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Abstract

Photoacoustic flow cytometry is one of the most effective approaches to detect

“alien” objects in the bloodstream, including circulating tumor cells, blood clots, para-

sites, and emboli. However, the possibility of detecting high-amplitude signals from

these objects against the background of blood depends on the parameters of the

laser pulse. So, the dependencies of photoacoustic signals amplitude and number on

laser pulse energy (5–150 μJ), pulse length (1, 2, 5 ns), and pulse repetition rate (2, 5,

10 kHz) for the melanoma cells were investigated. First, the PA responses of a mela-

noma cell suspension in vitro were measured to directly assess the efficiency of con-

verting laser light into an acoustic signal. After it, the same dependence with the

developed murine model based on constant rate melanoma cell injection into the ani-

mal blood flow was tested. Both in vivo and in vitro experiments show that signal

generation efficiency increases with laser pulse energy above 15 μJ. Shorter pulses,

especially 1 ns, provide more efficient signal generation as well as higher pulse rates.

A higher pulse rate also provides more efficient signal generation, but also leads to

overheating of the skin. The results show the limits where the photoacoustic flow

cytometry system can be effectively used for the detection of circulating tumor cells

in undiluted blood both for in vitro experiments and for in vivo murine models.
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1 | INTRODUCTION

Flow cytometry is one of the most widely used research methods in

biology and medicine. However, invasive sampling of small blood vol-

umes (usually ≤10 mL) results in missing rare biomarkers, especially in

the early stages of the disease [1]. Thus, when analyzing extremely

rare cell populations in flow cytometry, the collected blood volume

contains at best single target cells. With an unfortunate set of circum-

stances, they may not be present in the sample volume at all. In com-

parison, in vivo flow cytometry is able to analyze a much larger

volume of whole blood [1–4]. For instance, the number of circulating

tumor cells (CTCs) in a patient's blood at early-stage cancer [5] is so

low that the typical volume of blood samples extracted for in vitro

tests can skip almost all of such cells [6, 7]. The sensitivity of the

in vivo flow cytometry method can reach a single cell per liter level

[1, 8], which is at least 1–2 orders of magnitude superior to other

available methods.

Currently, there are several common approaches to the construc-

tion of in vivo cytometry systems, including photoacoustic flow cyto-

metry (PAFC) [8–11], ultrafast scanning photoacoustic system [10,

12, 13], fluorescence [14–18], fluorescence imaging [19–23], scatter-

ing [24–27], diffuse fluorescence [7, 28–31], stimulated Raman scat-

tering [32] among other cytometry methods.

PAFC is one of the most successful approaches to the develop-

ment of in vivo flow cytometry systems. The detection of melanoma

cells in blood [14, 17], lymphatic vessels [33], and cerebrospinal

fluid [34] has been described in both in vivo and in vitro studies. Vari-

ous in vivo flow cytometry techniques allow detection of CTCs [35],

blood clots [36, 37], sickle cells [38], malaria parasites [39], bacteria

causing blood infections [40], and other emboli [41] in the patients'

blood non-invasively. When using PAFC to detect melanoma cells,

strong intrinsic absorption allows them to be seen even at a consider-

able depth against the background of the red blood cells (RBC) signal.

Several works describe a set of parameters required to build an

effective photoacoustic tomography system [42] and necessary

approaches to reduce its cost [43, 44]; however, requirements for

components designed to build a dynamic PAFC system are still under

active investigation. The correct choice of laser components and their

parameters is crucial as it affects the performance of the entire PAFC

system, its cost, patient safety, and the reliability and scientific/

diagnostic validity of the received signals. The required combination

of pulse width, repetition rate, and pulse energy is usually difficult to

implement in modern laser systems designs, which significantly affects

the cost of the device.

The idea of detecting circulating melanoma cells is based on the

intrinsic contrast of melanin grains. Better light-absorbing melanin

grains generate a nonlinear photoacoustic (PA) signal comparable to

or stronger than the linear PA signal from erythrocyte hemoglobin.

