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ABSTRACT

Contributions of various natural and anthropogenic factors to trends of surface air temperatures at different latitudes of the Northern and
Southern hemispheres on various temporal horizons are estimated from climate data since the 19th century in empirical autoregressive
models. Along with anthropogenic forcing, we assess the impact of several natural climate modes including Atlantic Multidecadal Oscillation,
El-Nino/Southern Oscillation, Interdecadal Pacific Oscillation, Pacific Decadal Oscillation, and Antarctic Oscillation. On relatively short
intervals of the length of two or three decades, contributions of climate variability modes are considerable and comparable to the contributions
of greenhouse gases and even exceed the latter. On longer intervals of about half a century and greater, the contributions of greenhouse gases
dominate at all latitudinal belts including polar, middle, and tropical ones.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0088042

Trends of the surface air temperatures on different spatial and
temporal scales are determined by both the key natural modes
of climate variability and the anthropogenic factor characterized
by the changes of radiative forcing of greenhouse gases in the
atmosphere. Currently, it is of great importance to reveal quan-
titative contributions of anthropogenic and natural factors at
different latitudes of the Northern and Southern Hemispheres
on various time intervals. Such contributions are estimated here
from observational climate data with simplest empirical mod-
els using the concept of dynamical causal effect that quantifies
a future (shorter-term or longer-term) response of one process
to a change in an initial state or internal parameters of another
process under all other equal conditions. Here, we change the
behavior of a factor under study in an empirical autoregressive
model (this is a change from an observed time series to a tempo-
ral constant equal to the starting value or the mean value of that
time series) and examine the respective change of a linear trend of
the temperature on any chosen time interval. The results are pre-
sented for the contributions of different factors on different time

intervals (including the range from a couple of decades to half a
century corresponding to medium-term dynamical causal effects)
at different latitudinal belts: tropical, middle, and polar ones.
These results evidence that the natural modes of climate variabil-
ity contribute to the temperature trends sometimes as strongly
as the greenhouse gases on the time intervals of about two or
three decades but much weaker on intervals longer than half a
century.

I. INTRODUCTION

Quantitative estimation of the role of natural and anthro-
pogenic factors in the contemporary climate change is a key problem
of the 21st century. An overall increase in the global surface air
temperature (GST) revealed from observation data since the 19th
century includes periods of its faster rise and periods of its decrease.
In the beginning of the 21st century, the tendency of the global
warming slowdown or “hiatus” has arisen. Still, the GST values in
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the last years are among the highest ones in the entire observational
dataset since the 19th century. With probability greater than 90%,
more than a half of the GST rise since the middle of the 20th century
is attributed to the anthropogenic rise of the atmospheric content of
greenhouse gases (GHGs).1

The significant impact of the GHGs (especially CO2) rise on
the contemporary GST increase has been revealed from empirical
data in many studies which take into account different natural fac-
tors including solar and volcanic activities, quasi-cyclic processes
like El Nino/Southern Oscillation (ENSO), Atlantic Multidecadal
Oscillation (AMO), and others; see, e.g., Refs. 1–32. In the time
range of interest, natural variability, essentially, enhances or weak-
ens the global warming via producing periods of faster warming
and periods with almost no warming. In particular, Ref. 7 esti-
mated the impacts of anthropogenic forcing, El Nino phenomena,
solar activity, and volcanic activity that altogether explain up to
three-quarters of temperature variance since the end of the 19th
century. Those authors note that along with the dominating role
of the anthropogenic factor, El Nino phenomena induce the GST
changes up to 0.2 deg C on the time scales of several years, con-
siderable volcanic eruptions—up to 0.3 deg C, and solar activity
variations—about 0.1 deg C (see also Refs. 10 and 11). Many other
works2,3,8,11–13,18,19,21,23,26,27 confirmed the presence and statistical sig-
nificance of the GHGs’ impact on GST and compared it with the
impact of other factors using different methods. However, along
with such estimates of the impact of different factors on the global
climate, it is necessary to obtain concrete numerical estimates of
their contributions to temperature trends for different areas of the
Earth from empirical data. In particular, Refs. 29 and 30 used a sim-
ple method based on trivariate autoregressive (AR) models, which
is employed also in this work, and provided estimates of the con-
tributions of GHGs and AMO to the GST trends and the trends
of the temperatures at different latitudes of the Northern Hemi-
sphere (NH). This work aims at estimating the contributions of a
larger set of significant natural modes of climate variability (AMO,
ENSO, Interdecadal Pacific Oscillation—IPO, Pacific Decadal Oscil-
lation—PDO, and Antartic Oscillation—AAO also called Southern
Annular Mode) along with GHGs at various latitudes of both NH
and Southern Hemisphere (SH). Moreover, we address the ques-
tion of how strongly the natural climate variability with time scales
up to several decades can enhance or weaken warming at differ-
ent latitudes on different time intervals, with a special attention to
the intervals of about half a century and shorter. This is principally
important, in particular, for the quantitative explanation of differ-
ences between the contemporary temperature trends at various NH
and SH latitudes, including polar and subpolar latitudes with very
different behaviors of the Arctic and Antarctic sea ice extents.1,33

