart rate variability, and integral power of the
0.15–0.40 Hz oscillations in the frontal lobe EEG leads.

1 Introduction

Quantitative estimation estimation of the psychophysi-
ological state and its relation to the performance of the
cognitive tasks is an important and complex problem
[1, 2]. Stress affects health, speed of decision making
and employee efficiency. Apart from the medical diag-
nostics, investigation and quantification of the effects
of stress is also important for the development of neu-
rointerfaces.
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Currently, questionnaire surveys are accepted as the
reference method for estimation of the psychophysiolog-
ical state [3–5]. However, this approach is subjective,
and it is unclear how to extract quantitative indices
from its results [2]. Another perspective approach is
the analysis of biological signals and investigation of
their individual characteristics and characteristics of
interaction between these signals [1, 2]. The commonly
used signals are arterial pressure (AP) [6–8], electroder-
matogram (EDG) [9–11], electroencephalogram (EEG)
[1, 2, 12], electromyogram (EMG) [13–15], skin tem-
perature [16–18], pupil dilatation [19–21], cortisol level
[22, 23], and saliva α-amylase level [24]. The methods
using near-infrared spectrometry (fNIRS) [25], positron
emission tomography (PET) [26], and functional mag-
netic resonance imaging (fMRI) [27] are also widely
employed. The analysis of respiratory signals [18, 28,
29], photoplethysmograms (PPG) [30–34], and RR-
intervals (the intervals between the well-pronounced
R peaks in an electrocardiogram (ECG)) [35–39], is
promising for the development of ergonomic light-
weight wearable devices for stress detection.

The analysis of EEG signals is commonly carried
out in the time-domain [2] or in the frequency-domain
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[1]. The most commonly used frequency ranges are the
delta range (0.5–4 Hz) [40–42], theta range (4–8 Hz)
[40–43], alpha range (8–13 Hz) [40–42, 44], beta range
(13–30 Hz) [12], and gamma range (30–50 Hz) [43],
which are related to the different physiological processes
[2]. According to the review [1], correlation between the
symmetric EEG leads in the alpha, beta, and theta
ranges changes under stress [45–49] and is, therefore,
promising for its diagnostics.

The problem of the psychophysiological state diag-
nostics was studied by many authors. However, the
results are often contradictory, as was concluded in
[1, 2]. Among the likely reasons for this are the lack
of accepted standards for measuring and interpreting
results, as well as the nonstationarity of the behav-
ior of biological signals [50]. Oscillations in the delta,
theta, alpha, beta, and gamma ranges reflect the activ-
ity of the cortical neurons. The neurons are affected
by many physiological and psychological factors, which
are hard to control and standardize. The analysis of
low-frequency oscillations associated with the activity
of autonomic control of circulation that respond to
changes in the psychophysical state of a person, may
turn out to be more promising. The activity of the
autonomic control is reflected in the heart rate variabil-
ity, which is often estimated from the sequence of RR-
intervals (RRi) [51]. Low-frequency oscillations (LF,
0.04–0.15 Hz) in the RRi are mainly associated with the
effects of the sympathetic branch of the autonomic con-
trol on the heart rate. The high-frequency oscillations
(HF, 0.15–0.4 Hz) are mainly associated with the effects
of the parasympathetic control [51]. The frequency of
the main peak in the HF band corresponds to the fre-
quency of the respiration [51]. In [52–55], the infra-slow
oscillations of brain potentials in EEG (0–0.5 Hz) were
mainly associated with the activity of the autonomic
control of circulation. Therefore, one can expect that
these infra-slow oscillations are more stationary com-
paring to oscillations in high-frequency ranges of EEG.

Thus, there is physiologically based evidence that
the properties of the infra-slow oscillatory activity of
the EEG, along with the respiratory signal and oscil-
lations in the LF and HF ranges in RRi can be used
as biomarkers of the psychophysiological state and, in
particular, stress. In this study, we aimed to test the
individual characteristics of these signals and charac-
teristics of their interaction.

