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The newversion of electronic implementation of FitzHugh–Nagumoneuronmodelwas proposed togetherwith a
new circuit for synapse (sigmoid activation function). The proposed neuron and synapse models provide better
representation of activation function in biological neurons including possibility to model excitatory and inhibi-
tory connections. Various regimes in two FitzHugh–Nagumo neurons were studied numerically and in hardware
experiment. Different scenarios of oscillation emergencewere investigated, including saddle-node cycle bifurca-
tion leading to appearance of highly nonlinear limit cycles of large amplitude. Long living transients near these
bifurcations were found those are of particular interest for modeling some metastable phenomena in living sys-
tems like sleep and epilepsy.
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1. Introduction

Interest to the brain dynamics led to construction of electronic (sili-
con) neurons. The first realization [1] tried to implement Hodgkin–
Huxley neuron [2] since this mathematical model was considered as a
reference at the time. The next realizations [3,4] improved this circuit.
Then, realizations of other mathematical neuron models appeared, in-
cluding FitzHugh-Nagumo [5,6] neuron electronic realizations [7–9]. A
wish to be able to model large numbers of neurons which can ade-
quately represent dynamics of real brain led tominiaturization and con-
struction of arrays of electronic neurons with synapses [10], which can
work in real time including hybrid analog-digital systems [11]. The
problem of such an approach is that the individual properties of such
neurons are hardly to be controlled and the gap between results ob-
tained in mathematical models and obtained in hardware becomes
too large (actually, often there is no direct correspondence between
them). Therefore, the large scale neuron models have been still devel-
oped [9].

Electronic circuit models have the large advantage over mathemati-
cal models in application to live nature phenomena, since they repre-
sent three main properties of biological systems. First, electronic
circuits are not completely stationary due to characteristics of their
components depend on temperature, humidity and other conditions.
This makes the results obtained from electronic circuits more robust,
since the fragile regimes are not realized. Therefore, regimes realized
in electronic models are more likely to be found in the underlying bio-
logical object. Second, the components of electronic circuits are not
completely equal, and therefore unrealistic degenerate regimes cannot
appear in these models. Third, the measurement procedure for elec-
tronic circuit ismuch closer to the biological one than for themathemat-
ical model. All these points make the electronic circuits to be a good and
promising step in modeling biological phenomena.

Recently, electronic circuits constructed from traditional elements
occurred to be efficient for modeling some types of brain activity even
though the number of neurons was not large. In particular, in [12,13]
the radioengineering realization of mesoscale hierarchically organized
neural network model of brain thalamocortical system was proposed.
This network was proven to generate epileptiform activity in response
to external input in the form of a short sequence of pulses [14], which
is a valid scenario of seizure initiation as shown for both humans and
rats [15]. In this scenario an external input from peripheral nervous sys-
tem (e. g. from nervus trigeminus) excites the thalamus and provokes a
seizure.

Themodel [12] togetherwith itsmathematical origin [16] consists of
14 model cells and it is a result of downscaling of the larger model [17]
consisting of 500 neurons, when the desired regimes are kept. Since the
connectivitymatrix of themodel has to be anatomically relevant and ar-
bitrary couplings are not possible, the minimal number of neurons
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cannot be very small. In particular, for 14-element matrices the quanti-
tative representation of experimental phenomena, which was accurate
for 500-element models, occurred to be not possible and only qualita-
tive match was achieved. If the number of model electronic neurons in-
creases the experimentally observed dynamics is represented better
[14], but this demands much larger engineering. However, at the same
point, even the 14-element models occurred to be too complex for ana-
lytical and even numerical study. The former simplifiedmodels like pro-
posed in [7,9] also have twomain disadvantages. First, for simplicity, the
reduced FitzHugh–Nagumomodel proposed in [18] was used in [12] to
reduce the number of parameters and since this model was already re-
alized as a device [9]. This simplified model does not allow to separate
excitatory and inhibitory connectivity, since if parameter b=0, the
mean value of external driving can be set zero by renormalization of
variables and the parameter a in the model, see Eq. (1) for details. Sec-
ond, the connectivity was linear, but such an approach is not very accu-
rate. If activation is modeled as a function without separate systems of
equations for a synapse, a sigmoid function is usually used to represent
synaptic coupling [19,20]. Actually, in the reduced model all couplings
are both excitatory and inhibitory in different phases of oscillation,mak-
ing synaptic-like connectivity useless (there is no possibility to set the
sigmoid always positive or always negative), so it is not possible to
solve the second problem until the first still takes place. Two these dis-
advantages together significantly reduce the relevance of synaptic
mechanism description in the model. The current study aims to fix
these two disadvantages, providing both new electrical neuron and syn-
apse models together.