However, obtaining a nonlinear signal requires a relatively high-energy

density at the depth of the vessel. The creation of such a high-energy

density is complicated by the fact that optical radiation is strongly

scattered by biological tissues and blood. The maximum energy of the

laser pulse is limited from above by the energy density on the skin

surface, regulated by laser safety standards. All these processes

depend on the parameters of laser radiation; therefore, it is necessary

to find such a combination of them that will lead to the most efficient

generation of PA signals in the vessel. The main requirement is to

deliver sufficient laser power to the cells inside the blood vessel with-

out overheating the skin [8]. There is a thin balancing on the verge of

skin overheating and the beginning of the effective generation of PA

signals at a vessel's depth. The choice of right laser parameters shifts

the balance in the right direction and increases the likelihood of

detecting abnormal cells in the bloodstream at the safe laser power.

The typical approach to build a PAFC system is to use a high-

energy pulsed laser with a pulse width of several nanoseconds. Usu-

ally, vessel parts near the skin are chosen: either on the back of the

wrist or over the human cubital vein [1] or jugular vein on the

patient's neck [45]. It is necessary to work at a wavelength falling into

the transparency window of biological tissue [46]. It is better to use a

wavelength with minimal absorption of oxy- and deoxyhemoglobin.

However, this makes it challenging to find the vessel without a PA sig-

nal from RBCs. On the one hand, a large absorption of hemoglobin at

a certain wavelength leads to the fact that even a nonlinear signal

from melanin grains will be lost, since the concentration of melanin is

much lower compared to hemoglobin. On the other hand, if a wave-

length is chosen at which hemoglobin absorbs weakly, the blood ves-

sel may not be detected. Thus, a good balance is needed: a small but

sufficient absorption of hemoglobin for navigation is realized in the

transparency windows of the biological tissue in the near-IR

range [13].

For safety reasons, laser radiation's energy density and power

density should not exceed safety limits to prevent skin damage. For

laser wavelength 1064 nm, power density should not exceed

1 W/cm2 for a long exposure time, and energy density should not be

larger than 100 mJ/cm2 for a single pulse [47]. Such a requirement is

mandatory for use in humans; however, these limits are discussed as

being too low for typical nanosecond pulsed lasers. Several

researchers have already shown that the actual skin damage level for

long-term exposure is around 0.5–1 J/cm2 [48, 49].

The volume of the detected area should not be too large, other-

wise, the signal of melanin-rich cells will be lost against the back-

ground of the RBCs signal. On the other hand, a beam profile must be

achieved that will overlap the cross-section of the vessel as much as

possible so that the CTCs cannot pass by the region to be

detected [50]. At the typical blood flow velocities inside the human

wrist vessels �12 cm/s [1], the pulse repetition rate should be at least

100 Hz to avoid cells passing between the pulses undetected. The

pulse repetition frequency is also above-limited by the overheating of

the light-absorbing skin at the measurement site and usually should

not exceed units of kHz.

The dependence of the PA signal on the pulse energy was studied

earlier by several research groups [8, 35, 51]. The pulse width influ-

ence on the generated PA signal amplitude has been partially investi-

gated in vivo by Zharov et al. [8]. The signals of RBC, melanoma cells,

and melanosomes were measured at three laser pulse widths: 0.8 ns,

5 ns, and 10 ns. These experiments showed an increase in the PA
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signal intensity by a factor of 1.5 at 0.8 ns pulse width compared to

10 ns. An increase in the amplitude of the PA signal with a decrease in

the pulse duration from 45 ns to 4.5 ns was also shown in experi-

ments with a suspension of carbon dust particles [52].

It is important to obtain the dependence of the PA signal ampli-

tude (acoustic pressure fluctuations converted into electrical signals

by the ultrasonic sensor) on the laser system parameters (pulse

energy, pulse repetition rate, and pulse width at different combina-

tions) to model and develop new systems. However, the amplitudes

of individual PA responses from cells are naturally random, depending

on many uncontrolled factors. Since the pigmentation of an individual

melanoma cell can differ up to 10 times [53], it is crucial to develop a

methodology that allows assessing PA responses on large ensembles

of cells (at least 103). Nonetheless, statistical analysis for recorded sig-

nal sequences reveals well visible trends and dependencies. Here we

analyze the influence of pulse energy, pulse repetition rate, and pulse

width on the statistical distribution of PA signals from B16F10 mela-

noma cells.