2 Design of the study and the experimental
data

We studied 30 healthy subjects aged 21 ± 3 years
(mean ± standard deviation), having average levels of
physical activity. Cognitive testing consisted of Stroop
color word test (SCWT) [56] and mental arithmetic test
(MT) [57], which are considered standard procedure for
inducing moderate level of stress [2].

The study protocol was as follows: 6-min resting
period (R0), 6 min of SCWT (S1), 6-min resting period
(R1), 6 min of MT (S2), 6-min resting period (R2)
(Fig. 1a). During the R0, R1, and R2 stages, the volun-
teer was instructed to remain sitting in a comfortable
chair and relax. During the SCWT, the volunteer was
presented with a sequence of colored words—names of
a color, for which the color of the letters mismatched
with the color referred by the word. Overall, 360 com-
binations, presented in random order at 1-s intervals.
The volunteer was instructed to deduce and internally
pronounce the color of the letters (Fig. 1b). During the
MT, the volunteer was presented with three- and four-
digit numbers, changing each 5 s. The volunteer was
instructed to sum the digits before they change. If the
resulted number contained two digits, they should be
summed again, continuing this cycle until the resulting
number is a single digit. After calculating the single-
digit number, the volunteer was instructed to decide
whether the number is even or odd and press the corre-
sponding button (Fig. 1c). Overall, each volunteer was
presented with a set of 72 numbers.

During the testing, we recorded the signals of ECG,
EEG using 8–3 system for electrode placement, PPG
from the distal phalanx of the left ring finger (PPGf),
and PPG from the right earlobe (PPGe). All sig-
nals were recorded using the standard certified digital
electrocardiograph Encefalan_EEGP-19/26 [58] with
250 Hz sampling frequency. Band pass filter was set
to 0.5–70 Hz for ECG; 0.05–30 Hz for PPGf and PPGe,
0–40 for respiration, and 0.016–70 Hz for EEG.

3 Data analysis

The RRi were extracted from ECG according to the rec-
ommendations [51]. Then the RRi were linearly inter-
polated and resampled with a frequency of 5 Hz. The
power spectra were estimated for each experimental sig-
nal (RRi, PPFf, PPGe, 8 EEG leads, and respiration).
The spectral analysis was also performed according to
the recommendations [51]. Then we analyzed the LF
and HF oscillations [51] separately for each stage: R0,
S1, R1, S2, and R2.

For the raw nonequidistant RRi, we calculated the
mean value of heart rate (HR), standard deviation
(SDRR), and the root-mean-square of successive dif-
ferences between heartbeats (RMSSD). For the resam-
pled RRi, we calculated the normalized power in the
LF-range (nLF-RRi), the normalized power in the HF-
range (nHF-RRi), and the LF/HF ratio (LF/HF-RRi).
For each EEG signal, we estimated the normalized
power in the LF-range (nLF-EEG), the normalized
power in the HF-range (nHF-EEG), and the LF/HF
ratio (LF/HF-EEG). For the F3–F4 pair of EEG leads,
we calculated the alpha-band power asymmetry index
(APA-EEG) [59].
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Fig. 1 a Protocol of the
stress test. b Stroop color
word test. c Mental
arithmetic test

To estimate the measure of interaction between
the systems, which generate the LF and HF oscil-
lations in the EEG, RRi, PPGf, PPGe and respira-
tion we calculated the specific phase coherence (SPC)
proposed in [60]. SPC was calculated between the
HF-oscillations in RRi and respiration (SPCHF(RRi,
Br)), LF-oscillations in RRi and PPGf (SPCLF(RRi,
PPGf)), LF-oscillations in RRi and PPGe (SPCLF(RRi,
PPGe)), LF-oscillations in the symmetrical EEG leads
SPCLF(EEG, sEEG), HF-oscillations in the symmetri-
cal EEG leads SPCHF(EEG, sEEG), LF-oscillations in
RRi and EEG leads SPCLF(RRi, EEG), HF-oscillations
in RRi and EEG leads (SPCHF(RRi, EEG)), and HF-
oscillation in EEG and respiration (SPCHF(EEG, Br)).