To understand the new neuron and synapse models better we fo-
cused on a simpler system of two neurons, which can be coupled in dif-
ferent ways, including unidirectional and bidirectional, excitatory and
inhibitory couplings. First, we investigated circuit mathematical models
to get a fast overview of possible regimes, and then we constructed and
studied hardware circuits. The regimes of high amplitude oscillations
close in parameter space to the nonoscillatory excitable regimes,
when transition takes place due to some nonlocal bifurcation like
saddle-node bifurcation of limit cycle [21,22], were of particular inter-
est. These regimes can be candidates for long transients, so they are in-
teresting for modeling some brain regimes [17,23–26].

2. Mathematical model

Each individual neuron was built as complete FitzHugh–Nagumo
model [5,6]. All couplings were sigmoid:

εu
:

i tð Þ ¼ ui tð Þ � ciu3
i tð Þ � vi tð Þ þ∑ j≠ikijh uj tð Þ� �

,

v
:

i ¼ ui tð Þ þ ai � bivi tð Þ,
ð1Þ

h uð Þ ¼ 1þ tanh uð Þ
2

, ð2Þ

where u is dimensionless function analogous to the transmembrane po-
tential in biological excitable tissue; v is dimensionless function similar
to slow recovery current; t is dimensionless time; ε is inertia parameter;
a and b are dimensionless parameters that control the neuron's own dy-
namics; c is integration constant. Themodel describes regenerative self-
excitation of voltage on the cell membrane (variable u) as a result of
nonlinear positive feedback, as well as “recovery” as a result of linear
negative current feedback (variable v).

Synapses are described by the activation function. Often, the sigmoid
function is used as an activation function in neural networks. The sig-
moid activation functionmeans depolarisationwithin a neuronal popu-
lation to expected firing rate. It can be interpreted as a cumulative
density function on depolarization within a population [20]. Hyperbolic
tangent function is classically used as a sigmoid function being a partic-
ular case of the more general Richard's curve [27]; in our case it was
2

shifted and scaled to match the desired range [0,1], as it is shown in
the formula (2).

In cell biophysics all synapses are divided into excitatory and inhib-
itory ones. Excitatory (mostly, glutamatergic) synapses facilitate pulse
appearance on the postsynaptic membrane, depolarizing it andmaking
the action potential to be possible. In contrary, inhibitory (mostly,
GABAergic) synapses prevent or stop generation of action potentials at
postsynaptic membrane. In the model (1) the positive values of cou-
pling coefficient kij correspond to excitatory synapses and negative
ones — to inhibitory ones.
3. Electronic realization of a single neuron

A circuit diagram of the constructed complete FitzHugh–Nagumo
electronic oscillator is shown in Fig. 1. The circuit contains two analog
multipliers U1 and U2 and two dual operational amplifiers U3 and U4.
Elements U4B and U3A are integrators, element U4A is a inverter, ele-
ment U3B is a follower. Ra and Rb are potentiometers that allow you to
change the value of parameters a and b. This circuit was constructed
in the development of previously constructed reduced electronic
oscillator [9], the another scheme different in detail was also proposed
previously [7].

In contrast to themathematicalmodel, see Eq. (1), the parameters of
the radioengineering circuit have dimensions. The time-scale parame-
ters have the values E = R11C1 and T = R7C2. Parameter ε from
Eq. (1) is calculated as ε = E/T. Parameters c = (R3 + R4)/R3 and b ¼
R6= R5þ Rb ⋅ B

100%

� �
(B — percentage of potentiometer Rb used) are

scaling factors at U and V respectively. Coupling coefficient k is
calculated as k = R13/R14.

The parameter a is set by the voltage at the “+” clamp of the ampli-
fier U3B. The total voltage drop on a series-connected resistor R10 = 5
kΩ and potentiometer Ra = 1 kΩ is Ua = 15 V, i. e. the voltage drop
on the entire potentiometer is 2.5 V. In particular, if the potentiometer
is set to A = 0%, the voltage 2.5 V is set to “+” input of U3B, and if the
potentiometer is set to A=100%, this voltage is zero. So, the parameter
a can be calculated using A measured in percents of potentiometer use
as follows: a ¼ 2:5 ⋅ 1 � A

100%

� �
. It is set in volts as variables u and v ac-

tually do in the scheme (let their dimensional values be denoted as U
and V).

