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ABSTRACT

A logical sequence of information-theoretic quantifiers of directional (causal) couplings in Markov chains is generated within the framework
of dynamical causal effects (DCEs), starting from the simplest DCEs (in terms of localization of their functional elements) and proceed-
ing step-by-step to more complex ones. Thereby, a system of 11 quantifiers is readily obtained, some of them coinciding with previously
known causality measures widely used in time series analysis and often called “information transfers” or “flows” (transfer entropy, Ay–Polani
information flow, Liang–Kleeman information flow, information response, etc.,) By construction, this step-by-step generation reveals logical
relationships between all these quantifiers as specific DCEs. As a further concretization, diverse quantitative relationships between the transfer
entropy and the Liang–Kleeman information flow are found both rigorously and numerically for coupled two-state Markov chains.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0189544

There are dozens of approaches for quantification of causal
couplings between observed processes since it is an impor-
tant problem in many scientific disciplines and applications,
from nuclear reactors1 and galactic cosmic rays2 to climate3 and
environment4 and so forth. In particular, researchers widely
use information-theoretic measures,5–22 spectral causalities,23–27

phase-dynamic modeling,28–33 nonlinear Granger causality,34–38

cross-recurrent diagrams,39,40 convergent cross-mapping,41,42 etc.
The diverse causality quantifiers have been (and still are) devel-
oped from seemingly independent ideas. Numerical values of
different quantifiers of the same coupling may differ drastically,
while an appropriate substantial interpretation of any quanti-
fier is often not obvious or even problematic. Therefore, before
deciding “how to estimate a causal coupling,” one must often real-
ize “which quantifier should be estimated and what it means.”
The recently proposed framework of dynamical causal effects43,44

(DCEs) allows one to deduce various quantifiers from a sin-
gle theoretical principle and formulate them in the same lan-
guage. So, it provides a regular approach to their interpretation
which is useful when a researcher selects between many equally
reasonable quantifiers as it may be the case with information-
theoretic causality measures. This work demonstrates how the
DCE framework brings an order to such multitude of measures:

11 information-theoretic causality quantifiers are deduced step-
by-step, and at least five known “information transfers and flows”
are encountered among them. Logical relationships between all
those quantifiers follow directly from this way of their genera-
tion as DCEs. Analytic and numerical relationships between the
two most famous of them (transfer entropy and Liang–Kleeman
information flow) in a simple stochastic system are obtained as an
example. As a perspective, such results should be a contribution
to a unifying theory of causality quantifiers for processes.

I. INTRODUCTION

Within the broad field of the detection of causal cou-
plings between processes and estimation of their strengths (e.g.,
reviews3,4,8,14,18,27), some recent works have been devoted to com-
parisons of various causality quantifiers in different respects (e.g.,
Refs. 8 and 45–48). This is because many causality quantifiers
have already been suggested and widely used, some of them being
more easily estimable from time series while others are less acces-
sible. Moreover, difficulties in their interpretation often arise and
become a subject of debates (e.g., Refs. 15, 19, and 49–53). Thus, a
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meaningful organization of the multitude of causality quantifiers for
processes seems to have become a topical problem.

The viewpoint of dynamical causal effects (DCEs) has recently
been introduced40,41 and illustrated53–58 as a useful tool to generate
various causality quantifiers from a single first principle (rooted in
the concepts of stochastic dynamical system59,60 and interventional
causality)61 and so to establish logical links and numerical relation-
ships between them. Such systematic links should allow one to “nav-
igate” within the multitude of causality quantifiers and hopefully
(after future research) become a tool to select the most appropriate
quantifier for a practical problem at hand. However, the previously
presented relationships between several popular causality measures
within the DCE framework43,44,53,54 do not reveal how a whole line of
meaningful quantifiers can be obtained and so the potential of this
framework is not yet fully confirmed. One can expect to encounter
such a logical line when dealing with information-theoretic cou-
pling measures, since more than a dozen of such measures (quite
different from each other)5–24 are used in time series analysis, several
of them being often called “information flow” (IF) or “information
transfer.” In particular, the two very popular IFs are the trans-
fer entropy (TE)5,14 and the Liang–Kleeman IF (LKIF).7,20 Such a
rich and apparently disordered set of different causality quantifiers
with often the same name and similar formulas is a challenge for
the DCE viewpoint and formalism: Can the latter recognize vari-
ous information-theoretic measures as specific DCEs and organize
them into a logical sequence? This is the question addressed in
this work. If the answer is “yes,” it would thereby contribute to
the development of an intrinsically interrelated system of causality
quantifiers and simplify the above mentioned navigation in a large
set of existing measures, apparently independent of each other.

Section II describes Markov chains which serve as a “mate-
rial” to study various IFs since they seem to be conceptually the
simplest stochastic dynamical systems. Section III introduces the
formalism of DCEs in a concrete form and describes the logics of
moving from simpler to more complex DCEs which is the method
to study the IFs here. Section IV presents the main part of this
work which is a step-by-step development of a sequence of causality
quantifiers which includes various above mentioned IFs as specific
DCEs. Section V presents both analytic and numerical relationships
between the TE and the LKIF. Relations between some information-
theoretic DCEs were also given in Ref. 44 for continuous-time and
continuous-state systems as an illustration to the DCE formalism.
Here, a much fuller picture is obtained via developing a whole logical
line of information-theoretic DCEs and finding the place of several
known quantifiers in a wider context. Moreover, the discrete-time
and discrete-state systems used in this work have their own specific
features simplifying the formulation and numerical study of diverse
DCEs, while the LKIF has not yet been studied for such systems.
Section VI provides a brief discussion and conclusions.

II. COUPLED MARKOV CHAINS

Let two random variables Xn and Yn characterize the states of
two systems X and Y at a discrete time n. A realization xn of Xn is
some value from a discrete set A = {a1, . . . , aM} where ai are any
symbols, and similarly yn belongs to a set B = {b1, b2, . . . , bN}. The
random variable Zn = (Xn, Yn) with the values zn = (xn, yn) from

the set A × B specifies the state of the combined system Z. Denote

p(n)
XY(x, y) the probability mass function (pmf) of Zn. The probabilities

p(n)
XY

(

ai, bj

)

= P{Xn = ai, Yn = bj} form the MN-dimensional vector,

p
(n)
XY =

(

p(n)
XY(a1, b1), p

(n)
XY(a1, b2), . . . , p(n)

XY(a1, bN),

p(n)
XY(a2, b1), . . . , p(n)

XY(aM, bN)

)T

, (1)

whose elements are non-negative with unit sum and T means
transposition. Let the random process Zn be a first-order Markov
chain,59,62 i.e., the value zn =

(

ai, bj

)

at time n is produced with

probability p(n)
XY

(

ai, bj

)

depending only on the immediate past pmf

p(n−1)
XY (x, y) of Zn−1 as

p
(n)
XY = Qp

(n−1)
XY , (2)

where Q is the MN × MN transition probability matrix with

constant elements which are the conditional probabilities q
i,j

i ′ ,j ′

= P
{

Xn = ai, Yn = bj|Xn−1 = ai ′ , Yn−1 = bj ′
}

, i.e., the probabilities
of transitions from a state (ai ′ , bj ′) to a state (ai, bj) in one time step,
located at (i, j)-th row and (i ′, j ′)-th column where the values of the
double indices (i, j) and (i ′, j ′) are ordered as shown in Eq. (1).