Individual values of the indices obtained for each
stage of the experiment were averaged over the ensem-
ble. The statistical significance of the difference between
the stages was controlled using the Mann–Whitney U -
test with p < 0.05 [61]. Also, we calculated the differ-
ences in each index between the stages R0-S1 and R1-S2
for each volunteer. The differences were also averaged.

The receiver operating characteristic curves (ROC-
curves) and the arias under the ROC-curves (AUC)
were used to determine the threshold values of the
indices that provide the best sensitivity and specificity
when classifying the states of volunteers (stages R1 and
S2) and relaxed volunteers (stages R0 and S1).

4 Results

Figure 2 compares the values of indices most com-
monly used for stress diagnostics calculated for stages
R0, S1, R1, S2, and R2. Figure 2 shows that cognitive
task increases the group-averaged heart rate (Fig. 2a)
and decreases both the RMSSD (Fig. 2b) and SDRR
(Fig. 2c). We also observed changes in the asymmetry

index for the power of the alpha-band oscillations in the
F3 and F4 EEG leads, namely increased power of the
alpha-band oscillations in the right hemisphere in rela-
tion to the left hemisphere (Fig. 2d). It agrees well with
the results of other well-known studies [2]. However,
the Mann–Whitney U-test did not confirm the statisti-
cal significance of the differences between the stages of
performing cognitive task and resting stages, which can
be explained by relatively small changes in mean values
of HR (Fig. 2a), RMSSD (Fig. 2b), and SDRR (Fig. 2c)
and large variance of the APA-EEG index (Fig. 2d).

Figure 3 shows the results of the spectral analysis
of the LF-oscillations. The spectral indices estimated
from the PPGe exhibit changes during the SCWT and
MT tests. The power of the LF-oscillations increases
(Fig. 3a), the power of the HF-oscillations decreases
(Fig. 3b), and, as a result, the LF/HF-PPGe also
increases (Fig. 3c). The spectral indices estimated from
the PPGf and RRi signals have less pronounced reac-
tion to the mental task (Fig. 3d–i). The power of both
LF- and HF-oscillations in the PPGf signal increases
during the SCWT and MT tests (Fig. 3d, e) and the
LF/HF-PPGf index (Fig. 3 f) also increases. In the RRi
signal, the power of the LF-oscillations only increases
at the S2 stage, in relation to the R1 stage (Fig. 3g);
the power of the HF-oscillations only decreases at the
S1 stage, in relation to the R0 stage (Fig. 3h), and, as
a result, the LF/HF-RRi index only increases at the
S1 stage in relation to the R0 stage (Fig. 3i). Although
Fig. 3 shows noticeable changes in the mean values of
the aforementioned spectral indices between the stages
of rest and cognitive task, they were not statistically
significant.

In contrast, the spectral indices estimated from the
EEG signals show statistically significant changes dur-
ing the cognitive test. The mean value of the nHF-EEG
significantly decreases at the S1 and S2 stages. When
averaging the changes of the nHF-EEG index between
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Fig. 2 Mean values and
their standard error for the
following indices: (a) HR,
(b) RMSSD, (c) SDRR,
and (d) APA-EEG

Fig. 3 Mean values and their standard error for the following spectral indices: (a) nLF-PPGe, (b) nHF-PPGe, (c) LF/HF-
PPGe, (d) nLF-PPGf, (e) nHF-PPGf, (f) LF/HF-PPGf, (g) nLF-RRi, (h) nHF-RRi, and (i) LF/HF-RRi. Color-coded
maps of the mean values of the EEG leads for the following spectral indices: (k) nHF-EEG, (l) LF/HF-EEG, and (m) nLF-
EEG. The black circles mark the EEG leads, for which the mean value of the spectral indices at the stages S1 and S2 are
significantly different from the stages R1 and R2 (according to the Mann–Whitney U -test at p < 0.05)