2 | MATERIALS AND METHODS

2.1 | The PAFC system description

In both PAFC systems (Figure 1), a near-infrared ytterbium-fiber

laser (model YLPP-1-150 V-30, IPG Photonics, Russia) with the fol-

lowing parameters: wavelength, 1064 nm; pulse width, 1, 2, and

5 ns; pulse repetition rate from 2 kHz and pulse energy up to

300 μJ at 1 ns pulse width was used. Approximately 70% of the

nominal laser pulse energy reached the sample (measured in a defo-

cused beam behind the objective). The wedge beam splitter

reflected a small portion of the light to the fast p-i-n photodiode

(BPW34, Vishay Semiconductor) with a custom amplifier converting

diode photocurrent into voltage pulses for acquisition triggering of

an analog-to-digital converter (ADC) board. The continuous wave

pilot laser with a wavelength of 532 nm (CPS532-C2, Thorlabs) with

a harmonic beam splitter (HBSY11, Thorlabs) was collimated colli-

nearly with the main laser beam to provide aiming help for the

in vivo experiments. Data acquisition in all experiments was per-

formed with 500 MS/s 12-bit Waveform Digitizer for PCI Express

Bus (ATS9350-102, Alazartech, Canada). For the in vitro experi-

ments, the beam in the focal region was forming a light sheet across

the capillary with dimensions 5 � 360 μm at full width at half maxi-

mum (FWHM).

The light sheet forming optical scheme was based on the cylindri-

cal lens (focal length 200 mm, LJ1653L1-B-N-BK7, Thorlabs), and the

objective lens (8�, NA = 0.2, Lomo, Russia) in Galilean configuration

(Figure 1A). In vitro experiments were conducted in the flow cell

based on the polythene fine bore capillary tube (inner diameter,

280 μm; Portex). Cell flow with an average velocity of 1.5 cm/s was

formed using a motorized syringe pump AL-1000 (World Precision

Instruments). Imasonic S.A. custom 3.5 MHz single element trans-

ducer (Imasonic SAS, France) with Olympus Model 5682 30 MHz pre-

amplifier was coupled with flow cell tube by transparent medium

viscosity ultrasound gel Mediagel (Geltek-Medika, Russia).

In vivo PAFC experiments were conducted by forming a 15 μm

radial laser spot with LBF254-050-B (Thorlabs) objective lens. An

8 mm focused spherical symmetry ultrasonic sensor with AH-

2020-025 preamplifier (ONDA) was used for acoustically limited sig-

nal detection in this case. The size of the voxel detected by the US

sensor was about 50–100 μm. The voxel was aligned with the inten-

sity maximum of the scattered laser radiation using phantoms prior to

the experiment. The sensor was put into the clean water immersion

tank separated with 0.6 mm transparent polyethylene dielectric film

from the animal skin. An aquasonic clear ultrasound gel (Parker Labo-

ratories) was used for coupling between the water tank and the ani-

mal skin. The detection region was chosen on the mouse femoral

artery. The syringe pump AL-1000 (World Precision Instruments) was

used for cell injection into the animal carotid artery with a constant

speed.

F IGURE 1 Schematic of PAFC device used to measure cell responses in vitro (A) and schematics of in vivo PAFC measurement in mice (B).
[Color figure can be viewed at wileyonlinelibrary.com]
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2.2 | Cell preparation

Murine melanoma cell line (B16F10) was provided by the Education

and Research Institute of Nanostructures and Biosystems, Saratov

State University, Russia. The cells were cultivated in Dulbecco's modi-

fied Eagle medium (DMEM) contained 4500 mg/L glucose (Sigma

Aldrich) supplemented with 10% of fetal bovine serum (FBS) and 1%

of penicillin–streptomycin solution (5000 U/mL) (Thermo Fisher Sci-

entific) at 37�C in a humidified atmosphere of 5% CO2 in the air. The

media was replaced every 3 days.