The one-step future pmf p(1)
XY(x, y) under the initial condition

p(0)
XY is called the “functionally conditional” pmf in Ref. 44 and

denoted p(1)
XY

[

x, y|p(0)
XY

]

using the square brackets with this special

meaning. Denote an initial pmf p(0)
XY(x, y) localized at z∗

0 =
(

ai∗, bj∗

)

as p(0)
XY

(

ai, bj

)

= δi,i∗δj,j∗ where δ is the Kronecker delta which equals
1 for equal indices in the subscript and 0 otherwise. The values of

the pmf p(1)
XY

[

x, y|δi,i∗δj,j∗

]

for the localized p(0)
XY = δi,i∗δj,j∗ constitute

the (i∗, j∗)-th column of Q, i.e., p(1)
XY =

(

q1,1
i∗,j∗, q

1,2
i∗,j∗, . . . , qM,N

i∗,j∗

)T
. Under

some general conditions on the matrix Q, the process Zn possesses a
unique stationary pmf ρst

XY(x, y), i.e., an ensemble represented by any

initial pmf p(0)
XY(x, y) evolves to ρst

XY. A unique ρst
XY is implied below to

exist.
The marginal pmf of Xn is obtained from the pmf of

Zn via summation over Yn values as p(n)
X (ai) =

∑N
j=1 p(n)

XY

(

ai, bj

)

.

So, the pmf of Xn for a given past pmf of Zn−1 reads

p
(n)
X = Rp

(n−1)
XY , where the M × MN matrix R has the elements

ri
i ′ ,j ′

= P
{

Xn = ai,|Xn−1 = ai ′ , Yn−1 = bj ′
}

=
∑N

j=1 q
i,j

i ′ ,j ′
which are

the probabilities of the transitions
(

ai ′ , bj ′
)

→ ai. One naturally says
that the influence (or directional coupling, or causality) Y → X
exists if any of these probabilities depends on j ′, i.e., if ri

i ′ ,j∗
6= ri

i ′ ,j∗∗

for some set
(

i, i ′, j∗, j∗∗
)

. There is no coupling Y → X if ri
i ′ ,j∗

= ri
i ′ ,j∗∗

for any
(

i, i ′, j∗, j∗∗
)

. Everything is similar for the opposite direction
X → Y.

For a system X isolated from Y, denote the individual prob-
abilities of the transitions ai ′ → ai via ri

i ′
. Define that introducing

the coupling Y → X makes the above transition probabilities ri
i ′ ,j ′

dependent on j ′ as ri
i ′ ,j ′

= ri
i ′

+ 1ri
i ′ ,j ′

where the profile of pertur-

bations
{

1ri
i ′ ,j ′

}N

j ′=1
includes at least one nonzero element and has

a zero sum
∑N

j ′=1 1ri
i ′ ,j ′

= 0 for definiteness. In order to parame-

terize the directional coupling Y → X with a single parameter αXY,
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FIG. 1. Illustrations of the transition probabilities for two-state Markov chains X
and Y: individual dynamics (top figures) and coupled dynamics (bottom figures)

for mutually independent noises in X and Y (i.e., q
i,j

i ′ ,j ′
= r i

i ′ ,j ′
s
j

j ′ ,i ′
, see Sec. V B)

and αXY = αYX = 1.

one can define ri
i ′ ,j ′

= ri
i ′

+ αXY1ri
i ′ ,j ′

, so a nonzero αXY means that

the coupling Y → X exists and a greater αXY indicates a stronger
dependence of the future pmf of Xn on the previous yn−1. The oppo-

site coupling X → Y can be parameterized in a similar way: p
(n)
Y

= Sp
(n−1)
YX with probabilities s

j

j ′ ,i ′
= s

j

j ′
+ αYX1s

j

j ′ ,i ′
for the transi-

tions
(

ai ′ , bj ′
)

→ bj. Such a system Z is called here a system of cou-
pled Markov chains X and Y implying that each of the processesXn

and Yn alone would be a Markov chain if the coupling parameters

αXY and αYX were set equal to zero. The full probabilities q
i,j

i ′ ,j ′
can

be defined as the products q
i,j

i ′ ,j ′
= ri

i ′ ,j ′
s
j

j ′ ,i ′
corresponding to “inde-

pendent internal noises” in X and Y (see Fig. 1 and Sec. V B), or in
another way meeting the normalization constraints.

III. FRAMEWORK OF DYNAMICAL CAUSAL EFFECTS

AND LOGICS OF THEIR GENERATION

In order to characterize the strength of the influence Y → X
within the DCE framework,44 one specifies two initial pmfs

p(0)
XY as ρ∗

XY = ρ∗
X(x)ρ∗

Y|X(y|x) (the reference initial condition) and
ρ∗∗

XY = ρ∗
X(x)ρ∗∗

Y|X(y|x) (the alternative initial condition) with the
same marginal pmf ρ∗

X of X0 and quantifies the difference between

the respective future pmfs p(1)
X [x|ρ∗

XY] and p(1)
X [x|ρ∗∗

XY]. Such an
ordered pair of initial pmfs is called the initial Y-variation and the
respective pair of the future pmfs is the X-response. The difference
between the X-response components is given by a (continuous) dis-
tinction functional D which is zero for equal components and may be
non-zero otherwise. Its values are finally assembled (e.g., averaged)
over diverse initial Y-variations, i.e., over a set 3 of possible values

of a certain parameter vector λ entering the initial conditions. Such
an assemblage functional denoted A3 gives the value of a concrete
short-term (one-step) DCE,

CY→X = A3

(

D
(

p
[

x|ρ∗
XY,λ

]

, p
[

x|ρ∗∗
XY,λ

]))

, (3)

where explicit dependencies of both initial conditions on λ are indi-
cated in their subscripts. Everything is analogous for the coupling
X → Y.

Below, diverse DCEs of the form (3) are developed via
considering different Y-variations, different information-theoretic
functionals D, and different functionals A3. To be precise,

denote the X-response components p∗
X(x) = p(1)

X

[

x|ρ∗
XY,λ

]

and p∗∗
X (x)

= p(1)
X

[

x|ρ∗∗
XY,λ

]

. A pointwise comparison of the pmfs p∗
X and p∗∗

X

would give M numbers. The local information hX(x) = − log pX(x)
(also called “local entropy”) is a basic quantity characterizing pX in

the information theory, so the difference h∗∗
X (x) − h∗

X(x) = log
p∗
X(x)

p∗∗
X (x)

is used to compare p∗
X and p∗∗

X . Let us define the distinction func-
tional as its average value over x with some weight function w(x),

D
(

p∗
X, p∗∗

X

)

=

M
∑

i=1

w(ai) log
p∗

X(ai)

p∗∗
X (ai)

. (4)

Taking w(x) to equal one of the two pmfs as w(x) = p∗
X(x) (it is

often done below), one obtains a non-negative distinction functional
called the Kullback–Leibler divergence (KLD),

D
(

p∗
X, p∗∗

X

)

= DKL

(

p∗
X||p∗∗

X

)

=

M
∑

i=1

p∗
X(ai) log

p∗
X(ai)

p∗∗
X (ai)

. (5)

Note that DKL

(

p∗
X||p∗∗

X

)

= −
∑M

i=1 p∗
X(ai) log p∗∗

X (ai) − H
(

p∗
X

)

,

where H
(

p∗
X

)

is the Shannon entropy of p∗
X, i.e., the expectation

of the local entropy H
(

p∗
X

)

= −
∑M

i=1 p∗
X(ai) log p∗

X(ai). Binary loga-
rithms are used in this work, so the units of all such informations or
entropies are bits. To define the assemblage functional, let us aver-
age the elementary DCE (4) over Y-variations

(

ρ∗
XY,λ, ρ∗∗

XY,λ

)

, i.e., over
different values of the parameter λ with some weight function u(λ),

CY→X =
∑

λ∈3

u(λ)D
(

p∗
X, p∗∗

X

)

. (6)

where the response pmfs (p∗
X, p∗∗

X ) depend on λ since their initial
conditions depend on λ.

