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ABSTRACT

This work investigates numerics of several widely known phase-dynamic quantifiers of directional (causal) couplings between oscillatory
systems: transfer entropy (TE), differential quantifier, and squared-coefficients quantifier based on an evolution map. The study is performed
on the system of two stochastic Kuramoto oscillators within the framework of dynamical causal effects. The quantifiers are related to each
other and to an asymptotic effect of the coupling on phase diffusion. Several novel findings are listed as follows: (i) for a non-synchronous
regime and high enough noise levels, the TE rate multiplied by a certain characteristic time (called here reduced TE) equals twice an asymptotic
effect of a directional coupling on phase diffusion; (ii) “information flow” expressed by the TE rate unboundedly rises with the coupling
coefficient even in the domain of effective synchronization; (iii) in any effective synchronization regime, the reduced TE is equal to 1/8 n.u. in
each direction for equal coupling coefficients and equal noise intensities, and it is in general a simple function of the ratio of noise intensities
and the ratio of coupling coefficients.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0055586

Phase-dynamic model description is often used1–29 to detect
and quantify directional couplings (also called causalities30–38)
between oscillatory systems. In time series analysis, different esti-
mated values of a quantifier are often interpreted as different
“coupling strengths” in that particular sense. However, the sense
itself, i.e., meaning of numerical values of a directional coupling
quantifier in terms of the coupling impact on dynamics, is not
usually studied in more detail and remains largely unknown. In
this work, several phase dynamics based quantifiers, or “phase-
dynamic causalities,” are studied theoretically within the frame-
work of dynamical causal effects (DCEs)39–44 for the system of
two stochastic Kuramoto oscillators with constant couplings. The
reduced transfer entropy (TE) is related to the coupling effect on
the phase diffusion of a coupling recipient. Characteristic values
of the reduced transfer entropy and other quantifiers are obtained
for typical dynamical regimes to serve as a reference for dynamical
interpretations of phase-dynamic causalities estimated from time
series.

I. INTRODUCTION

Phase description of dynamical systems has long been widely
and fruitfully used to study spectral properties of self-sustained
oscillations,45,46 chaotic synchronization47 and other collective
phenomena,48,49 coherent resonance,50 chronotaxic systems,51,52 cou-
pling functions,53 and detection of synchrony from time series,54–56

including biomedical data.57–60 Professor Vadim Anishchenko and
his colleagues have made a large contribution to this field including
all the above-mentioned problems as given in numerous influential
publications, e.g., a monograph61 and papers.62–74 As his student at
the undergraduate level, I learned many of those results from his
lectures in Saratov State University.

Among the problems of phase-dynamics analysis, the detec-
tion and characterization of directional (also called causal)30–38 cou-
plings between oscillators from time series are actively studied1–29

with applications to physics,5 neuroscience,6,7,10,12,19,20,23 climate
science,11,22,27 and other fields. To assess how strongly one oscillator
influences another oscillator, one uses, e.g., mean-squared derivative
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of an evolution map,1 transfer entropy3 (TE), and squared-
coefficients of an evolution map with different normalizations.21,28

Having estimated any such quantifier from data, one can check
whether its value differs from zero statistically significantly (though
this is not trivial, see, e.g., Refs. 4, 12, 14, and 29) and, if yes, detects
the respective directional coupling at the corresponding significance
level. If a time series is long enough and measurement noise is weak,
that numerical value is estimated very accurately. Then, a further
question of interest is “What dynamical meaning (effect) is hid-
den behind an obtained value of a directional coupling quantifier?”
Many authors1–6,10–13,23 use one of the above quantifiers to compute
the directionality index in the form (IY→X − IX→Y)/(IY→X + IX→Y),
where IY→X is a quantifier of coupling in the direction Y → X. Such
an index shows that the coupling in one direction is stronger or
weaker than the coupling in the opposite direction in the sense of
that particular quantifier. But, again, what is the dynamical mean-
ing of the quantifier IY→X itself? For example, having a one-step TE3