the S1 and R0 stages over all leads showing the sig-
nificant changes, we obtain the index decrease by 3.8
± 0.2%. This effect was observed for all leads, except
for the occipital leads (Fig. 3k). Between the S2 and
R1 stages, the average decrease in power is 3.2 ± 0.3%
(mean ± standard error), and the statistically signif-
icant changes were detected for the F4 and O2 leads
(Fig. 3k). The LF/HF-EEG index for the P4 and O1
leads is significantly larger at the S1 stage comparing to
the R0 stage (Fig. 31) and shows no significant changes
between the S2 and R1 stages (Fig. 3l). At average, the
LF/HF-EEG index at the S1 stage is 1.7 ± 0.1% larger
in comparison to the R0 stage (Fig. 3l). Such dynamics
can be mostly attributed to the changes in the power
of the HF-oscillations, since the values of the nLF-EEG
(pic. 3 m) index at the stages S1 and S2 are not sig-
nificantly different from its values at the stages R1 and
R2.

Figure 4 shows the results of the phase coherence
analysis. The SPCHF(RRi, Br) index associated with

the cardiorespiratory coupling shows the most notice-
able reaction to the cognitive task (Fig. 4a). It decreases
by 0.17 ± 0.01 (mean ± standard error) between the
stages R0 and S1, and decreases by 0.21 ± 0.01 between
the stages R1 and S2 (Fig. 4a). The changes are statis-
tically significant and agree with the results [28, 62],
which state that stress suppresses the respiratory sinus
arrhythmia.

The phase coherence between the LF-oscillations in
the RRi and PPG, conversely, slightly increases under
the cognitive task (Fig. 4b,c). However, the changes are
not statistically significant. This can be explained by
the results from [2], where the authors notice the acti-
vation of the autonomic nervous system under stressful
conditions.

Figures 4d–h show the values of SPC in different
brain areas for several pairs of signals. The darker color
corresponds to higher values of the SPC. Panels (d)
and (e) show the coherence between the symmetrical
EEG leads in the LF and HF ranges, respectively. We
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Fig. 4 Mean values and their standard error for the following indices: (a) SPCHF(RRi, Br), (b) SPCLF(RRi, PPGf), and
(c) SPCLF(RRi, PPGe). Specific phase coherence in different brain areas for the following pairs of signals: (d) SPCLF(EEG,
sEEG), (e) SPCHF(EEG, sEEG), (f) SPCHF(EEG, Br), (g) SPCLF(RRi, EEG), and (h) SPCHF(RRi, EEG). The black
circles mark the EEG leads, for which the mean value of spectral indices at the stages S1 and S2 is significantly different
from the stages R1 and R2, respectively (according to the Mann–Whitney U -test at p < 0.05)

found no evidences of significant changes in the LF
range (Fig. 4d). However, in the HF range the coher-
ence between the F3–F4 and O1–O2 pairs of leads is
significantly lower during the S1 stage, and the coher-
ence between the C3 and C4 leads increases during the
S2 stage (Fig. 4e). This can be related to the respi-
ratory control centers projecting its activity onto the
EEG signals. This hypothesis is indirectly supported
by the significant decrease in the coherence between
the respiratory signals and the same EEG leads during
the S1 stage (Fig. 4f). The cardiorespiratory coupling
can also be the reason of the significant decrease in
coherence between the HF-oscillations in the C3 and
O2 EEG leads and RRi during the S1 stage, and signif-
icant increase in coherence between the HF-oscillations
in the F4 lead and RRi during the S2 stage (Fig. 4h).
At the same time, we detected no response to the cog-
nitive task when analyzing the coherence between the
EEG leads and RRi (Fig. 4g).

In addition to the aforementioned indices, we also
estimated a number of other indices based on the spec-
tral analysis and phase coherence analysis. Some of
them were sensitive to the cognitive tests, but the
group-averaged changes were not statistically signifi-
cant. The results related to these indices are shown in
the supplementary material in Table S1.