All the DCE elements (the two initial pmfs in the Y-variation
and the weight functions in the two functionals) are introduced
below step-by-step from simple (localized) ones to complex (more
and more delocalized) ones on the basis of an arbitrary function
called “the basic pmf” and denoted ρXY(x, y) = ρX(x)ρY|X(y|x). Let
us say that “the localized” function (e.g., of y) is the Kronecker delta
(

δj,j∗

)

, “a less localized” one is the conditional pmf (ρY|X(bj|ai)), and
“even less localized” one is the marginal pmf (ρY(bj)). This order
is meaningful since the Shannon entropy of the Kronecker delta is
zero, i.e., the least possible, and the Shannon entropy of ρY|X (aver-
aged over x and called conditional Shannon entropy) is known to
be less than or equal to that of ρY. The basic pmf ρXY needs to be
specified to define all DCEs below. It is often taken to equal the
stationary pmf ρst

XY(x, y) = ρst
X (x)ρst

Y|X(y|x) which is a natural choice
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corresponding to many coupling estimates usually obtained from
stationary time series.

IV. FORMAL RESULTS: SEQUENCE OF

INFORMATION-THEORETIC DCES

In the sequence of DCEs generated below, several known infor-
mation transfers and flows are recognized. The proofs that they
coincide with some DCEs are given in Ref. 44 for continuous-time
and continuous-state systems and would be straightforward here.
The novelty here is not in such proofs, but in constructing a united
wider picture of causality quantifiers as mentioned above.

A. X- and Y-localized initial conditions

To generate the first DCE, take the simplest initial condi-
tions localized both with respect to x and y, i.e., the reference
ρ∗

XY

(

ai, bj

)

= δi,i∗δj,j∗ and the alternative ρ∗∗
XY

(

ai, bj

)

= δi,i∗δj,j∗∗, so
the parameter vector of this Y-variation is λ = (i∗, j∗, j∗∗). The one-
step X-response is given by the two transition probability vectors

p∗
X =

(

r1
i∗,j∗, . . . , rM

i∗,j∗

)T
and p∗∗

X =
(

r1
i∗,j∗∗, . . . , rM

i∗,j∗∗

)T
. Below, the dis-

tinction functional (4) is the KLD (5) if it is not stated otherwise,
i.e., its weight function is the future pmf for the reference initial

condition w(x) = p(1)
X

[

x|ρ∗
XY

]

. To perform the assemblage (6), let us
average over i∗ with the marginal basic pmf ρX(ai∗) and over (j∗, j∗∗)

with the conditional basic pmf ρY|X(bj∗|ai∗)ρY|X(bj∗∗|ai∗). In the full
explicit form, the obtained DCE (Table I) reads

C(1)
Y→X =

M
∑

i∗=1

N
∑

j∗=1

N
∑

j∗∗=1

ρX(ai∗)ρY|X(bj∗|ai∗)ρY|X(bj∗∗|ai∗)

× DKL

(

p(1)
X

[

x|δi,i∗δj,j∗

]

||p(1)
X

[

x|δi,i∗δj,j∗∗

]

)

, (7)

where the superscript indicates the number of a DCE in the
generated sequence of DCEs.

The DCE C(1)
Y→X for ρXY = ρst

XY coincides with the simple short-

term DCE (FKL
Y→X)

2
of Ref. 43 (see Sec. III A there). Furthermore, the

“local information response” suggested in Ref. 22 is very similar to
the elementary DCE DKL(p

∗
X||p∗∗

X ) in Eq. (7) with the differences that
the former implies continuous variables x and y, uses an infinitesi-
mally small distance between the y-locations of the conditional pmfs
ρ∗

Y|X and ρ∗∗
Y|X, and is divided by that distance. The authors of Ref. 22

average that local response over the locations of the Dirac delta func-
tions ρ∗

X and ρ∗
Y|X using the stationary pmf and obtain “information

response” which is similar to the DCE C(1)
Y→X with ρXY = ρst

XY.
To produce the second DCE, change only the factor ρY|X of the

assemblage weight function u to ρY. It means that the locations of the
Kronecker deltas for Y are averaged with weights independent of the
location of X, i.e., they are varied with more freedom on average. If
X and Y are highly correlated according to the basic pmf ρXY, e.g.,
if a stationary pmf for an almost “synchronized” regime is used as
the basic pmf (see examples in Sec. V B), then the assemblage with
the factor ρY means that Y-locations are varied with much greater

freedom and so the resulting DCE C(2)
Y→X may be much greater than

C(1)
Y→X. Indeed, the latter is then arbitrarily close to zero because an

almost deterministic relationship between x and y in ρXY means
small Y-variations (almost equal reference and alternative initial

conditions) in C(1)
Y→X.

B. X-localized and Y-delocalized initial conditions

To generate the next DCE, take a Y-delocalized alternative
conditional pmf ρ∗∗

Y|X = ρY|X and so the full alternative initial con-
dition ρ∗∗

XY(bj|ai) = δi,i∗ρY|X(bj|ai) = δi,i∗ρY|X(bj|ai∗). The reference
ρ∗

Y|X(bj|ai) = δj,j∗ is always same. Take the assemblage weight func-

tion coinciding with the alternative pmf u
(

ai∗, bj∗

)

= ρXY(ai∗, bj∗).

TABLE I. Information-theoretic DCEs (“transfers and flows”) with their elements: the marginal initial pmf of X (the second column), the alternative conditional pmf of Y (the third

column), the distinction weight function (the fourth column) and the assemblage weight function (the fifth column). The reference conditional pmf of Y is the same for all these

DCEs: ρ∗
Y |X (bj |ai) = δj,j∗.

No. ρ∗
X(ai) ρ∗∗

Y|X(bj|ai) w(x) u(λ) = u
(

i∗, j∗, j∗∗
)

1 δi,i∗ δj,j∗∗ p(1)
X [x|ρ∗

XY] ρX(ai∗)ρY|X(bj∗|ai∗)ρY|X(bj∗∗|ai∗)

2 δi,i∗ δj,j∗∗ p(1)
X [x|ρ∗

XY] ρX(ai∗)ρY(bj∗)ρY(bj∗∗)

3 δi,i∗ ρY|X(bj|ai) p(1)
X [x|ρ∗

XY] ρX(ai∗)ρY|X(bj∗|ai∗)

4 δi,i∗ ρY(bj) p(1)
X [x|ρ∗

XY] ρX(ai∗)ρY(bj∗)

5 δi,i∗ ρY(bj) p(1)
X [x|ρ∗

XY] ρX(ai∗)ρY|X(bj∗|ai∗)

6 δi,i∗ ρY|X(bj|ai) p(1)
X [x|ρ∗

XY] ρX(ai∗)ρY(bj∗)

7 ρX(ai) δj,j∗∗ p(1)
X [x|ρ∗

XY] ρY(bj∗)ρY(bj∗∗)

8 ρX(ai) ρY(bj) p(1)
X [x|ρ∗

XY] ρY(bj∗)

9 ρX(ai) ρY|X(bj|ai) p(1)
X [x|ρ∗

XY] ρY(bj∗)

10 ρX(ai) ρY|X(bj|ai) p(1)
X

[

x|ρX|Y

(

ai|bj

)

δj,j∗

]

ρY(bj∗)

11 ρX(ai) ρY(bj) p(1)
X

[

x|ρX|Y

(

ai|bj

)

δj,j∗

]

ρY(bj∗)
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Thereby, one gets the DCE C(3)
Y→X (Table I),

C(3)
Y→X =

M
∑

i∗=1

N
∑

j∗=1

ρX(ai∗)ρY|X(bj∗|ai∗)

× DKL

(

p(1)
X

[

x|δi,i∗δj,j∗

]

||p(1)
X

[

x|δi,i∗ρY|X

(

bj|ai∗

)]

)

. (8)

It is straightforward to show that, since the pmf ρ∗∗
Y|X(bj|ai)

coincides with the respective factor of the assemblage weight func-

tion ub|a(bj∗|ai∗), the DCE C(3)
Y→X equals the difference of the Shan-

non entropies H
(

p(1)
X

[

x|ρ∗∗
XY

]