Indeed, apart from empirical estimates, climate models are able to
reproduce many modes of climate variability, but not all signifi-
cant modes of climate variability and their changes are modeled well
enough.34

It is worth to note that the question under study is some-
what similar but still considerably different from detection and
attribution of the climate change to one of the several selected fac-
tors addressed, e.g., in Refs. 35–46. In detection studies, a priori
specified climate models (which are usually coupled atmosphere
and ocean general circulation models) are used whose multiple

realizations are generated under the control experiment condition,
i.e., with a constant factor under consideration (e.g., constant
atmospheric GHGs content if the impact of this factor is exam-
ined). The observed climate fields can be projected onto some typical
model patterns called “fingerprints,”35,37 which are often obtained
from model climate change simulations and necessary to enhance
detection capability (statistical power, “signal-to-noise” ratio)35,37 of
the method. If the scale factor (i.e., the corresponding component
of the observed fields) significantly differs from control experiment
values, one rejects the hypothesis of no impact of the factor under
study whose change is included in climate change simulations (e.g.,
a certain scenario of the GHGs rise). In the attribution studies,
several factors can be considered in turn with comparison of the
observed data to model fields obtained in different climate change
experiments, each including a change of only one factor. If only one
of the experiments agrees well with observed data (after adjusting
the scale factor), then the observed climate change is attributed to
the impact of that factor. In those studies, one assumes that only
one factor (or, more generally, a linear combination of them) con-
tributes considerably to the observed climate change. All climate
model parameters are not estimated from data and the entire model
is supposed to be adequate. The climate field under study is sup-
posed to be a linear combination of internal climate variability and
the above patterns corresponding to climate change experiments,
each with a single factor included. Under that setting, it is indeed
difficult to assess numerically simultaneous contributions of dif-
ferent factors to temperature trends because it is difficult to carry
out multiple climate change experiments with numerous possible
linear combinations of different factors with different weights. On
the other hand, if one studies the roles of different factors only
in a coupled general circulation model, it is not an empirical esti-
mation since the model parameters are not then estimated from
data.

To avoid existing difficulties, one can try to assess the con-
tributions to trends from different factors in a simple stochastic
dynamical model whose parameters are estimated from the observed
data. Probably, it is questionable whether such a model is adequate
for the description of climate dynamics under different conditions,
but the adequacy of the large general circulation models is also not
completely assured. The advantage of a simple model is that it relies
just on data and a simple form of the evolution equation without
any assumptions concerning parameterizations, etc. Even if simple
empirical models used here appear to be too simple in the future, it is
reasonable to start purely empirical numerical estimation of simul-
taneous contributions of different factors to temperature trends with
such models.

The method used here is based on stochastic dynamical mod-
els and aimed at causality estimation in line with such meth-
ods as phase-dynamic modeling,46–55 linear and nonlinear Granger
causality,56–60 transfer entropies61–72 and similar information-
theoretic concepts,73,74 convergent cross-mapping75,76 and similar
state space approaches,77–79 cross-recurrence techniques,80–82 spectral
causalities,83–88 and others.89 Most of those methods describe short-
term causalities, while the method used here assesses longer-term
causal effects similarly to the idea of long-term causality that has
been suggested in Refs. 12 and 13 and found its further develop-
ment within the framework of dynamical causal effects.90 The latter
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concept includes short-term (transient) and long-term (asymptotic)
effects of certain initial state or parameter interventions as presented
in detail in Refs. 91–95 with a more general formulation in Ref. 96.
The method used here is a particular case within that framework.
It can be said to assess medium-term causal effects of parameter
interventions into the behavior of various factors. From differ-
ent viewpoints, intervention-based approaches have been developed
and used also in Refs. 97–99 while causalities at different temporal
scales have been considered in Refs. 100 and 101. A similar idea to
account for the role of different external forcings based on empiri-
cal dynamical models was also implemented and applied to climate
data studies in Refs. 102 and 103 continuing a series of works on
empirical modeling from climate time series.104–109

Section II describes the climate data used for estimation,
Sec. III presents the method, Sec. IV reports the results, and Sec. V
concludes.

II. DATA UNDER ANALYSIS

Figure 1 presents the time series under study: interannual vari-
ations of the surface air temperature T at different latitudes of the
NH and SH [Fig. 1(a)] and the indices of AMO, ENSO, IPO, PDO,
and AAO with corresponding GHGs radiative forcing [Fig. 1(b)].
Temperature anomalies are given relatively to the reference period
1971–2000. We note deficiencies of the data for Antarctic lati-
tudes, so the estimates for these latitudes presented below are of
a more qualitative than a quantitative character. Selection of the
above indices of the natural climate variability is determined by
the attempt to include the long-term internal variability associated
either with the Pacific Ocean (ENSO, IPO, PDO, and AAO) or
with the Atlantic Ocean (AMO and NAO) into the empirical AR
model for temperature variations. Only one of these indices at a time
(except the NAO index) is included into the model along with the
GHGs index to keep the model as simple as possible, representing
both the anthropogenic factor and internal variability and retain-
ing reasonable statistical properties. Taking into account, along with
the AMO index, the NAO index with high interannual variability is
not expected to reveal any significant contribution to temperature
trends over several decades.