The cubic transformation is provided by the amplifiers U1 and U2.
Integrators U4B and U3A allow to obtain U and V, respectively. Inverter
U4A allows to obtain−U. Follower U3B is used for connection to the cir-
cuit of potentiometer R10. Input I1 receive signal from the other neuron.
4. Electronic realization of a synapse

A circuit diagram of the sigmoid activation function is shown in
Fig. 2. The scheme was taken from the work [28] with minor changes.
The circuit contains a dual operational amplifier U1 and two bipolar
junction transistors Q1 and Q2. The inverting amplifier U1A has a gain
of 0.05. The differential amplifier U1B has a gain of 0.5. Difference be-
tween excitatory and inhibitory couplings was realized by a switcher,
which rearranged chip legs 5 and 6 of the amplifier U1B.

Excitatory coupling was organized as k ⋅ h(u), k>0. For positive
values of u, if the pulse was generated in the driving neuron, the poten-
tial at the driven onewas increased up to value equal to k, since 0 ≤ h(u)
≤ 1. This could lead to generation of pulse (action potential) at the
driven neuron if its one potential plus the driving potential were larger
than 0, then, this pulse can spear further along the network. If u<0 for
k>0, no significant changes in the dynamics of the driven generator
would be caused, since the driving would be zero or close to zero for
u≈ 0. If u≈ 0 some subthreshold oscillations can appear in the driven
neuron, but they do not have any significant biological meaning and
cannot spread further.



Fig. 1. Circuit diagramof a single complete FitzHugh-Nagumo neuron. Red color: u, blue color: cu3, green color:−v, cyan color: b, orange color: a, pink color: k. R1= R3=1 kΩ, R2=9 kΩ,
R4=2.333 kΩ, Ra=1kΩ, R10=5kΩ, Rb=4.7MΩ, R5=51kΩ, R6= R7= R8= R9= R11= R12= R13=100 kΩ, R14depends on coupling strength k, C1=1nF, C2=0.01 uF, U1, U2
are analogmultipliers of the type AD633, and U3, U4 are operation amplifiers of the type AD822. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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The inhibitory coupling was organized in the samemanner as excit-
atory one, butwith k<0. The pulse from the driving neuron comes to the
driven one and suppresses its activity. If the driven generator was gen-
erating it can stop since its summary potential becomes less than 0,with
its pulses no longer spreading across the network. If the driven neuron
was not generating, inhibitory pulse leads to additional overinhibition,
which will be compensated with time by itself, since the cell tends to
Fig. 2.Circuit diagramof the sigmoid activation function in formhyperbolic tangent function.R1
2 kΩ, Q1, Q2 are bipolar junction transistors 2N1711, U1 is an amplifier of the typeNE5532AI. Re
the references to color in this figure legend, the reader is referred to the web version of this ar
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keep the constant resting state potential about−70 mV. Normally, the
same neurons achieve both excitatory and inhibitory inputs and the re-
sulting activity depends on their amount and synchrony.

In the mathematical model the driving signal was put into the acti-
vation function (2) with k = ± 1, providing excitatory and inhibitory
couplings respectively. In the circuit inhibitory and excitatory couplings
were organized by a switch. To test the electrical synapse (Fig. 2) for
=0.51 kΩ, R2=R4=1kΩ, R3= R5= R9=R10=R11=10 kΩ, R6= R7=5.1 kΩ, R8=
dcolor is for excitatory coupling, blue color is for inhibitory coupling. (For interpretation of
ticle.)



Fig. 3. Experimentally measured nonlinear function (the harmonic driving of 2 V amplitude was applied and response was measured) for excitatory synapse h(U) (a) and for inhibitory
synapse−h(U) (b). X-axis: presynaptic signal; Y-axis: postsynaptic signal.
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correctness of work, a harmonic signal of 2 V amplitudewas introduced
as a driving. The resulting nonlinear function was compared to the
mathematical model, see Fig. 3). One can see that the simulation of
the electronic circuit mostly matches the results of mathematical
modeling, but the circuit has a shift in the argument of sigmoid, provid-
ing partly different nonlinearity for positive and negative dU

dt (two
branches are well established).
5. Two coupled neurons

5.1. Mathematical model

Twoneuronswere coupled by sigmoid coupling in themathematical
model. Three connectivitymechanismswere considered: unidirectional
coupling, bidirectional symmetric coupling (both either excitatory or in-
hibitory) and bidirectional asymmetric coupling when one neuron ex-
cited the other, and the other inhibited the first one. Using Poincare
section by the line u=0 in both subsystems, the charts of dynamical re-
gimeswere constructed for both oscillators in all considered cases in the
same parameter region and with the same step using the series of the
same length as previously for a single oscillator. The parameter k =
1.0. The parameters a, b were changed synchronously, assuming that
in a real networks nearby cells cannot be upset by theparameters signif-
icantly.