)

− H
(

p(1)
X

[

x|ρ∗
XY

]

)

weighted with

u
(

ai∗, bj∗

)

:

C(3)
Y→X =

M
∑

i∗=1

N
∑

j∗=1

ρX(ai∗)ρY|X(bj∗|ai∗)

(

H
(

p(1)
X

[

x|δi,i∗ρY|X

(

bj|ai∗

)]

)

− H
(

p(1)
X

[

x|δi,i∗δj,j∗

]

))

. (9)

So, the difference of Shannon entropies can be equivalently
taken as the distinction functional for this DCE. Rewriting Eq. (8)
in a detailed form useful for comparison with the LKIF, one gets

C(3)
Y→X =

M
∑

i∗=1

N
∑

j∗=1

M
∑

k=1

ρXY(ai∗, bj∗)p
(1)
X

[

ak|δi,i∗δj,j∗

]

× log
p(1)

X

[

ak|δi,i∗δj,j∗

]

p(1)
X

[

ak|δi,i∗ρY|X

(

bj|ai∗

)]
. (10)

If ρXY = ρst
XY, the DCE C(3)

Y→X just coincides with the famous
transfer entropy (TE),5 so the latter naturally arises in the sequence
of quantifiers developed within the DCE framework following the
logics of increasing complexity (delocalization) of the DCE ele-
ments. The original TE5 as a DCE was discussed in detail in Refs. 44

and 56. If ρXY 6= ρst
XY, one can use the DCE C(3)

Y→X as an extension
of the TE definition and call it a generalized or extended44 TE for a
given basic pmf ρXY.

To produce the next DCE C(4)
Y→X, take a more delocalized alter-

native conditional pmf for y as the marginal basic pmf ρ∗∗
Y|X = ρY and

get ρ∗∗
XY

(

ai, bj

)

= δi,i∗ρY(bj). Retain the same w and take the assem-

blage weight function u
(

ai∗, bj∗

)

= ρX(ai∗)ρY(bj∗) with the same
factor ρY as that in ρ∗∗

XY. Being considered as a joint pmf, u corre-
sponds to statistically independent generation of ai∗ and bj∗ which is
often called “randomization” in social science applications.57 There-
fore, such pmf or weight function is called “randomized” in Ref. 44.
It was shown (Sec. III A of Ref. 44) that for ρXY = ρst

Xρst
Y the DCE

C(4)
Y→X coincides with Ay–Polani IF.9 Such randomization of the

stationary basic pmf makes C(4)
Y→X greater than C(3)

Y→X if the subsys-
tems exhibit an “almost synchronized” regime where ρst

Y|X(y|x) is

well localized for any given x. The DCE C(4)
Y→X equals the weighted

difference of Shannon entropies like the DCE C(3)
Y→X for the same

reason.
The factors ρ∗∗

Y|X(bj|ai) and ub|a(bj∗|ai∗) may also be taken differ-

ent from each other. Setting u
(

ai∗, bj∗

)

= ρXY

(

ai∗, bj∗

)

and retaining

ρ∗∗
Y|X(y|x) = ρY(y) produces the DCE C(5)

Y→X (Table I). If ρXY = ρst
XY,

this DCE coincides with the “causal strength” of Janzing et al.16

(Ref. 44, Sec. S3 in the Supplementary material, item 13) suggested
from a completely different viewpoint considering effects of “remov-
ing arrows” in a causal graph. Moreover, Bollt’s IF introduced for
continuous variables and called forecastability quality metrics21 is

similar to the DCE C(5)
Y→X with a couple of differences63 (Ref. 44,

Sec. S3 in the Supplementary material, item 14).

On the contrary to C(5)
Y→X, take the alternative conditional

pmf ρ∗∗
Y|X = ρY|X and the randomized assemblage weight function

u
(

ai∗, bj∗

)

= ρX(ai∗)ρY(bj∗) and thereby get the next DCE C(6)
Y→X

(Table I). For a stationary basic pmf with highly correlated X and
Y, the value of y in the alternative initial condition weakly varies for
a given x = ai∗ (like in the TE) but the Y-location bj∗ of the reference
initial condition may strongly vary for a given x = ai∗ (contrary to
the TE) “exploring” a wider region of the state space and making the

value of the DCE C(6)
Y→X greater. So, the novel DCE C(6)

Y→X has also

a clear statistical sense like the above IFs. Both C(5)
Y→X and C(6)

Y→X are
not equal to any weighted difference of two Shannon entropies.

C. X-delocalized and Y-localized initial conditions

To produce the next DCE, take a delocalized marginal pmf of X
as ρ∗

X = ρX and retain it for all DCEs below. Take the localized con-
ditional pmfs ρ∗

XY

(

ai, bj

)

= ρX(ai)δj,j∗ and ρ∗∗
XY

(

ai, bj

)

= ρX(ai)δj,j∗∗.
Then, the assemblage is done over (j∗, j∗∗), so the natural weight
function is here u(bj∗, bj∗∗) = ρY(bj∗)ρY(bj∗∗). Thereby, one gets the

DCE C(7)
Y→X (Table I) which is an analog to C(2)

Y→X, but the former
DCE compares the evolutions “aggregated over initial x” and should

often be less than C(2)
Y→X.

D. X- and Y-delocalized initial conditions

To produce the next DCE, take a delocalized alternative con-
ditional pmf of Y equal to the assemblage weight function u(bj∗)

= ρY(bj∗), i.e., the initial condition ρ∗∗
XY(x, y) = ρX(x)ρY(y). Then,

one gets the DCE C(8)
Y→X (Table I) which is an analog to the Ay–Polani

IF C(4)
Y→X for the stationary basic pmf ρXY = ρst

XY, but the former DCE
compares evolutions “aggregated over initial x.” It is easy to show

that the DCE C(8)
Y→X coincides with the LKIF7,20 defined for the ran-

domized initial pmf ρXY = ρXρY. In that case, the LKIF appears to
be a specific DCE and indeed equals the difference of two Shannon
entropies as the authors initially wanted to interpret it.7 However,
this interpretation is not valid for the general LKIF which is met
below.

To generate the DCE C(9)
Y→X, take another delocalized alterna-

tive conditional pmf of Y, i.e., ρ∗∗
XY(x, y) = ρX(x)ρY|X(y|x) with the

same other DCE elements as in C(8)
Y→X (Table I). The DCE C(9)

Y→X

is not a difference of two Shannon entropies and has the causal

meaning similar to C(6)
Y→X with the difference that the former DCE

compares evolutions “aggregated over initial x.”

E. Another weight function in distinction functional

Developing the line of DCEs, we have reached the Y-variation
ρ∗

XY

(

ai, bj

)

= ρX(ai)δj,j∗ and ρ∗∗
XY = ρXY. As a further sophistication

of the DCEs, let us replace the distinction weight function w(x)
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= p(1)
X

[

x|ρ∗
XY

]

with a function different from any of the two com-
pared pmfs similarly to the idea of Liang.20 Namely, take it equal
to the one-step future pmf of X for a given initial y = bj∗ and an

initial x distributed with ρX|Y, i.e., w(x) = p(1)
X

[

x|ρX|Y

(

x|bj∗

)

δj,j∗

]

.64

The distinction functional is then no longer the KLD and depends
on the parameter bj∗. Taking the assemblage weight function u(x)
= ρY(bj∗) (the product of the two weight functions agree then with
the joint distribution ρXY of the initial x and y), one gets the DCE

C(10)
Y→X (Table I),

C(10)
Y→X =

N
∑

j∗=1

M
∑

k=1

ρY(bj∗)p
(1)
X

[

ak|ρX|Y(x|bj∗)δj,j∗

]

log
p(1)

X

[

ak|ρXδj,j∗

]

p(1)
X [ak|ρXY]

.