The group-averaged values of the SPCHF(RRi, Br)
and nHF-EEG indices showed the most prominent and
statistically significant response to the cognitive task.
To study the sensitivity and specificity of these indices

for the detection of stress, we performed the ROC-
analysis and estimated the threshold values of indices.
If the value of the index for a particular volunteer was
lower than the threshold value, then the volunteer was
considered to be in a stress state caused by a cognitive
task. To plot the ROC-curves, we checked all thresh-
old values from the smallest to the largest values of the
indices with the step of 1%. For each threshold value,
we calculated the amount of true positive results (TPR)
and false positive results (FPR) when classifying the
presence of stress. The ROC-curves constructed sepa-
rately for the stages S1 and S2 are shown in Fig. 5 for
both the SPCHF(RRi, Br) and nHF-EEG indices.

Figure 5a shows the sensitivity and specificity of clas-
sification when using the SPCHF(RRi, Br) index for the
stages S1 and S2. The AUC’s were 0.68 for the S1 stage
and 0.74 for the S2 stage, showing that this index is bet-
ter for detection of stress caused by the MT test. The
black dots on the ROC-curves mark the points closest
to the coordinates (0.0, 1.0). Such points are often used
to determine the threshold value that offers the opti-
mal combination of sensitivity and specificity. For the
S1 stage, the threshold value of the SPCHF(RRi, Br)
index was 0.38 with TPR = 0.60 and FPR = 0.30. For
the S2 stage, the threshold value of the SPCHF(RRi,
Br) index was 0.31 with TPR = 0.73 and FPR = 0.27.

Similarly, Fig. 5b shows the sensitivity and specificity
of classification when using the nHF-EEG index during
the stages S1 and S2. The AUC’s were 0.70 for the S1
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Fig. 5 ROC-curves calculated when using the SPCHF(RRi,
Br) index (a) and nHF-F4 index (b) to detect the stress
caused by the cognitive task. Blue lines are for the SCWT
(stage S1 of the experiments) cognitive test. Red lines are
for the MT cognitive test (stage S2 of the experiments). The
black circles mark the points of ROC-curves closest to the
(0, 1) coordinates

stage and 0.66 for the S2 stage, i.e. this index was some-
what better than SPCHF(RRi, Br) index when detect-
ing the stress caused by the SCWT. The threshold val-
ues of the nHF-EEG index for the S1 and S2 stages were
9.4% (TPR = 0.70 and FPR = 0.27) and 15.2% (TPR
= 0.67 and FPR = 0.28). The corresponding points on
the ROC-curves are marked by black circles (Fig. 5b).

Therefore, when detecting the stress caused by
SCWT and MT tests, the nHF-EEG and SPCHF(RRi,
Br) indices complement each other. The nHF-EEG
showed better results during the S1 stage, while the
SPCHF(RRi, Br) index showed better results during the
S2 stage.

Table S2 in the Supplementary materials section
shows the ROC-curves for other indices. However, they
all show smaller sensitivity and specificity comparing
to the nHF-EEG and SPCHF(RRi, Br) indices.

5 Discussion

The aim of our study was to find reliable, objective,
and quantitative indices for the detection of stress. We
analyzed the indices related to the autonomic nervous
system [1]. The obtained results may allow one to bet-
ter understand the physiological reaction to stress, the
dynamics of various systems generating infra-slow brain
potentials, LF and HF oscillations in the PPG, RRi,
and respiratory signals, and their interaction.

When designing the experiments, we followed the
conclusions made in the review paper [2]. This review
states that the SCWT and MT tests are the most effec-
tive and wide-spread stress tests [2]. The analysis of
indices used in other studies [2] (Fig. 2) confirms that
they respond to the changes in the psychophysiological
state of the volunteers during the tests. However, the
results were not statistically significant. This fact high-
lights the limited sensitivity of the existing indices and
indicates that the development of new indices is still
important. The analysis of respiratory signals, PPG,

RRi, and infra-slow EEG potentials related to the auto-
nomic control of circulation and respiratory system
[52–55] are perspective sources of new sensitive indices.
However, we found no relevant systematic studies.