To represent surface air temperatures at various latitudes
including the tropical (0°–30°N), middle (30°–60°N), and Arctic
(60°–90°N) latitudes of the NH and the corresponding (0°–30°S,
30°–60°S, and 60°–90°S) latitudes of the SH, we have used the
mean annual data since 1880 until now [Fig. 1(a)]. The data are
the land–ocean temperatures from the Extended Reconstructed
Sea Surface Temperature dataset (ERSST,110,111 version 4) located
at ftp://ftp.ncdc.noaa.gov/pub/data/noaaglobaltemp/operational/
timeseries/ in the following six files (accessed on 08/16/2017):
aravg.mon.land.60 N.90 N.v4.0.1.201706.txt, aravg.mon.land.30 N.
60 N.v4.0.1.201706.txt, aravg.mon.land.00 N.30 N.v4.0.1.201706.txt,
aravg.mon.land.30S.00 N.v4.0.1.201706.txt, aravg.mon.land.60S.
30S.v4.0.1.201706.txt, and aravg.mon.land.90S.60S.v4.0.1.201706.txt
(the dataset identifier is doi:10.7289/V5KD1VVF, the detailed
description of the data is given at https://www.ncdc.noaa.gov/data-
access/marineocean-data/extended-reconstructed-sea-surface-tem
perature-ersst-v4).

The anthropogenic influences are characterized by GHGs’
radiative forcing over 1851–2012 with the main contribution from
CO2. The forcing dataset as used in GISS Climate Models112

is located at https://data.giss.nasa.gov/modelforce/Miller_et_2014/
Fi_Miller_et_al14_upd.txt (accessed on 10/10/2016).

Among the key modes of natural climate variability, we
have used the index of AMO since 1856 (HadISST1 dataset).113,114

Detrended AMO data are located at https://psl.noaa.gov/data/
correlation//amon.us.long.data where the index is calculated north
of 0°. For comparisons to previous results,29,30 we have used the
previous version of the index computed for the band 20°N–70°N
[Fig. 1(b), cyan dashed line] located at http://www.esrl.noaa.gov/psd/
data/correlation//amon.us.long.data (accessed on 05/04/2017, the
detailed description of the data is given at https://psl.noaa.gov/data/
timeseries/AMO/). The detrended AMO index possesses the char-
acteristic period of about six decades. We have used different filters
to focus on a slow component of the AMO index. As a representa-
tive case, the main results are shown here for the annual-mean data
of the AMO index smoothed with a weighted moving average filter
with 10-year window length and weights linearly decreasing with the
time lag (i.e., the triangular temporal profile) down to zero at the lag
of 11 years as in Ref. 91.

The strongest interannual variability of the global surface air
temperature is associated with the El-Nino phenomena. We have
used the ENSO index since 1870 until now (HadISST1 dataset),114

which shows sea surface temperature anomalies in the region Nino-
3,4 in the equatorial Pacific (5°S–5°N, 170–120°W) and is located at
https://psl.noaa.gov/gcos_wgsp/Timeseries/Data/nino34.long.anom.
data (accessed on 10/10/2016). Its plot is given in Fig. 1(b) with the
blue line.

We have estimated also the contribution of the PDO and
IPO to the surface temperature trends based on the HadISST1.1
dataset.114 We have used the PDO index since 1854 until now based
on NOAA’s extended reconstruction of sea surface temperatures
[ERSST Version 5 (https://www.ncdc.noaa.gov/teleconnections/
pdo/, accessed on 10/26/2021)]. It is shown with the green
line in Fig. 1(b). We have used the IPO index since 1870
until now. Indeed, along with the AMO, a considerable role
in interdecadal climate variability is played by IPO, which is
characterized by the TPI index (Tripole Index) defined as the dif-
ference between the sea surface temperature of the central equa-
torial Pacific (10°S–10°N, 170°E–90°W) and the mean sea sur-
face temperature of the north-western (25°N–45°N, 140°E–145°W)
and south-western (50°S–15°S, 150°E–160°W) Pacific.115 The TPI
index is shown with the black line in Fig. 1(b) and located at
https://psl.noaa.gov/data/timeseries/IPOTPI/tpi.timeseries.hadisst1.
1.data (accessed on 10/23/2020).

The additional index used is the AAO index for the period
1871–2012 (NOAA/NCEP Climate Prediction Center data).116 The
AAO is characterized by the difference of the standardized zonal
mean sea level pressures between 40°S and 65°S. The AAO index
is located at https://psl.noaa.gov/data/20thC_Rean/timeseries/mont
hly/SAM/sam.20crv2.long.data (accessed on 10/23/2020).

This work presents the analysis of the period since 1880 (the
starting date of the temperature data) until 2012 (the ending date of
the GHGs forcing and the AAO data). This period includes the data
for each of the above variables.
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FIG. 1. Time series under analysis represent interannual variations of (a) surface air temperature T for the entire Earth (GST, gray dashes) and at various latitudes of the
NH and the SH (the legend); (b) indices of AMO (filtered index is shown with the cyan solid line, unfiltered one with the cyan dashed line), ENSO (blue), IPO (black), PDO
(green), and AAO (magenta) along with GHGs radiative forcing (brown).