(11)

Using p(1)
X

[

ak|ρX|Y(x|bj∗)δj,j∗

]

=
M
∑

i∗=1

ρX|Y

(

ai∗|bj∗

)

p(1)
X

[

ak|δi,i∗

δj,j∗

]

, it can also be written as

C(10)
Y→X =

M
∑

i∗=1

N
∑

j∗=1

M
∑

k=1

ρXY(ai∗, bj∗)p
(1)
X [ak|δi,i∗δj,j∗] log

p(1)
X [ak|ρXδj,j∗]

p(1)
X [ak|ρXY]

.

(12)

It is straightforward to show that it coincides with the general
LKIF20 defined for the initial pmf ρXY.64 It is not equal to a weighted
difference of two Shannon entropies, but equal to the difference

between the specifically averaged local entropy of p(1)
X [x|ρXδj,j∗] and

the Shannon entropy of p(1)
X [x|ρXY].65,66 If the basic pmf equals the

stationary pmf, the latter entropy is just the entropy of the stationary
marginal pmf. Thus, the LKIF is indeed a causality quantifier exactly
expressed as a DCE, similarly to the analysis of Ref. 44 which was
performed for continuous-time and continuous-state systems. How-
ever, the LKIF is a “more specific” (which also means here “more
complex”) DCE than the above DCEs since it uses an additional
(“non-standard” in a sense) idea for the distinction weight function.
The respective modification can be applied to all the above DCEs
producing many further DCEs. Such possibilities are very diverse
and not considered here.

Finally, change the alternative initial condition to ρ∗∗
XY

(

ai, bj

)

= ρX(ai)ρY(bj) to produce the DCE C(11)
Y→X (Table I). It allows more

freedom for the variations of y in the alternative conditional pmf

in comparison with C(10)
Y→X, similarly to the DCEs C(4)

Y→X, C(5)
Y→X, and

C(8)
Y→X.

V. QUANTITATIVE RESULTS: TRANSFER ENTROPY VS

LIANG–KLEEMAN INFORMATION FLOW

Relationships between different above DCEs are of interest
since each of them is meaningful as information-theoretic causal-
ity quantifier. Some of them are better known and wider used, in
particular, the TE seems to be the most famous one (see, e.g., “its
own” monograph14) and the LKIF is also quite respectable (see, e.g.,
climate and other applications67,68). Their relationship was briefly
mentioned as unknown in the original work on the LKIF.7 In Ref. 44,
it has got a theoretical consideration within the DCE framework for
continuous-time stochastic systems. In Ref. 48, some formal rela-
tionships between them were established from another viewpoint

for a special class of continuous-time systems. As for the numeri-
cal values of the TE and the LKIF for the same system in the same
direction, they can be either strongly different or close to each other
as demonstrated in Ref. 44. However, a fuller quantitative analysis is
of interest in respect of the following questions. What are rigorous
conditions for deterministic dependencies or inequalities relating
these two DCEs (if any)? What are “most probable” numerical ratios
of these two DCEs for some classes of systems? Such questions
are studied below for a class of simple stochastic systems-coupled
two-state Markov chains determined by Eq. (1) with M = N = 2.

A. Rigorously proven inequality for randomized basic

pmf

Consider the randomized basic pmf ρXY(ai, bj) = ρX(ai)ρY(bj).
Denote ρX(a1) = α and ρY(b1) = β . For convenience, denote f(p) a
function of the real number 0 ≤ p ≤ 1 whose value is the Shannon
entropy of a binary variable with the probability of one of its two
states equal to p: H = f(p) = −p log p − (1 − p) log(1 − p). Then,
the Shannon entropy of the random variable X1 conditioned by

the initial condition localized at (ai∗, bj∗) reads H
(

p(1)
X [x|δi,i∗δj,j∗]

)

= f
(

r1
i∗,j∗

)

, see Fig. 2. Averaging it over j∗ for a given X0 = ai∗ yields

HX
i∗ = βf

(

r1
i∗,1

)

+ (1 − β)f
(

r1
i∗,2

)

. Next, the Shannon entropy of X1

conditioned by the initial pmf localized only with respect to X0

at ai∗ reads HX
i∗ = H

(

p(1)
X

[

x|δi,i∗ρY

(

bj

)]

)

= f
(

βr1
i∗,1 + (1 − β)r1

i∗,2

)

.

As it follows from Eq. (9), the difference TY→X,i∗ = HX
i∗ − HX

i∗

is the extended TE for the basic pmf δi,i∗ρY. For convenience,
denote g(p1, p2) = f(βp1 + (1 − β)p2) − βf(p1) − (1 − β)f(p2) and
get TY→X,i∗ = g

(

r1
i∗,1, r

1
i∗,2

)

. From (9), the extended TE for the basic
pmf ρXρY is written as TY→X = αTY→X,1 + (1 − α)TY→X,2, i.e.

C(3)
Y→X = C(4)

Y→X = TY→X = αg
(

r1
1,1, r

1
1,2

)

+ (1 − α)g
(

r1
2,1, r

1
2,2

)

.

(13)

Similar considerations apply to the LKIF. The Shannon entropy
of X1 conditioned by the initial pmf localized with respect to

FIG. 2. Illustration to the inequality for the extended TE and the LKIF in the direc-
tion Y → X for the randomized basic pmf with pX (a1) = α = 1/4 and pY (b1)
= β = 1/2. The following notations are used: r11β = βr11,1 + (1 − β)r11,2,

r12β = βr12,1 + (1 − β)r12,2.
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Y0 at bj∗ reads H
(

p(1)
X

[

x|ρX(ai)δj,j∗

]

)

= f
(

p1
j∗

)

where p1
j∗ = αr1

1,j∗

+ (1 − α)r1
2,j∗. The average of H

(

p(1)
X

[

x|ρX(ai)δj,j∗

]

)

over j∗ is

βf
(

p1
1

)

+ (1 − β)f
(

p1
2

)

. The Shannon entropy of X1 for the ini-

tial pmf ρXρY is H(p(1)
X [x|ρXρY]) = f(βp1

1 + (1 − β)p1
2). As follows

from Eq. (11), the difference LY→X = f(βp1
1 + (1 − β)p1

2) − βf
(

p1
1

)

− (1 − β)f
(

p1
2

)

is the LKIF for the initial pmf ρXρY which then
equals

C(8)
Y→X = C(10)

Y→X = LY→X = g(p1
1, p

1
2) = g

(

αr1
1,1 + (1 − α)r1

2,1, αr1
1,2

+ (1 − α)r1
2,2

)

. (14)

Due to convexity of the function f(p) on the inter-
val (0,1), the function g

(

p1
1, p

1
2

)

which is the difference of
the “intermediate” and the “average” values of f is non-
negative. It proves that the TE (13) and the LKIF (14) are
non-negative. As for the difference TY→X − LY→X, it appears
to equal the difference of the “average” and the “interme-
diate” values of g(p1, p2): TY→X − LY→X = αg(p1) + (1 − α)g(p2)

− g(αp1 + (1 − α)p2), where p1 = (r1
1,1, r

1
1,2),p2 = (r1

2,1, r
1
2,2). The

sign of TY→X − LY→X depends on whether g is convex as the function
of two variables, concave, or arbitrary in the square (0, 1) × (0, 1).
To find it out, let us find the Hessian (determinant of the partial sec-
ond derivatives matrix) of g. Via some algebra, it is straightforward
to obtain

∣

∣

∣

∣

∂2g

∂pi∂pj

∣

∣

∣

∣

(p1
1 ,p1

2)

=
β2(1 − β)2

p1
1(1 − p1

1)p
1
2(1 − p1

2)(βp1
1 + (1 − β)p1

2)(β(1 − p1
1) + (1 − β)p1

2)

(

p1
1 − p1

2

)2
. (15)

This Hessian is nonnegative, so g is concave, rather than con-
vex as one might suppose in analogy with f. Hence, the differ-
ence TY→X − LY→X is nonnegative. Thereby, we have proven the
following theorem:

In a system of coupled two-state Markov chains (1), the
extended TE for a randomized basic pmf is greater than or equal
to the respective LKIF:

C(3)
Y→X = C(4)

Y→X = TY→X ≥ LY→X = C(8)
Y→X = C(10)

Y→X. (16)

A plausible conjecture is that the inequality (16) is valid for
arbitrary M and N, but its proof would be more time-consuming
and it is not done here. The equality in (16) holds true if r1

1,1 = r1
2,1

and r1
1,2 = r1

2,2 (i.e., if the transition probability to any future x does
not depend on the initial x), and if β = 0 or β = 1 or α = 0 or
α = 1 (i.e., for a localized pmf of either Y0 or X0). The inequality
(16) may well be violated for a non-randomized basic pmf as will be
seen below.