Before the experiment, the cells were detached by 0.05%

trypsin–EDTA solution (Thermo Fisher Scientific) and enumerated by

the Countess automated cell counter (Invitrogen). Then, the cells were

suspended in 1� PBS solution at a concentration of 107 cells per mL

for absorption spectra measurements and 5 � 105 cells per mL for PA

measurements. An absorption spectrum of B16F10 cells suspension

was measured in the range from 300 nm to 999 nm with the 25 nm

step by multi-mode microplate reader Synergy H1 (BioTek). The light

absorption of cells was measured on the first, third, and fifth days of

cultivation. For PA measurements, the cells were cultivated for five

days to achieve the required pigmentation.

2.3 | Confocal laser scanning microscopy

The B16F10 cells, attached to the Petri dish with a glass-bottom cov-

ered by poly-L-lysine, were investigated by confocal laser scanning

microscopy (CLSM). The cells were stained by Calcein AM (C1359,

Sigma Aldrich, Germany), DAPI (62,248, Thermo Scientific), and Mito-

Tracker (M7512, Invitrogen) cell dyes. Calcein AM was added to the

culture media for the cell staining in proportion 1:1000 (incubation

time, 30 min). After washing with DPBS, the MitoTracker red solution

was added to the culture media up to the 200 nM concentration to

stain the mitochondria of the adherent cells. Finally, after one more

washing step, 1:1000 DAPI solution in DPBS was added to the cells

and left for 10 min for cell nuclei staining with the following washing.

2.4 | Murine model

In vivo experiments were performed with Balb/c mice (6–8 weeks

old, 20–25 g) provided by V.I. Razumovsky Saratov State Medical Uni-

versity. Animal care and all experiments were carried out according to

the rules of V.I. Razumovsky Saratov State Medical University (wide

approval No. 5; dated December 29, 2018). All experimental proce-

dures were performed using general anesthesia, intraperitoneal injec-

tion of drugs (a mixture of Zoletil [40 mg per kg, 50 μL, Virbac SA,

Carros, France], and 2% Rometar [10 μL and 10 mg per kg, Spofa,

Czech Republic]). At the end of the experiment, animals were sacri-

ficed by overdose of anesthesia.

To simulate CTCs in the mouse bloodstream, the B16F10 cell sus-

pension was injected through the carotid artery using a thin polyethyl-

ene catheter (PU tubing, 32ga/.8Fr, 0.005 � 0.010 in, Instech). The

catheter was implanted by the method described before [54]. This

method was chosen to avoid the passive accumulation of most cells in

the lungs during the first passage and increase their concentration

in the vessels of other organs and tissues. Such passive accumulation

is typical for cells [55, 56] and other micron-sized objects [57] after

intravenous administration. Our previous works have shown that

intra-arterial injection of micron-sized objects into the bloodstream

allows to direct them to the region of interest more effi-

ciently [58, 59].

The cell suspension in concentration 106 cells/mL was injected

uniformly and slowly using the automatic syringe pump at a 40 μL/

min flow rate with constant shaking of the remaining liquid. Through-

out the experiment, the mouse was lying on its back and an ultra-

sound sensor has been positioned over the femoral artery where

circulating B16F10 cells were detected. The paw used in PAFC mea-

surement was extended diagonally to the body's position, and cotton

wool was put under it. Ultrasonic clear gel (Aquasonic clear, Parker

Laboratories) was applied to provide acoustic contact between skin

and sensor. The PA signals from the femoral artery were continuously

recorded for 10 min.

Thermal imaging in animal experiments was performed with RGK

TL-80 thermal camera (RGK, China) (Figure S1).