In the Fig. 4 charts of dynamical regimes for two coupledmathemat-
ical neurons at the parameter plane (a, b) were plotted. The blue color
corresponds to underfreshold regime (fixed point) in which there is
no oscillations. Dark blue area indicates a repeller (no attractor, global
instability) regimes. Cyan (light blue) areas correspond to a simple re-
gimes of cycle one. Note, that here and further we consider as regime
1 all types of oscillations for which there is an only positive maximum
Fig. 4. Charts of dynamical regimes for two coupledmathematical neurons at the parameter plan
attractor in the system), blue corresponds to a stable fixed point, cyan corresponds to period on
regular oscillatory regimes with different number of spikes per period, burgundy correspond
(b) unidirectional inhibitory coupling; (c) symmetric excitatory coupling; (d) symmetric inhibi
is referred to the web version of this article.)
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at a period, since maxima lying in negative subspace (v<0) do not
have physiological sense and are considered as under threshold oscilla-
tions rather than normal neuron spikes. Green areas correspond to re-
gimes of period 2, i. e. two maxima on the period, including bursts
consisting of two spikes or oscillations with spikes of two different am-
plitudes. Other colors indicate regimes with more complex dynamics.
Note, that regime identification was performed using Poincare's section
by value v=0 for twoneurons (subsystems) separately, so the regime1
in one neuron can correspond to a regime 2 in another. Furtherwewere
especially interested in parameter regionswhere complex nonlinear os-
cillations (spikes and bursts) of large amplitude appear from stable
point or in addition to it.

When studying unidirectionally coupled neurons, see Fig. 4 (a, b),
there is no direct transition from stable point area to areas of complex
oscillations (period 2 or higher). All complex regimes are located close
to repeller regime, i. e. like inmost known classical systems they appear
due to simple oscillatory regimes lose their stability.

The analysis of the plots indicates that for the symmetric excitatory
coupling (Fig. 4 (c)) new complex regimes appear near the border be-
tween the simple limit cycle and attractorless area, though for the sym-
metric inhibitory coupling (well visible only in Fig. 4 (d) for larger
coupling strength) the complex regimes appear between the region of
the simple cycle and fixed point area.

The asymmetric coupling provides richer regime set and in larger
area than both types of the unidirectional or symmetric one, see Fig. 5.
Two interesting zones can be highlighted: Area 1 (a green area separat-
ing blue and light-blue areas on Fig. 5 (a)) and Area 2 (a green area on
Fig. 5 (c)).

Near the Area 1 transition from excitable nonoscillatory regime to
(Fig. 5 (b) the first time series from the top) in a simple oscillatory re-
gime (Fig. 5 (b) the third time series from the top) is carried out through
a number of more complex oscillatory regimes of different shape and
e (a, b). Parameters ε=0.1, c=1/3, k=1.0. Dark blue corresponds to repeller (there is no
e oscillations (one spike per period), green, yellow, orange and red correspond to complex
s to chaotic spiking. The subplots are as follows: (a) unidirectional excitatory coupling;
tory coupling. (For interpretation of the references to color in this figure legend, the reader



Fig. 5. Charts of dynamical regimes for two bidirectional asymmetric coupledmathematical neurons at the parameter plane (a, b): (a) asymmetric coupling (excitatory driven neuronN1),
(c) asymmetric coupling (inhibitory drivenneuronN2) and (b) time series in typical regimes (from top to bottom):first a=0.292, b=1.126, second a=0.292, b=1.021, thirda=0.292,
b=1.011, fourth a=− 0.329, b=0.843, fifth a=− 0.329, b=0.833, sixth a=− 1.086, b=0.389. Parameters ε=0.1, c=1/3, k=1.0. On the subplots (a,c) colors are as follows: dark
blue corresponds to repeller (there is no attractor in the system), blue corresponds to a stablefixed point, cyan corresponds to period one oscillations (one spike per period), green, yellow,
orange and red correspond to complex regular oscillatory regimes with different number of spikes per period, burgundy corresponds to chaotic spiking. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the web version of this article.)
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period (Fig. 5 (b) the second time series from the top). These complex
regimes appear due to a some complex and special nonlocal (global) bi-
furcation (possibly, saddle-node bifurcation of two cycles). It should be
noted that a complex cycle appear directly after the transition from sim-
ple regimewith a single stable point to bistable regimewith both stable
point and limit cycle, and then it evaluates to a simple cycle.