B. Numerical values and their ratios for symmetric

Markov chains

A system of coupled two-state Markov chains has 16 param-
eters (transition probabilities). Only 12 of them can be speci-
fied independently (free parameters) due to 4 normalization con-
strains. Consider here only “independent internal noises” in the

subsystems X and Y, i.e., each full transition probability q
i,j

i ′ ,j ′
is

the product of the “marginal” ones q
i,j

i ′ ,j ′
= ri

i ′ ,j ′
s
j

j ′ ,i ′
, so Xn and

Yn are mutually independent given (xn−1, yn−1). Then, the sys-
tem Z has 8 free parameters. As defined in Sec. II (see Fig. 1),
r1
1 = (r1

1,1 + r1
1,2)/2 and r1

2 =
(

r1
2,1 + r1

2,2

)

/2 characterize the individ-
ual dynamics of X, i.e., zero coupling Y → X corresponds to the
isolated subsystem X with the transition probabilities r1

1 and r1
2.

Similarly, s1
1 =

(

s1
1,1 + s1

1,2

)

/2 and s1
2 =

(

s1
2,1 + s1

2,2

)

/2 describe the
individual dynamics of Y, 1r1

1,1 = r1
1,1 − r1

1 = −1r1
1,2 and 1r1

2,1

= r1
2,1 − r1

2 = −1r1
2,2 describe the coupling Y → X, and 1s1

1,1

= s1
1,1 − s1

1 = −1s1
1,2 and 1s1

2,1 = s1
2,1 − s1

2 = −1s1
2,2 describe the

coupling X → Y. To reveal the TE and the LKIF values and rela-
tionships, these parameters are varied for different basic pmfs.

Consider first the stationary basic pmf as an important case

where C(3)
Y→X coincides with the original5,56 TE (denote it Tst

Y→X to

indicate explicitly that ρXY = ρst
XY) and C(10)

Y→X with the most often
used version of the LKIF20 (analogously, denote it Lst

Y→X). For the
most vivid analysis, consider only symmetric subsystems where
the properties of the two states of each subsystem are the same:
r1
1,1 = r2

2,2, r1
1,2 = r2

2,1, s1
1,1 = s2

2,2, s1
1,2 = s2

2,1. So, only 4 free param-
eters remain. Due to symmetry ρst

X (ai) = ρst
Y (bj) = 1/2. Denote

ρst
XY

(

ai, bj

)

= 1/4 + 1ρi,j. From ρ
st
XY = Qρ

st
XY, it is straightforward

to derive 1ρ1,1 = 1ρ2,2 = 1ρst and 1ρ1,2 = 1ρ2,1 = −1ρst where

1ρst =
1

2

(

s1
1 − 1/2

)

1r1
1,1 +

(

r1
1 − 1/2

)

1s1
1,1

r1
1

(

1 − s1
1

)

+ s1
1

(

1 − r1
1

)

− 21r1
1,11s1

1,1

. (17)

Using the definitions of the TE (10) and the LKIF (12) and some
algebra, one derives

Tst
Y→X = f

(

r1
1 + 41ρst1r1

1,1

)

−

(

1

2
+ 21ρst

)

f
(

r1
1 + 1r1

1,1

)

−

(

1

2
− 21ρst

)

f
(

r1
1 − 1r1

1,1

)

, (18)

whose truncated Taylor expansion for small 1r1
1,1 gives Tst

Y→X

≈

(

1r11,1

)2
(1−16(1ρst)

2)

2r11(1−r11) ln 2
bits, and

Lst
Y→X =

1

2
log

((

1 + 21r1
1,1

) (

1 − 21r1
1,1

))

−
(

41ρst

(

r1
1 − 1/2

)

+ 1r1
1,1

)

log
1 − 21r1

1,1

1 + 21r1
1,1

(19)
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TABLE II. TE and LKIF for different parameters of the coupled two-state Markov chains which are symmetric (r11,2 = r22,1, etc.,) and individually identical (1/2 ≤ r11 = s11 < 1).

Coupling ind. par. Tst
Y→X Lst

Y→X

Tst
Y→X

Lst
Y→X Relation

1s1
1,1 = −1r1

1,1small 1r1
1,1 1 − r1

1 << 1
(1r1

1,1)
2

2(1 − r1
1) ln 2

2(1r1
1,1)

2

ln 2

1

4(1 − r1
1)

Tst
Y→X >> Lst

Y→X

1s1
1,1 = −1r1

1,1small 1r1
1,1 r1

1 = 3/4
8(1r1

1,1)
2

3 ln 2

2(1r1
1,1)

2

ln 2
4/3 Tst

Y→X > Lst
Y→X

moderately

1s1
1,1 = −1r1

1,1small 1r1
1,1 r1

1 − 1/2 << 1
2(1r1

1,1)
2

ln 2

2(1r1
1,1)

2

ln 2
1 Tst

Y→X ≈ Lst
Y→X

1s1
1,1 = 0 small 1r1

1,1 r1
1 − 1/2 << 1

2(1r1
1,1)

2

ln 2

2(1r1
1,1)

2

ln 2
1 Tst

Y→X ≈ Lst
Y→X

1s1
1,1 = 0 small 1r1

1,1 r1
1 = 3/4

8(1r1
1,1)

2

3 ln 2

10(1r1
1,1)

2

3 ln 2
4/5 Lst

Y→X > Tst
Y→X

moderately

1s1
1,1 = 0 small 1r1

1,1 1 − r1
1 << 1

(1r1
1,1)

2

2(1 − r1
1) ln 2

(1r1
1,1)

2

(1 − r1
1) ln 2

1/2 Lst
Y→X ≈ 2Tst

Y→X

1s1
1,1 > 0 small 1r1

1,1 1/2 < r1
1 < 1 ∝(1r1

1,1)
2

∝1r1
1,1 ∝1r1

1,1 Tst
Y→X << Lst

Y→X

1r1
1,1 = 1s1

1,1

≈ 1 − r1
1 > 0

1/2 < r1
1 < 1 close to 0 (r1

1 − 1/2)(1 − r1
1) close to 0 Tst

Y→X << Lst
Y→X

1s1
1,1 < 0small 1r1

1,1 1/2 < r1
1 < 1 ∝(1r1

1,1)
2

∝−1r1
1,1 ∝−1r1

1,1 Tst
Y→X << |Lst

Y→X|

1s1
1,1 < 01r1

1,1 < |1s1
1,1| 1/2 < r1

1 < 1 Eq. (18) Eq. (19) about 1 Tst
Y→X ≈ Lst

Y→X

1r1
1,1 > |1s1

1,1| 1/2 < r1
1 < 1 Eq. (18) Eq. (19) > 1 Tst

Y→X > Lst
Y→X

with Lst
Y→X ≈ (161ρst1r1

1,1(r
1
1 − 1/2) + 2(1r1

1,1)
2
)/ln 2 bits for

small 1r1
1,1. From these expressions, one can see characteristic rela-

tionships between the TE and the LKIF. For simplicity, consider only
identical individual parameters r1

1 = s1
1 which appear to suffice for

illustrations of all diverse relationships between the two IFs. They
are summarized in Table II and briefly described below.