III. METHOD OF DATA ANALYSIS

Contributions to temperature trends in each latitudinal zone
are estimated on time intervals of the lengths ranging from 5 to 130
years with the aid of AR models analogously to Refs. 29 and 30.
The approach fits to the framework of dynamical causal effects13,90,91

based on the comparison of dynamics under alternative conditions.
Under that approach, one considers a coupled stochastic (Marko-
vian) dynamical system consisting of two subsystems X and Y which,
in case of discrete time, reads

xn = F(xn−1, yn−1, ξX,n, aX, aXY),
yn = G(xn−1, yn−1, ξY,n, aY, aYX),

(1)

where x and y are state vectors of arbitrary finite dimension, n is dis-
crete time, (ξX, ξY) is white noise, aX and aY are vectors of individual
parameters of subsystems X and Y, and aXY and aYX are vectors of
coupling parameters in the respective directions. So, aXY = 0 means
that the future dynamics of X is independent of any past and present
states of Y, given the present state of X, and everything is the same
for the opposite direction. To characterize an effect of coupling in
the direction Y → X, one performs some variation in the initial state
or parameters of the subsystem Y and examines the response of the
subsystem X at some future time instant or on some future time
interval in an appropriate sense, which provides the correspond-
ing dynamical causal effect. Here, the effect of interest is defined via
variation of the parameter aY from any given value (corresponding
to the observed dynamics) to such value that G = const (an appro-
priate parameterization of G is easily formulated), i.e., an alternative

regime is a constant value of the vector y. This is a kind of parameter
intervention or parameter variation defined in Ref. 90. The response
of X is here the change of the linear trend of a certain component
xi on some future time interval of moderate length. This is neither
a very short-term effect (at time instants about one or several time
steps ahead) nor a long-term effect (at time instants greater than any
characteristic time scales of the entire system, i.e., close to an asymp-
totic effect). It is reasonable to call it a “medium-term effect,” though
strictly speaking this is a kind of a short-term effect as defined in
Ref. 90. So, what we estimate below is the coupling characteristic of
the type “parameter intervention—medium-term effect.”

Specifically, we construct a model for each temperature
anomaly T taking into account the influences of the GHGs and a
natural variability mode IM in the form

Tn = a0 + a1Tn−1 + a2IGHG,n−1 + a3IM,n−1 + ξn. (2)

Here, n is discrete time (years), ξn is noise (residual errors of
the model), IGHG is GHGs radiative forcing, and IM is the index
of a climate mode. The evolution equations for IGHG and IM are
not constructed and so are not explicitly shown in Eq. (2). The
AR equation (2) is fitted to the entire observation interval via the
ordinary least-squares technique, i.e., via minimization of the sum
S(a) =

∑

n

ξ 2
n of the squares of the residual errors ξn = Tn − a0

− a1Tn−1 − a2IGHG,n−1 − a3IM,n−1 over the parameter vector a. The
index IM is IAMO (the above low-pass filtered AMO index) or
IENSO (ENSO) or IIPO (IPO) or IPDO (PDO), or IAAO (AAO). The
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estimates of the coefficients a0, a1, a2, a3 are provided with the esti-
mates of their standard errors (deviations) obtained automatically
from the same regression estimation under the assumption of delta-
correlated finite-variance noise ξ . They are computed as the mean
squared prediction error multiplied by the inverse of ATA where A
is the matrix of regressors’ values. The significance level at which the
null hypothesis of a zero coefficient is rejected can be estimated via
the inverse of the standard Gaussian cumulative distribution func-
tion evaluated at the estimated value of a coefficient divided by its
estimated standard error.

To determine the contributions of anthropogenic and natural
factors to linear temperature trends for each of the six latitudi-
nal zones over a time interval [Lstart, Lend] with the length L = Lend

− Lstart, we analyzed time realizations of the AR model (2) with the
estimated parameters â in hypothetical regimes for natural variabil-
ity modes or the GHGs atmospheric content: instead of the observed
time series for a given factor (for example, a natural variability mode
IM,n, n = 1880, . . . , 2012), we “fed” the model (2) with an artifi-
cially generated time series ĨM,n at its input. The initial value of T and
the time series of another factor (in the above example, IGHG,n, n =

1880, . . . , 2012) at the model input were the actually observed val-
ues. The time series of the “external noise” ξn (n = 1880, . . . , 2012)
at the model input was the time series of the residual errors ξ̂n corre-
sponding to the minimum of their sum of squares. The contribution
of each factor to the trend was estimated as the difference between
the trends of the actually observed values Tn and the model val-

ues T̃n corresponding to the input signal ĨM,n. This difference in
the trends is equal to the linear trend of the temperature differ-

ence δTn = Tn − T̃n. In other words, we assume that the model (2)
is equally applicable under the hypothetical condition of an alter-
native behavior of the factor under study. In this work, we take
the hypothetical behavior to be a constant value ĨM,n = const (i.e.,
“absence of any dynamics” of IM) after some starting time instant
with unchanged behavior ĨM,n = IM,n before that time instant. For
any mode IM, that constant level is just the empirical mean of IM

over the entire interval 1880–2012 and the starting time instant is the
first instant n when the value IM,n gets approximately equal to that
constant. For the factor IGHG, the constant level is just IGHG in the
very beginning of the time series and so the starting time instant is
1880. Within the dynamical effects framework,90 such hypothetical
change of the factor under study in a model is a parameter interven-
tion since the entire evolution operator of that factor is changed to
another equation that reads IM,n = const. Effects of that intervention
are considered here on temporal horizons of the length of several
decades.