2.5 | Signal analysis

Source files for analysis are raw PA signal waveforms measured with

the 500 MSPS sample rate, 4096 samples per waveform. Waveforms

are filtered by a conservative low-pass filter removing high-frequency

noise from it and keeping the pulse responses from the cells. The area

of time shifts corresponding to the PA signals from the blood in the

large blood vessel is selected from each waveform. The PA amplitude

is calculated either as peak-to-peak amplitude or root mean squared

variation of signal (RMS amplitude) from this fragment. The resulting

amplitude vs. time of laser pulse arrival graphs (PA traces) are plotted

afterward, and all further analysis is made with these traces. A histo-

gram of amplitudes calculated from the complete measurement

sequence is calculated, and the noise level and signal detection

threshold are estimated from this histogram. To find the noise level of

the ultrasonic system, the short sequence of signals is recorded with a

laser closed by the shutter. The signal variation from the blood flow

without melanoma cells is used to estimate the detection threshold. In

blood vessel in vivo measurements, variation of background from the

hemoglobin-rich RBCs is subtracted from each amplitude value by

averaging many sequential amplitudes. The signals above the thresh-

old are selected for further analysis.

3 | RESULTS AND DISCUSSION

The aim of this work was to determine how a change in the laser pulse

parameters affects the statistics of nonlinear PA signals in a stream of

murine melanoma cells during PAFC measurement. In this work, two

main laser parameters were varied, which could be controlled: the

pulse width and the pulse repetition rate. For each set of parameters,
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the dependence of the statistical parameters of the PA signals on the

pulse energy was estimated. The primary measurable quantity is PA

signal amplitude. Since a singular nonlinear signal has a random

amplitude, we investigate the probability of generating high-intensity

nonlinear PA signals and the statistical parameters of their amplitude

distribution. This dependence was measured first in vitro for the flow

in the clear capillary cell (without a strong scattering of light by biotis-

sue) and then in vivo in the large vessels of the mouse paw with the

scattering typical for this tissue depth. In the case of the capillary, we

used an optically confined detection area in the form of a light sheet

covering the cross-section of the capillary vessel. During the in vivo

experiment, an acoustically confined small volume located approxi-

mately in the center of the vessel cross-section was used for the

measurement.

The general scheme of the experiment to investigate the depen-

dence of the statistical properties of the PA signals on the laser pulse

parameters in the flow cell is shown in Figure 2A. Since the distribu-

tion of melanin particles within the cell is unique for each cell

F IGURE 2 Scheme of the experiment (A): the tube with CTCs is irradiated using a laser with varying pulse parameters, forming PA signals
recorded by an US transducer. Confocal microscopy of B16F10 murine melanoma cells (B); statistical parameters of PA signals from cells in the
flow (C); dependencies of the B16F10 cells absorption on the day of cultivation (D); bright field images of attached B16F10 cells (E). Error bars
(D) correspond to a standard deviation between three samples. [Color figure can be viewed at wileyonlinelibrary.com]
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(Figure 2B), we examined the statistical distribution of a large number

of PA signals (Figure 2C). In addition, we found that the distribution

and concentration of melanin particles in cells strongly depend on cul-

tivation time. The absorption of B16F10 cell suspension increased

around 1.5 times from the first to fifth day of cultivation (Figure 2D).

We took cells on the same cultivation day in all experiments to

exclude its possible influence on the size of the melanin grains and on

the optical properties of cells.

After the pulse energy exceeds a certain threshold (15–30 μJ in

our experiment; Figure S2), peaks corresponding to high-amplitude

nonlinear signals begin to appear on the dependences of the PA signal

amplitude on time (traces). The dependencies of the amplitudes and

the number of detected PA signals on the energy of laser pulses with

a change in the pulse width and pulse repetition rate are shown in

Figure 3. The number of detected PA signals with an amplitude above

the threshold was measured. The number of signals is growing nonli-

nearly with increasing pulse energy. With the decreasing pulse width,

the maximum amplitude is generally higher for 1 ns than 2 and 5 ns.

The average amplitude of signals above the threshold is almost the

same as the pulse width changes if the other parameters remain

the same. The number of detected signals above the threshold

increases as pulses get shorter. With the increase of pulse repetition

rate from 2 to 10 kHz, the maximum amplitude has some random

behavior (Figure 3C). With increasing repetition rate, the average

amplitude decreases, and the number of signals increases. We con-

sider a group of adjacent high-energy PA responses as a single

melanoma cell.