(i) For the antisymmetric coupling 1r1
1,1 = −1s1

1,1 [rows 2, 3,
4 in Table II, Fig. 3(a)], one has 1ρst = 0 and Tst

Y→X/Lst
Y→X

≈ 1/
(

4r1
1

(

1 − r1
1

))

for small enough (i.e., infinitesimally small)
1r1

1,1, i.e., the TE is much greater than the LKIF for 1 − r1
1

<< 1/4 and Tst
Y→X = Lst

Y→X for r1
1 = 0.5.

(ii) For the unidirectional coupling Y → X [Table II, Fig. 3(b)], one

has 1ρst =
(r11−1/2)1r11,1

4r11(1−r11)
. Then, 16(1ρst)

2 << 1 if r1
1 is not close

to 1. So,
Lst

Y→X

Tst
Y→X

≈ 2 − 4r1
1

(

1 − r1
1

)

and the LKIF exceeds the TE

by a moderate factor of 1 to 2.
(iii) For a finite (i.e., not infinitesimally small) opposite coupling

1s1
1,1 > 0, a finite 1 − r1

1 > 0, and a small |1r1
1,1| << 1 − r1

1

[Table II, Figs. 3(c) and 3(d)], the LKIF is much greater

than the TE because 1ρst ≈ 1
4

(r11−1/2)1s11,1

r11(1−r11)
and so Tst

Y→X/Lst
Y→X

≈
1−16(1ρst)

2

32r11(1−r11)(r11−1/2)1ρst
1r1

1,1 is infinitesimally small. The LKIF is

much greater than the TE also for the almost maximally pos-
sible finite couplings 1r1

1,1 = 1s1
1,1 ≈ 1 − r1

1 > 0, since then

1ρst ≈ 1/4 (almost deterministic relationship between simul-
taneous x and y) and so Tst

Y→X ∝ 1 − 16(1ρst)
2 ≈ 0 while

Lst
Y→X ≈ (r1

1 − 1/2)(1 − r1
1) 6= 0.

(iv) The negative LKIF is encountered for a finite opposite coupling
1s1

1,1 < 0, a finite 1 − r1
1 > 0, and a small 0 < 1r1

1,1 << 1 − r1
1

[Table II, Figs. 3(e) and 3(f)]. Then, Tst
Y→X/Lst

Y→X ≈ −c · 1r1
1,1

with a finite constant c > 0, i.e., the TE is much less than
|Lst

Y→X|. Under an increase of 1r1
1,1, the TE gets first equal to the

LKIF absolute value, then the LKIF decreases in absolute value
and gets equal to zero, and finally both DCEs gets positive with
the TE exceeding the LKIF by a moderate factor.

These four characteristic situations represent a full set of
diverse ratios between the two IFs.

C. Statistical numerical results for arbitrary Markov

chains

To reveal the “most typical” values of the TE and LKIF, let
us generate an ensemble of pairs of coupled Markov chains with
randomly chosen parameters. Each of the 8 transition probabilities
(r1

i,j and s1
i,j) is independently generated as a random number uni-

formly distributed in the interval [0,1]. Let us first consider the case
of the stationary basic pmf which is uniquely determined by the 8-
dimensional parameter vector from ρ

st
XY = Qρ

st
XY. Given all parame-

ters and this basic pmf, the TE and the LKIF in a chosen direction are
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FIG. 3. The TE Tst
Y→X and the LKIF LstY→X for the coupled symmetric identical two-state Markov chains, different lines (LKIF) and symbols (TE) correspond to different r11 :

(a) antisymmetric coupling1s11,1 = −1r11,1, (b) unidirectional coupling Y → X , i.e.,1s11,1 = 0, (c) and (d) finite1s11,1 = 0.25, (e) and (f) finite1s11,1 = −0.25. The panels
(c) and (e) are magnified segments of the panels (d) and (f), respectively.
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FIG. 4. Histograms of the DCE values for an ensemble of transition probabilities uniformly distributed in the interval [0,1] and the stationary basic pmf: (a) and (b) for the TE
Tst
Y→X in the linear and semi-logarithmic scales, (c) and (d) for the LKIF LstY→X , (d) and (e) for the LKIF absolute value |LstY→X |, (g) and (h) for the ratio of the LKIF absolute

value |LstY→X | to the TE Tst
Y→X and its magnified segment. ν is probability of a bin, bin sizes are 0.02 (a)–(f) and 0.05 (g) and (h).

uniquely computed via Eqs. (10) and (12). Thereby, one obtains an
arbitrarily large sample of the TE and the LKIF values and, hence,
their empirical pmfs and statistical momenta. For a sample of the
size of 105, the histograms are shown in Figs. 4(a)–4(f). The shape of
the histogram ν(Tst

Y→X) is exponential up to about Tst
Y→X = 0.4bits

[Figs. 4(a) and 4(b)], more precisely ν(Tst
Y→X) ∝ exp(−8Tst

Y→X). This
is similar for the LKIF along the positive semi-axis except for the
vicinity of zero [Figs. 4(c) and 4(d)]: ν(Lst

Y→X) ∝ exp(−11Lst
Y→X), and

almost the same for the LKIF absolute value [Figs. 4(e) and 4(f)].

The ratio
|Lst

Y→X|

Tst
Y→X

is distributed with two local maxima (0 and close

to 1) and rare large values (up to the values in the interval from 20
to 30 in the sample at hand) as shown in Figs. 4(g) and 4(h). The
expectation of the TE is estimated as E[Tst

Y→X] = 0.1244 ± 0.0007
bits, while the expectation of the LKIF is E[Lst

Y→X] = 0.0626 ±

0.0006 bits and of its absolute value is E|Lst
Y→X| = 0.0638 ± 0.0006

bits. The ratio of the expectations is 0.51 and the expectation of the

ratio
|Lst

Y→X|

Tst
Y→X

is almost the same: 0.53. The expectation of the inverse

ratio
Tst

Y→X

|Lst
Y→X|

is much greater than unity (since the LKIF is often much

less than the TE, this is also the case in all examples below), while its
median is 2.1, i.e., close to the ratio 2:1. Table III summarizes these
values and other cases indicated below.

The values r1
1 ≥ 0.5 and s1

1 ≥ 0.5 correspond to persistence of

both subsystems. This is typical for continuous-time systems sam-
pled with sufficiently small time steps and so is of special interest.
Consider the above example with transition probabilities uniformly
distributed in the interval [0.5,1] under other equal conditions.

Then, the median of
|Lst

Y→X|

Tst
Y→X

is 0.6 which is close to the ratio of

expectations. The median of the inverse ratio
Tst

Y→X

|Lst
Y→X|

is 1.67, i.e., not

TABLE III. The estimates of the expectations of the TE and the LKIF for ensembles of pairs of coupled two-state Markov chains with random parameters uniformly distributed

in the intervals [0,1] or [0.5,1] (the second column) and different specifications of the basic pmf (the first column).

Basic pmf Param. pdf E[TY→X] bits E|LY→X| bits

E|LY→X|

E[TY→X]
E

|LY→X|

TY→X

Median of
|LY→X|

TY→X

Median of
TY→X

|LY→X|

Stationary [0,1] 0.12 0.064 0.52 0.53 0.48 2.1
Stationary [0.5,1] 0.04 0.028 0.65 0.77 0.60 1.67
Arbitrary [0,1] 0.12 0.071 0.60 0.94 0.56 1.8
Arbitrary [0.5,1] 0.038 0.027 0.72 1.9 0.67 1.5
Randomized [0,1] 0.10 0.06 0.62 0.56 0.63 1.6
Randomized [0.5,1] 0.032 0.016 0.50 0.47 0.49 2.0
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very different from the previous case, though the mean values of
both DCEs are about two or three times as small.