The trend on each time interval [Lstart, Lend] (with L ranging
from 5 to 130 years) was represented by a coefficient αδT of the stan-
dard linear regression δTn = αδTn + ζn obtained via the ordinary
least-squares technique. In this way, we estimated the contributions
to temperature trends from the five factors denoting such contri-
butions as CGHG (from GHGs), CAMO(from AMO ), CENSO (from
ENSO), CIPO (from IPO), and CAAO (from AAO). We estimated
also the actual trend of T, i.e., the coefficient αT in the regression
equation Tn = αTn + ζn. To assess the relative role of each factor, we
have used the corresponding ratios. Thus, such ratios are CGHG/αT,
CAMO/αT, CAMO/CGHG, C̃GHG = |CGHG|/(|CGHG| + |CAMO|), and

C̃AMO = |CAMO|/(|CGHG| + |CAMO|) for model (1) with GHGs and
AMO. Everything is analogous for ENSO, IPO, PDO, and AAO
instead of AMO.

Concerning the noise realization at the model input that is
used to generate the hypothetical behavior, one could also use an
ensemble of Gaussian white noise realizations similarly to Refs. 12
and 13. However, the basic idea here is to compare the model behav-
ior under the change of a single factor and other equal conditions. So,
if one studies a trend in a given time series, it should be compared to
a trend in a corresponding alternative time series where noise real-
ization (understood as a realization of external factors influencing
the temperature) is one of the conditions to be held equal. If one
studies a distribution of the trend values in various realizations of
an empirical model, it is reasonable to compare a mean trend of that
distribution to a mean trend of the distribution obtained for a hypo-
thetical behavior of IGHG or IM. In our case, the trend estimate for an
actually observed time series seems to be more interesting than some
mean trend. A probabilistic context can be provided by checking
the hypothetical behavior of the models with different AR parame-
ters drawn from the Gaussian distribution with expectation equal to
the least-squares parameter estimate and with the covariance matrix
obtained from regression estimation as mentioned above. For each
such trial model, one should consider its parameter values as “true”
and obtain the corresponding noise realization as the residual errors
ξn computed with those parameter values. Resulting ensembles of
trend contribution estimates were computed for many models stud-
ied here. The relative standard deviation of those estimates appeared
to equal the relative standard deviation of the respective AR coupling
coefficient estimate (given in Table I). So, the generation of ensem-
bles is not needed to estimate the uncertainties of the estimates of
the contributions to trends.

This is the simplest method to estimate the contributions to the

trends, which is based on a minimalistic empirical model. Hence, its

advantages are the most reliable statistical estimates and the smallest

number of assumptions. Surely, the unit-lag AR model (2) may not

be the best one. Further studies with other models deserve efforts.
In particular, we have used also linear AR models with greater time
lags ranging up to 30 years and with higher AR orders ranging up
to five in respect of each variable on the right-hand side of the AR
equation. The optimal models turn out to correspond to quite con-
siderable time lags of GHGs and AMO of more than 10 years. Their
results concerning the estimates of the contributions to the temper-
ature trends are overall similar to those presented here in terms of
maximal values of the contributions over different time windows of
a given length, while the timing of the maximum contribution (i.e.,
the location of the respective time window) differs from that for the
unit-lag AR model. So, the conclusions about the values of the con-
tributions to the trends are robust to such extension of the model
structure. Still, reliability of such larger models deserves separate
studies.

Multivariate linear AR models that include more factors may
also be fitted instead of the trivariate models. For example, one can
include all four natural variability modes under study and fit a 6-
variate AR model. It may reduce a bias possibly induced by the
choice of the simpler models (2). However, such a reduction in the
bias may readily lead to an increase in the variance of parameter
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estimates and so to a decrease in statistical significance of conclu-
sions. Then, one will suspect that some parameter estimates in a
6-variate model are insignificant due to model overfitting and try to
exclude the factors one by one to achieve the best model with appro-
priate corrections for multiple testing. It is still desirable to look
carefully at all intermediate trial models and report all their char-
acteristics that would make the text very long. We have preferred
to start with simpler models and postpone a consideration of more
complex models to future studies.

Similarly, accounting for nonlinearity with more general mod-
els (1) is also potentially significant. In particular, one could fit
trivariate quadratic AR models instead of linear ones. However, such
a model with a full polynomial includes 10 free parameters instead
of the four parameters in the model (2). For a short time series at
hand, it may readily lead again to a decrease in significance, i.e., to
a bias reduction at the expense of an increase in variance. Besides,
it is quite probable that nonlinear models will be only marginally
better (if better at all) as it was the case in Ref. 10 with the analysis
of the same data for the GST and solar activity; then, many poly-
nomial terms will be superfluous and many model parameters will
insignificantly differ from zero. Hence, a careful choice of the terms
to be included into the nonlinear AR model may be necessary. Other
forms of nonlinearity produce the respective questions concerning
the model structure selection. Such studies are potentially useful and
necessary but require long text to discuss each trial model in some
detail and are less convenient as a first step.