Our results have shown that the integral power of
HF-oscillations in the frontal lobe EEG leads signif-
icantly changes during the S1 and S2 stages of the
experiment comparing to the control stages R0 and R1
(Fig. 3). This result can be explained by the projec-
tion of the activity of the autonomic control of respi-
ration onto the EEG signals, since the HF-range cor-
responds to the typical frequency of respiration in a
healthy human [51].

Cardiovascular coupling is another very important
factor in the dynamics of the cardiovascular system and
overall state of a subject [63–66]. It is well established
that quantitative characteristics of the autonomic con-
trol activity can be used to detect the age-related
changes [67, 68], different stages of sleep [68–71], pre-
dict the complications of various cardiovascular states
[72–74], and advance the understanding of the cardio-
vascular and respiratory systems [75–77]. However, the
nature of the cardiovascular coupling is complex, and
biological systems demonstrate nonstationary behav-
ior [75–77]. Therefore, the investigation of cardiovascu-
lar coupling requires application of sensitive nonlinear
methods, geared towards noisy nonstationary data. We
proposed a number of such specialized methods and
used them to successfully detect coupling [55, 60, 69,
70, 78–80]. One of the indices, proposed in [60], was
used to detect statistically significant changes in the
psychophysiological state of the volunteers during the
cognitive testing using the RRi and the signal of respi-
ration (Fig. 4).

Figures 2–4 and Table S1 in the Supplementary infor-
mation show the group-averaged values for a large set
of indices during different stages of our experimental
study, including periods of resting and cognitive task.
The obtained data were used to select the indices, which
not only give statistically significant results when clas-
sifying the psychophysiological state of the volunteer,
but also provide the best sensitivity and specificity.
The nHF-EEG and SPCHF(RRi, Br) indices showed the
best performance. For both indices, the sensitivity was
about 0.7 with FPR close to 0.3. The nHF-EEG index
showed better results when detecting the stress caused
by the Stroop color word test, while the SPCHF(RRi,
Br) index was better for detecting the stress caused by
the mental arithmetic test. Therefore, the nHF-EEG
and SPCHF(RRi, Br) indices complement each other.
This can be explained by qualitatively different nature
of these indices and information they provide.

The calculation of the proposed indices is based on
the analysis of oscillations in the low-frequency range
(less than 0.5 Hz) of biomedical signals. The registra-
tion of such signals requires a lower sampling frequency
than the registration of oscillations having a higher
frequency. Moreover, the measurement noise appears,
as a rule, at much higher frequencies. Therefore, the
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proposed indices can be promising for using in light-
weight wearable devices, such as smart-watches, capa-
ble of stress detection.

The fact that the interaction between the RRi, res-
piratory signal, and HF oscillations in EEG is affected
by the cognitive task indicates the importance of fur-
ther investigation of interactions between the central
nervous systems and autonomic control of circulation.

6 Conclusion

We investigated the prospects of using the analysis of
the LF and HF oscillations in the RRi, respiratory sig-
nals, PPG, and EEG to detect the changes in the patho-
physiological state of healthy humans induced by per-
forming the cognitive task. We compared the indices
based on the power spectral analysis and estimation of
the coherence between the pairs of signals. Overall, we
estimated the group-averaged values for 144 indices for
each stage of the experiment, which included the resting
stages and the stages of cognitive task. ROC-analysis
was performed for each index to determine its sensitiv-
ity and specificity when detecting the changes in the
pathophysiological state.

According to the results of the ROC-analysis, the
nHF-EEG and SPCHF(RRi, Br) indices have the best
sensitivity and specificity among the tested indices.
Both indices have sensitivity and specificity of 0.7 when
using the optimal threshold values.
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tains supplementary material available at https://doi.org/
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