It should be noted that both dependencies of the pulse ampli-

tudes and the number of detected PA signals demonstrate a visible

threshold. Below this threshold scarce and weak signals are observed,

F IGURE 3 Dependences of the amplitude of the PA signals on the pulse energy at pulse widths of 1, 2, and 5 ns (A) and at frequencies of
2, 5, 10 kHz (C); dependences of the number of detected signals above the background ones on the pulse energy at widths of 1, 2, 5 ns (B) and at
frequencies of 2, 5, 10 kHz (D). The violin plots' (A, C) whiskers correspond to the range of values from minimum to maximum. The violin plots'
body illustrates the signal distribution. [Color figure can be viewed at wileyonlinelibrary.com]
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presumably from highly pigmented aggregates. After this threshold a

large number of high-amplitude signals appears. The laser beam pro-

file in the PAFC measurement was a light sheet with a thickness of

5 μm and a length of 350 μm. The threshold energy value required for

the generation of high-intensity signals for all sets of parameters lies

in the pulse energy range of 30 μJ that corresponds to the energy

mean fluence 0.96 J/cm2.

The complex nature of the statistics of PA signals from B16F10

cells required a more thorough analysis. The signal intensity histogram

(Figure 2C) shows a highly asymmetric distribution, and it is challeng-

ing to distinguish low-intensity signals from noise. The number of

detected PA signals and their average parameters also strongly

depend on the choice of the noise threshold during in vitro measure-

ments. Some works aimed to solve this problem by analyzing the PA

signal itself [44, 60] and comparing parameters of high-intensity sig-

nals and random noise [61]. In this study, as a good enough solution,

the threshold was determined using a distribution of signals from an

empty test tube at the “empty” part of the trace in between the high-

intensity signals. If an empty part of the trace was not observed and

the high-intensity signals followed too close to each other without a

gap between them, the threshold was chosen by a linear approxima-

tion of the threshold dependence on the laser pulse power from the

lower energies part of the graph.

Further experiments were carried out on large mouse vessels in

the in vivo PAFC mode. We have succeeded in developing a device

that provides reliable detection of melanoma cells in the animal paw

vessels after upstream arterial injection. This approach made it possi-

ble for us to investigate the parameters of PAFC signal generation

directly in the vessel of a laboratory animal during detection in an

acoustically limited voxel. To achieve that, we used a focused high-

frequency ultrasonic sensor with a detected voxel size of �100 μm.

For in vivo measurements, we used a configuration of a PAFC

setup with a spot illumination of 20 μm in diameter at the skin surface

and an ultrasonic sensor with spherical symmetry. The measurements

were carried out on the arterial or venous vessel of the BALB mouse

femur by slowly injecting B16F10 cells suspension with a concentra-

tion of 106 cells/mL through a catheter inserted into the carotid

artery. Since the intensity of the signals depends on the vessel's depth

under the skin, and the number of flowing cells depends on the

branching of the blood vessels in each particular animal, the measure-

ments were carried out three times on three different animals. In this

case, the same cell suspension was used during the entire variation of

each parameter.

The experimental traces at the three different pulse widths are

shown in Figure 4. The typical oscillograms of baseline blood flow

without the melanoma cells are shown with blue color, and the oscil-

lograms of high-intensity signals from circulating melanoma cells

(CMCs) are shown with the red color. Traces with the signals from

CMCs are shown in black at the right part of the figure. The places

where each oscillogram is taken are shown with the red and blue ver-

tical lines.

The waveforms of the most intense signals, undoubtedly belong-

ing to the injected cells, are shown in Figure S3. It can be noted that

the most intense signals, in addition to the central peak (the range of

ultrasonic signal time delays is shown in dark gray in Figure S3), usu-

ally have a second peak, the time shift of which can differ significantly

in time (the range of shifts is depicted by the light gray background in

Figure S3). The dependence of the PA signal amplitude on time,

shown in the inset in Figure S3 and plotted for these two ranges. It

can be noted that the second peak appears for the most intense sig-

nals in the first detection range, but not all signals from the first range

are accompanied by it.