So, the method with the simple model (2) in use seems to be the
most reasonable as a first step among all methods based on the con-
struction of dynamical models directly from empirical data without
any presumed theoretical hypotheses about the climate processes
under study.

Concerning the model consistency check that is regarded to be
necessary for attribution,38 all models (2) here agree well with the
observed dynamics: The model residuals may be regarded as Gaus-
sian white noise with reasonable accuracy (according to their auto-
correlation function and histogram), and the ensembles of model
time series obtained under different noise realizations cover the
observed temperature time series quite well. Such analysis was done
in Refs. 12 and 13 for similar AR models of GST with GHGs and
solar and volcanic activity (instead of the modes of variability; still,
the inclusion of those modes into the models here does not change
the above model consistency conclusions). The difference from the
consistency check of Ref. 38 is that the noise variance is estimated
here from the data for each model separately, so each model agrees
with the observed data up to its own variability level. Such flexibility
of the model noise parameter is an advantage of the purely empiri-
cal approach used here, since the model variability in the attribution
studies38 is specified a priori and a model may be claimed there
inconsistent only because its variability is too low, while it might be
adequate if the variability level were adjusted.

IV. RESULTS

A. Empirical AR models

To estimate contributions of different factors to the tempera-
ture trends, we have fitted a trivariate AR model (2) with unit time
lag for each surface air temperature anomaly T accounting for the
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FIG. 2. Contributions of different factors to surface air temperature trends at various latitudes: (a) the contribution of the GHGs estimated in a 50-year moving window with
a model (2) accounting for AMO, the estimates with models accounting for other natural modes are almost indistinguishable; (b) the contribution of AMO in a 30-year moving
window; (c) that of AMO in a 10-year moving window; (d) that of ENSO in a 10-year moving window; (e) that of IPO in a 10-year moving window; (f) that of PDO in a 10-year
moving window; and (g) that of AAO in a 10-year moving window.

impacts of GHGs and one of the natural variability modes. Table I
presents estimates of the coefficients of the model (2) which char-
acterize sensitivity of temperature anomalies at different latitudes to
changes of the GHGs radiative forcing IGHG and different indices IM

for the entire period under analysis (1880–2012). One can see from
those coupling coefficients that the sensitivity to the GHGs changes
is smallest for the middle latitudes of SH: it is 2.5 times as small

(while a characteristic time is 2.5 times as large) as that for the trop-
ics of NH. This is explained by the largest thermal inertia for the
areas with higher percentage of the sea surface.

(1) Thermal inertia. An estimate of a characteristic time of
temperature variations is obtained from the dimensionless
coefficient a1, which corresponds to a single time step equal here
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90 to 1 year. The less the value of a1, the less inertial the process.
The closer this coefficient to unity, the greater the relaxation
time of the process that equals τ ≈ 1/(1 − a1) years. Naturally,
inertia of a latitude band depends on the percentage of the sea
surface. As mentioned above, the most inertial processes are
those in the middle latitudes of SH where the relaxation time of
the model (2) is estimated to be about 5 years. Just to compare,
the mean relaxation time of the two tropical bands is about 1.7
years (1.8 years for the tropics of SH and 1.5 years for the tropics
of NH). Thermal inertia of the middle latitudes of NH is char-
acterized with the relaxation time of 1.4 years in the AR model
(2) with AMO. The relaxation time for the polar bands is about
1.3 years. Estimates of the thermal inertia in the AR models (2)
with different climatic modes somewhat differ from each other,
but the middle latitudes of SH are the most inertial ones in any
model.

(2) Noise intensity estimates. The variance σ 2 of the residual
errors ξn characterizes intensity of the “noise,” i.e., external
inputs over intra-annual time scales. It is the least in the mid-
dle latitudes of SH (0.08 K2), three times as large in both tropical
zones, five times as large at the middle latitudes of NH, and
25 times as large in both polar zones being slightly greater in
Antarctic.

(3) Coefficients of the coupling to GHGs. According to the
obtained estimates of the coupling coefficient a2 (Table I), the
impact of GHGs in all latitude bands is significant at the level of
p < 0.05, i.e., the coefficient estimate exceeds twice its standard
error estimate. Most often, the impact of GHGs appears to be
far more significant, e.g., even for the middle latitudes of the SH
in the model (2) with AAO, it is significant at p = 0.0005, i.e.,
the coefficient estimate is about 3.6 times as great as its standard
error. The largest coupling coefficient a2 = 0.35 K/(Wm−2) is
obtained for Arctic latitudes. This coefficient is about twice as
small for the middle latitudes of the NH and for both tropical
zones. It is somewhat greater in the tropics of the SH than in the
tropics of the NH. As for the middle and polar latitudes of the
SH, this coupling coefficient appears about five times as small
as that for Arctic latitudes, being somewhat less in the middle
latitudes than in the polar ones.