In contrary, cycle birth fromfixed point in the Area 2 takes place by a
classical Andronov–Hopf scenario (Fig. 5 (b), the bottom time series),
except possibly the single codimension two point in which green area
matches blue one. The Area 2 by itself is a curved triangle, two sides of
which are period double bifurcations (between cyan and green areas
at Fig. 5 (b)) and the third (the smallest one) side is a saddle-node bifur-
cation of two (stable and unstable)multibypass limit cycles. These com-
plex cycles consist of a large number of underthreshold oscillations
together with two large spikes per period, see Fig. 5 (b) the fourth
time series from the top, which evaluate to a more usual period two re-
gime (Fig. 5 (b), thefifth time series from the top)when retreating from
the border of oscillation birth/death.
Fig. 6. The photo of the physical representation of the built electric circuit.
5.2. Electronic realization

The physical representation of two coupled neurons is shown on
Fig. 6. Two electronic neurons were coupled by asymmetric sigmoid
electronic synapse to detect regimes found in the mathematical
model. All regimes shown on Fig. 5 (b) were successfully detected in
the circuit too. In addition to these regimes some specific long transient
processes like plotted on Fig. 7 were found. This regimewas found for a
= 0.487, b = 0.88 (near the border of Area 1). The oscillations were
mostly absent first, when they started to rise linearly, then evaluating
to high amplitude irregular bursts. The similar oscillations can be
found for the mathematical model in Fig. 5 (b), the second time series
from the top. Then, these bursts evaluated to simple nonlinear
5

oscillations, see Fig. 5 (b) the third time series from the top. Emergence
of such regimes is due to nonstationarity of the circuit, when its actual
parameters change with time due to temperature and other physical
conditions. Together with nonequality of neurons and synapses and
nonideality of their functions as it was shown in Fig. 3, it provides
some additional possibilities for realizing complex behavior matching
what we see in biological experiment [29].

6. Conclusion and discussion

When constructing electronic circuits of neurons, the synapse con-
struction is of significant significance. There is a number of works



Fig. 7. Time series with transients for electronic realization.
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where large ensembles of neurons together with synapses are con-
structed from semiconductors as a single array [30,31]. Such an ap-
proach allows to construct a lot of artificial neurons as a single device,
but does not provide any control of the characteristics of individual neu-
rons and synapses, which can vary a lot. Another approach is to con-
struct neuron models and synapses from electronic components like
in [7,9]. In contrary, it provides elements with much more predictable
properties, so regimes and bifurcations found in mathematical models
can be detected in the hardware too. Though large networks are hardly
to be implemented following this approach, the direct control of param-
eters of each element and knowledge of bifurcation mechanisms allow
to use such neurons and synapses for modeling real brain phenomena
like epilepsy [12].

Here we improved the hardware neuron model developed in [9]
by providing realization for nonzero values of the parameter b (see
Eq. 1) and developed a new hardware realization of a sigmoid synaptic
function, see Eq. 2. We investigated numerically the mathematical
model. Two coupled FitzHugh–Nagumo neurons were studied multiply
in literature, though in most cases the synchronization between
oscillating neurons was considered with nonsigmoid coupling [32,33].
Therefore, we focused on the regimes of activity emerging due to
sigmoid coupling in excitable neurons. So, unidirectional connectivity
was not studied since for neurons in excitable mode this means no
oscillations.

We expect that themain application of the proposed electronic neu-
ralmodel would be generation of some particular types of brain activity.
So, among many usual regimes we detected the regimes and bifurca-
tions interesting for further modeling of brain activity. In particular,
the idea of use of transient processes instead of stable attractors for
modeling the brain functioning was proposed [25] which was sup-
ported by particular results in epilepsy modeling [17,26]. Note that
both regular and irregular long transient behavior was already found
in numerical models of neural networks [34–36], but these results
were obtained mostly casually. In our study, in two coupled neurons
we found long transient processes and regimes emerging due to
nonstationarity of the electronic components. If such regimes can ap-
pear near a bifurcation line in a considered simple scheme of two neu-
rons, they (or some similar ones) are very likely to appear in much
more complex networks, and therefore, can be considered as valid
models of brain dynamics for some normal regimes like sleep and pas-
sive wakefulness in which generalized synchronization of large areas
is not established and oscillation activity patterns often replace each
other [37,38].
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