The dependence of the number of detected signals and the statis-

tics of the signal amplitude in the first time-delay range (that shown in

dark gray in Figure S3) for three measurements on different animals

are shown in Figure 5. It should be noted that, although the detection

parameters differ significantly from animal to animal, the total number

of detected cells is practically independent of the laser parameters

and is reproduced with good stability. It is determined solely by the

number of pigmented cells entering the desired vessel when injected

upstream. It also possibly depends on the position of the detection

region inside the vessel since it does not cover the entire vessel. The

maximum intensity and the average intensity become noticeably

higher with a pulse width of 1 ns than 2 and 5 ns; the difference

between the latter two options is not noticeable. Thus, it can be noted

that shorter pulses give more intense signals than longer ones, but at

the same time, almost the same number of cells is detected for any

pulse width in the nanosecond range.

The dependence of the strong signals number and distribution of

the signal amplitude during detection directly in the mouse paw is

shown in Figure 6. The number of detected signals increases with an

increase of laser pulse energy. The maximum and average amplitudes

also increase with increasing pulse energy, reaching, however, satura-

tion at high energies.

The operation of PAFC is based on the fact that melanin grains

that absorb more strongly at a given wavelength generate a nonlinear

signal, significantly overheating compared to the environment. This

allows one to see the signal from relatively small (submicron [51],

micron) melanin grains, which contain much less light-absorbing sub-

stance in the detected volume than the erythrocytes surrounding this

cell. As can be seen from Figure 3, there is a certain minimum energy

density threshold, below which nonlinear photoacoustic signals are

practically not detected. When this threshold is exceeded, both the

number of signals and their average amplitude increase. It can be

assumed that with an increase in the energy density required to gen-

erate nonlinear PA signals, overheating occurs in less pigmented cells.

A shorter pulse duration or a higher pulse repetition rate in most cases

leads to a more efficient heating of melanin grains, respectively, single

pulses and a sequence of pulses, between which thermal heating does

not have time to relax.

The first aspect to consider is that we need to provide a high-

energy density at the vessel's depth to effectively detect melanoma

cells while avoiding laser damage to cells and tissues. The primary

source of damage is the absorption of light by melanin in the skin and

hemoglobin (it can be present in two different variants, differing in

absorption spectra depending on oxygenation). In human experiments,

GRISHIN ET AL. 7



F IGURE 4 The traces from the CMC model in the mouse bloodstream after the injection are registered with 1 ns (C), 2 ns (F), and 5 ns
(I) pulse widths. Red and blue lines (C, F, I) correspond to maximum amplitude and randomly selected baseline amplitude, respectively. The
waveforms (A, B, D, E, G, H) correspond to data points indicated on traces. [Color figure can be viewed at wileyonlinelibrary.com]
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we must be guided by laser safety standards that prohibit using a

power density greater than 1 W/cm2 at a wavelength of 1064 nm.

The next aspect that must be taken into account is the minimum

pulse repetition rate, which ensures the detection of melanoma cells

at a vessel's depth. The real CTCs found in the patient has size of the

order of 10–20 μm. The laser beam at a vessel's depth in laboratory

animals expands to a size of 150–200 μm. Detection length is the

approximately same size. At a typical blood flow velocity in the vessels

F IGURE 5 Dependence of the number of detected signals and the distribution of their amplitude at different laser pulse widths. The violin
plot (right) whiskers correspond to the range of values from minimum to maximum. The violin plot body illustrates the signal distribution. [Color
figure can be viewed at wileyonlinelibrary.com]

F IGURE 6 Dependence of the number of detected signals and the distribution of their amplitude at different laser pulse energies. [Color
figure can be viewed at wileyonlinelibrary.com]
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of the animal's paws of 1–2 cm/s, the time of flight of blood flow

objects in the detection area will be about 10 ms, which sets the mini-

mum required pulse repetition rate for reliable detection to be around

100 Hz. Typical laser systems with a nanosecond-range pulse length

and a required pulse energy level have a pulse repetition rate of

1 kHz. With such repetition rates, about 10 pulses should come to a

single cell (in our experiments, we observed from 4 to 20 that were

taken into account in the subsequent analysis).