(4) Coefficients of the coupling to AMO. According to the esti-
mates of the dimensionless coefficient a3 (Table I), the impact
of AMO for the entire period under analysis is essential only in
the NH. It is the strongest one at Arctic latitudes reaching the
value of 0.7 significantly nonzero at p = 0.005. This coefficient
is 1.5 times as small at the middle latitudes of the NH and three
times as small at the tropical latitudes of the NH. According to
this coefficient, the impact of AMO at the tropical latitudes of
SH is 10 times weaker than that in Arctic. The coefficient a3

for the tropics of SH is not significant even at the level of 0.2.
So, it is reasonable to consider the contribution of AMO only
to the temperature trends in the NH because the relative error
of the trend estimate obtained with the model (2) is very close
to the relative error of the corresponding coupling coefficient as
was also confirmed in our numerical experiments.

(5) Coefficients of the coupling to ENSO. According to the
estimates of the coefficient a3 (Table I), the impact of ENSO
is strongest at polar latitudes, its difference from zero is
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50 significant at p = 0.1 (for Antarctic) and p = 0.13 (for Arc-
tic). At Antarctic latitudes, the coupling coefficient to ENSO
possesses an opposite sign (negative) in comparison to other lat-
itudes. It is essential that for both tropical zones, this coefficient
is two or three times as small. There, it is also less significant
with p = 0.14 or 0.16. It is even less and non-significant in the
middle latitudes of both hemispheres. Thus, ENSO affects only
the tropical and polar zones.

(6) Coefficients of the coupling to IPO. According to the estimates
of the coefficient a3 (Table I), the impact of IPO is about twice
as small as that of ENSO. The most significant estimate of a3 is
obtained for Arctic (p = 0.19). Thus, the impact of IPO is most
clearly (but still very weakly) seen in the Arctic zone.

(7) Coefficients of the coupling to PDO. The estimates of this
coefficient a3 are not significant at all latitudes as reported in
Table I.

(8) Coefficients of the coupling to AAO. According to the esti-
mates of the coefficient a3 (Table I), the impact of AAO is most
significant at tropical latitudes of NH (p = 0.06), even more sig-
nificant than that of ENSO. This coefficient is non-significant at
all other latitudes. Still, one can note that it is negative for both
tropical zones, where the coupling coefficients from ENSO and
IPO are positive. Thus, according to the AAO as a representa-
tive of the Pacific Ocean, the latter affects considerably only the
temperature variations in the tropical latitudes of the NH.

B. Contributions of various factors to the temperature

trends

Contributions of the GHGs to the trends were estimated in time
windows of the lengths ranging from 10 to 130 years. Figure 2(a)
presents those contributions estimated in a moving window of
length of 50 years. To estimate them, the observed values of a tem-
perature are compared to corresponding model values obtained
under the condition of constant GHGs radiative forcing at the level
of 1880 year (see Section III). The largest values of the GHGs con-
tribution to the trends are obtained for Arctic latitudes: they equal
about 0.2 K/decade and even greater in the last decades. The smallest
values are obtained for Antarctic latitudes. For the middle latitudes
of NH and tropical latitudes of SH, the maximal values of the GHGs’
contribution are about 0.15 K/decade, while they are somewhat less
for the tropical latitudes of NH and the middle latitudes of SH.
Relative values of the GHGs contribution to the trends at various
latitudes differ between the time windows.

The contributions of several climatic modes (AMO, ENSO,
IPO, PDO, and AAO) are presented in Fig. 2 for moving win-
dows of the lengths of 30 [Fig. 2(b)] and 10 years [Figs. 2(c)–2(g)].
The largest values are achieved by the contributions to temperature
trends at Arctic latitudes, up to 0.2 K/decade and sometimes even
greater. The results of a more detailed analysis for last decades based
on the fixed-end time windows (Lend = 2012 year) with a moving
start point are given in Tables II–IV. Table II presents the GHGs
contribution to the trends CGHG divided by the angular coefficient of
the trend αT itself (see Section III) at different latitudes for the mod-
els (2) accounting for four natural modes. The ratios CGHG/αT are
less than 0.5 only for the relatively short time windows (2–3 decades
or shorter) and only at extratropical latitudes. On the time scales
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TABLE IV. Contributions of natural variability modes relative to GHGs contribution C̃AMO, C̃ENSO, C̃IPO, C̃PDO, and C̃AAO. Each value is given for four different window lengths with

the same window end point Lend = 2012. Numbering of the latitude zones in the first column is the same as in Table I. Bold font highlights the values exceeding 0.1 with the

corresponding AR coefficient a3 significant at the level of p< 0.2 or at a smaller p (italic shows such values for larger p, i.e., with the insignificant AR coefficient a3).