To compare the DCEs for an arbitrary basic pmf, the transition
probabilities are generated as in the first example, while ρXY(a1, b1),
ρXY(a1, b2), ρXY(a2, b1), and ρXY(a2, b2) are taken to be mutually
independent uniformly distributed in [0,1] with subsequent division
of each of the four values by their sum to provide normalization

of the pmf. The median of TY→X
|LY→X|

is then about 1.8. Forr1
1 ≥ 0.5, s1

1

≥ 0.5 and other equal conditions, the median of TY→X
|LY→X|

is about 1.5.

Finally, consider the transition probabilities as in the first
example and a randomized basic pmf ρXρY, where ρX(a1) and ρY(b1)

are drawn mutually independently from [0,1]. Then, the median of
TY→X
|LY→X|

is about 1.6. Forr1
1 ≥ 0.5 and s1

1 ≥ 0.5, the median of TY→X
|LY→X|

is

about 2.05.
To summarize, all three cases (differing by the basic pmfs) give

overall similar results. The typical (in terms of medians) ratio of
the extended TE to the LKIF absolute value and the ratio of their
expectations range from 1.5 to 2 depending on the ensemble con-
straints. The situations where the TE is much greater than the LKIF
and vice versa are quite possible but somewhat less probable to be
encountered in the parameter space.

Relationships between the other DCEs deduced in Sec. IV can
be readily investigated in the same way. In particular, such compu-

tations for the coupled two-state Markov chains show that C(3)
Y→X

≤ C(4)
Y→X ≤ C(5)

Y→X ≤ C(6)
Y→X in a wide range of parameters including

all cases of Table II. The corresponding results will be published
elsewhere.

As a further extension of this research, one can consider
Markov chains of higher orders when the next values of X and Y
are generated based on their several previous values. Then, every-
thing will be formally the same in Sec. IV, but the number of states
M and N of the systems X and Y will be greater than two even for
binary variables, e.g., M and N equal 2k for k-th order Markov chains
[see also the discussion of the original TE and the (k,l)-history TE
in Ref. 56]. So, the coupling profiles 1ri

i ′ ,j ′
and 1si

i ′ ,j ′
will be more

diverse and numerical conditions for different relationships between
the TE and the LKIF will take more complex forms than those in
Secs. V B and V C. However, principal diversity of the relationships
is shown already for the simplest Markov chains here.

Another continuation of the present research could systemat-
ically compare performance of the TE and the LKIF (or any other
pair or set of quantifiers) in solving different applied problems
related to quantification of directional couplings. For example, if
one needs a quantifier which most reliably detects a non-zero cou-
pling, i.e., roughly speaking, which takes greater values, then one
can conclude from Fig. 3 that sometimes the TE is advantageous
in this sense [Fig. 3(b), large couplings in Figs. 3(e) and 3(f)] and
sometimes the LKIF works better [Figs. 3(a), 3(c), and 3(d), small
couplings in Figs. 3(e) and 3(f)]. However, for other purposes, one
could require a quantifier which should be small in almost synchro-
nized regimes (as the original TE) or which can take both positive
and negative values depending on the relationship between the basic
pmf and the coupling profiles in two directions (as the LKIF), etc.,
The DCE viewpoint explicates an important circumstance that dif-
ferent quantifiers can be appropriate and advantageous to answer
different questions about the coupling role in dynamics and there is

no universally best quantifier for all cases. Special studies are neces-
sary to say where each concrete quantifier is better than some others
or which quantifier is better for a given problem setting.

VI. DISCUSSION AND CONCLUSIONS

As shown above, quite a parsimonious set of possible ini-
tial variations (produced from a single basic pmf which is most
often the stationary pmf), distinction functionals (average difference
of local entropies with a relevant weight function), and assem-
blage functionals (weighted sum using the basic pmf to specify
the weight function) allows one to formulate many DCEs, each of
which meaningfully quantifies the corresponding directional cou-
pling (causality) in a Markov chain. Among the 11 derived DCEs,
there are 5 well-known information-theoretic quantifiers (“informa-
tion transfers and flows”) previously suggested from quite different
viewpoints (Sec. IV). Here, all of them are produced from the same
first principle without much effort spent to formulate such quanti-
fiers in the original works. The proofs that each of those 5 quantifiers
is a DCE are basically given in Ref. 44 and briefly mentioned here,
while the purpose of this work is to show how those “transfers and
flows” arise in the simple logical line within the DCE framework
and, thereby, how they are logically related to each other and to
many further possible DCEs.

It is easy to extend the set of DCEs by considering, e.g.,

other distinction functionals. In particular, the DCEs C(3)
Y→X, C(4)

Y→X,

and C(8)
Y→X are equivalently formulated for the distinction func-

tional in the form of the Shannon entropies difference D(p∗
X, p∗∗

X )

= H∗∗
X − H∗

X. For their initial Y-variations, this difference of Shan-
non entropies is non-negative. One can take the difference of
Shannon entropies to be the distinction functional for any initial Y-
variation and obtain another version of each functional in Table I.
Then, the non-negativity of a DCE may be violated. Still, such
modified DCEs make a clear sense quantifying the change in the
“aggregated” uncertainty of the future X rather than a change in
the pmf of X. Diverse other versions of initial variations, distinc-
tions and assemblages are obviously possible, e.g., Jensen–Shannon

distance instead of the KLD turns the DCE C(5)
Y→X into Bollt’s IF.63

However, the 11 DCEs presented here suffice to demonstrate how
the DCE viewpoint allows one to generate a large set of causal-
ity quantifiers and enrich interpretations of existing “information
transfers and flows” showing their place in such a set.

Apart from the formal derivations, it is studied here how
strongly some apparently similar DCEs may differ from each other
with respect to their numerical values. In particular, the debated
question about the quantitative relationships between the TE and
the LKIF is considered for coupled Markov chains which repre-
sent possibly the simplest model of coupled stochastic dynamical
systems. It is shown that such relationships are diverse depend-
ing on the parameters of the subsystems and couplings and on the
basic pmf used. For the study of such dependence, the extended (or
generalized) TE for an arbitrary basic pmf is taken as it naturally
arises within the DCE framework. It is rigorously shown that the
extended TE is always greater than or equal to the LKIF for a ran-
domized basic pmf (Sec. V A). But in general the relationships are
diverse, including a much greater TE, a much greater LKIF, and
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both values of the same order, while the LKIF may be either neg-
ative or positive; conditions for all such situations are formulated
for the coupled two-state Markov chains and a stationary basic pmf
(Sec. V B). The distributions of the generalized TE and the LKIF val-
ues (in bits) are presented for ensembles of pairs of coupled Markov
chains (Sec. V C); they also show that the generalized TE values are
“typically” (e.g., in terms of medians) 1.5-2 times as great as the LKIF
absolute values. All those results together seem to clarify the ques-
tion “What is the quantitative relationship between the TE and the
LKIF?” to a significant extent: indeed, even the simple system under
study shows that the relationships are diverse and the conditions for
different relationships can be meaningfully formulated, i.e., it is not
reasonable to expect a single simple relationship or a couple of such
relationships. Some nearest steps extending the studies in the field
of interrelating and comparing various “information transfers and
flows” are indicated in the end of Sec. V C.

As a perspective, developing a unified quantitative theory of
diverse causality measures for processes is a goal which seems to
be attractive even for practitioners, since such a theory should be
useful for reliable interpretations of the numerical values of cou-
pling characteristics obtained from data. A detailed study of possible
and “typical” values of DCEs (e.g., the TE and the LKIF) and their
ratios for the simplest (paradigmatic) stochastic dynamical systems
as done in this work is a necessary step to achieve that goal, since
such a study can serve as a reference point for a further research in
that direction.
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