The use of energy higher than allowed for humans in mouse

experiments is somewhat controversial. On the other hand, numerous

reports show that the safety limit for skin damage is set too low for

this type of laser system. The damage limit reported in articles is

about 0.5–1 J/cm2 for melanosomes as the primary source of photo-

damage of pigmented skin [48, 49]. As far as we can see, the laser

parameters used in these experiments do not harm the mouse's skin

(Figure S1). The temperature rise measured after prolonged exposure

(15 min) does not exceed 8�C (Figure S1C) if the ultrasonic-coupling

water bath is in contact with skin. Without the water container work-

ing as a cooler in this case, the skin temperature rises to 42�C

(Figure S1A) in the local spot of laser irradiation.

An increase in the equilibrium temperature in the medium results

in an increase in the Gruneisen coefficient, and thus the PA signal

amplitude (estimated �5% per 1�C) [62]. As the maximum increase of

temperature is �8�C (Figure S1C) with water tank cooling the skin,

the estimated increase of volume Gruneisen coefficient should be

�35% in this case at skin level. Local overheating of melanin grain

provides a large local increase of the Gruneisen coefficient and PA sig-

nal from the grain.

At the blood vessel's depth where the melanoma cells and RBCs

are exposed to laser light, our estimation of beam profile diameter of

the scattered beam is 150–200 μm. In addition, some attenuation

of energy is caused by light absorption by the skin pigmentation and

small blood vessels under the skin. It is known that melanosomes

damage starts at energy �500 mJ/cm2 (micro cavitation threshold

defined in Reference [63]) that is not achievable at the vessel's depth,

and the extinction coefficients of melanin are already measured with

these laser energies.

Nonetheless, either burn, irritation, or some pain effects are not

seen even with the harshest combination of parameters used in this

article. There should be neither pigment spots nor remaining hair in

the laser-irradiated area, otherwise, no damage is not guaranteed; we

ensure this by taking a navigation camera image before turning the

laser on. It should be noted that blood flow in the vessel is somewhat

crucial for effective cooling of the skin resulting in no damage. The

skin above the vessel does not overheat with prolonged exposure,

and the skin without a large vessel underneath it overheats in a couple

of minutes with the high-energy-high repetition rate combination of

parameters. From our prior experience, PA signals can also show signs

of skin overheating at early stages. High amplitude short-time spike

from the overheated melanin-rich layer of skin appears on waveforms

at less time-shift then the signal from the vessel provided by hemoglo-

bin contrast. We have not seen such signals during the experimental

procedure or in our experimental data.

4 | CONCLUSIONS

The murine model of CTCs that provides the constant flow of large

numbers of similar melanoma cells in the mouse blood was intro-

duced. By measuring a large ensemble of cells, we estimated how a

variation of the laser parameters affects the statistics of PA signals.

The study was carried out both for the cell suspension flow in vitro

and for cells injected into the bloodstream of immunocompetent mice

in vivo. The effect of laser pulse width, repetition rate, and pulse

energy on the statistics of signals from melanoma cells was investi-

gated. We have studied how the PA amplitude changes during the

PAFC measurements, including heating the measured volume, natural

blood flow variations, and other effects from in vivo measurement

conditions. With a change in the laser pulse width from 5 to 1 ns, an

increase in the average and maximum amplitudes of PA signals was

observed without a noticeable change in the number of high-intensity

signals. As the pulse energy density in the flow cell increases, the

number of detected signals increases, and the average and maximum

amplitudes of the signals (reach saturation at some pulse energy den-

sity). It was shown that the energy density makes the main contribu-

tion to the efficiency of cell detection in the bloodstream at a vessel's

depth.
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