AMO ENSO IPO PDO AAO

Lat. 20 30 50 130 20 30 50 130 20 30 50 130 20 30 50 130 20 30 50 130

1 0.50 0.40 0.11 0.03 0.23 0.08 0.00 0.01 0.24 0.13 0.00 0.02 0.14 0.11 0.00 0.00 0.06 0.04 0.04 0.03
2 0.51 0.41 0.12 0.03 0.12 0.04 0.00 0.01 0.11 0.07 0.00 0.01 0.06 0.04 0.00 0.00 0.09 0.07 0.06 0.04
3 0.42 0.34 0.10 0.02 0.18 0.06 0.00 0.01 0.13 0.07 0.00 0.01 0.01 0.01 0.00 0.00 0.21 0.18 0.15 0.11
4 0.17 0.12 0.03 0.01 0.16 0.05 0.00 0.01 0.11 0.06 0.00 0.01 0.04 0.04 0.00 0.00 0.12 0.10 0.08 0.06
5 0.02 0.02 0.00 0.00 0.03 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.12 0.08 0.00 0.00 0.14 0.13 0.10 0.07
6 0.22 0.16 0.05 0.01 0.56 0.27 0.01 0.03 0.50 0.32 0.01 0.07 0.20 0.15 0.01 0.01 0.38 0.30 0.28 0.21

longer than half a century, the GHGs contribution dominates at all
latitudes.

Table III presents the contributions of the four climatic modes
relative to the trends themselves at various latitudes. The ratios
CAMO/αT, CENSO/αT, CIPO/αT, CPDO/αT, and CAAO/αT do not exceed
0.5 for various time intervals at various latitudes except for Antarctic
with non-representative long-term data. The most essential con-
tributions of climatic modes are seen over relatively short time
intervals, about 2–3 decades and shorter. Maximal values of relative
contributions are obtained for AMO at various latitudes of NH. A
considerable relative contribution of AAO occurs at the middle lati-
tudes of SH, though it is almost statistically insignificant as discussed
above (Table I).

Table IV presents the contributions of the four modes relative
to the GHGs’ contribution, i.e., the ratios C̃AMO

= |CAMO|/(|CGHG| + |CAMO|) etc. These ratios are the largest for rel-
atively short time intervals as well. In particular, the values of C̃AMO

are maximal in NH where they reach 0.5 at the middle and polar
latitudes for 20-year time intervals. For SH, the values of C̃AMO are
considerably smaller. The trend contributions of ENSO are most sig-
nificant not only at the tropical latitudes, but also at the polar ones.
At polar latitudes, considerable trend contributions of IPO are also
revealed. Considerable trend contributions of AAO in SH are seen
not only on the time scales of about two or three decades, but also
on the scale of half a century, though their statistical significance is
negligible as discussed above (Table I).

V. CONCLUSIONS

According to the presented results, the contributions of the key
modes of natural variability to the surface air temperature trends on
relatively short time intervals within three decades reach and can
exceed (in absolute value) ±0.2 K/decade, while they are not consid-
erable as compared to the contribution of the GHGs’ atmospheric
content rise on time intervals about half a century and longer.
The GHGs’ contribution always increases, reaching 0.2 K/decade
in the last two decades and even somewhat exceeding this value.
The GHGs contribution dominates on time intervals of about half
a century and longer and sometimes even on shorter intervals. The
estimates of the contribution to trends were done here via assess-
ing medium-term causal effects in empirical autoregressive models
according to the dynamical effects framework.90 Validity of these

estimates and conclusions is essentially based on the accuracy of
the available empirical data and the validity of the model form (2),
which includes the relevance of the set of potentially influencing fac-
tors (i.e., IGHG and various IM) selected for the analysis. The results
in this work are obtained with minimal assumptions about the data
used and the empirical dynamic models that characterize the Earth’s
climate system. Such assessments require further comprehensive
testing of the role of data quality and the modeling approaches used.

These estimates are especially important to compare the con-
temporary trends of surface air temperatures at various latitudes of
NH and SH with the assessment of the relative roles of the key natu-
ral variability modes on different temporal horizons. In particular,
an overall increase in the Antarctic sea ice extent in the last few
decades (up to the last years) according to the satellite data (avail-
able only starting from 1970s) accompanied with the global warming
and a fast decrease in the Arctic sea ice extent is related to the gen-
eral decrease in the surface temperature at sub-Antarctic latitudes,
which occurred since 1970s until 2016 when a fast decrease in the
sea ice extent in the Southern Ocean was noticed. This is related
to regional manifestations of natural climate oscillations with peri-
ods up to several decades accompanied by the global century-scale
warming and a relatively weak temperature trend over the ocean in
SH. The cross-correlation and the cross-wavelet analyses evidence a
significant coherence and a negative correlation between the surface
temperature and the sea ice extent in the last few decades both in
Arctic and Antarctic (see, e.g., Ref. 33). According to the estimates
obtained in this work, a contribution of AAO, in particular, to the
surface temperature trends at different latitudes of SH and tropical
latitudes of NH is seen not only on the time scales of 20–30 years,
but also on the time scales of half a century and longer. It should
be taken into account in constructing future projections of regional
climate changes on the basis of climate models. It is necessary for
such models to describe adequately the natural climate variability
and its contribution to the regional temperature trends on various
temporal horizons. Currently, many important modes of climate
variability are reproduced by such models, but there are also modes
of variability that are not simulated well enough (e.g., Ref. 34).
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