equal to 1 nat or a differential quantifier1 equal to 0.1 units in the
direction Y → X, can one conclude that the presence of the direc-
tional coupling Y → X leads to significant changes in the dynamics
of the recipient (sometimes also called target) X of this coupling? In
particular, does such coupling strongly change the phase diffusion
constant of X as compared to the uncoupled case? Having answers
to such questions, one could assess an overall dynamical role of a
coupling based on the above causality quantifiers accessible from
time series. With respect to TE, the asymptotic effect on variance,
and spectral causalities in linear stochastic systems, such questions
have been addressed39–44 within the recently developed framework
of dynamical causal effects39,44 (DCEs). This work presents a similar
study of the phase-dynamic causalities in coupled phase oscillators,
a contribution in memory of Professor V.S. Anishchenko.

Stochastic phase description of two oscillators and several
causality quantifiers are recapitulated in Sec. II. The DCE frame-
work and interpretations of those quantifiers are provided in Sec. III.
The numerical and analytic results are presented in Sec. IV and
their discussion in Sec. V. Section VI shows the conclusions.
Appendixes A–C provide technical details.

II. BASIC SYSTEM AND QUANTIFIERS

Detection and characterization of directional couplings
between oscillatory systems is often done47,75,76 on the basis of
a phase-dynamics model in the form of stochastic differential
equations,

φ̇X
t = GX(φ

X
t ,φY

t )+ ξX
t ,

φ̇Y
t = GY(φ

Y
t ,φX

t )+ ξY
t ,

(1)

where φX
t and φY

t are phases of two oscillatory systems X and
Y at a time instant t, ξX

t and ξY
t are mutually independent

Gaussian white noises with autocovariance functions
〈

ξX
t ξ

X
t′
〉

= 0X

δ(t − t′) and
〈

ξY
t ξ

Y
t′
〉

= 0Yδ(t − t′), 0X and 0Y are noise intensities,
and 2π-periodic (in both arguments) smooth functions GX and GY

describe both individual dynamics of the systems and their cou-
plings. References 77 and 78 report how to derive a more general
phase description for limit cycle oscillators with different amplitude
relaxation times and external noise properties. However, to start the

theoretical investigation of directional coupling quantifiers based on
phase dynamics, it is necessary first to define and study them for the
simplest system (1) taken as an original one. Having such theoret-
ical results, one can later turn to “causality estimation” from time
series on a firmer ground and provide richer interpretations of those
estimates.

It is appropriate to mention that many researchers in physics
and dynamical system communities prefer to avoid the term “causal-
ity” since causality in the real world is hard or impossible “to
prove.” Instead, one can say “directional coupling,” “influence,” etc.
However, in the field of time series analysis originating from engi-
neering, econometrics, and close disciplines, researchers often use
this term, see, e.g., Refs. 30–35 and recall “Granger causality” as a
famous example. In this work, “directional coupling” and “causal-
ity” are used as synonyms with a detailed discussion given in Refs. 39
and 44. In brief, the entire consideration is performed here for the
mathematical system (1), which is arbitrarily manipulated and fully
observed. That is, one can specify a complete initial state (φX

0 ,φY
0 )

and all parameters (if any) and observe future values of both phases.
So, it is always possible to show that a certain variation of an initial
state or a parameter of the subsystem Y is a cause of the correspond-
ing future response of the subsystem X (an effect) under other equal
conditions, which are all under control. Such a nonzero response can
take place only if ∂GX

∂φY
t

6= 0 at least at some (φX
t ,φY

t ). The latter condi-

tion on the mathematical system (1) is equivalent to saying that there
is an influence or causal coupling Y → X in the system. So, there is
no ambiguity with the terms “causality” and “directional couplings”
in this study. Detailed definitions are given in Sec. III.

To characterize directional couplings in system (1), several
quantifiers have been suggested. First, Rosenblum and Pikovsky1

introduced an evolution map (F(t)X , F(t)Y ) acting over the interval
(0, t) relating phase increments (1φX

t ,1φY
t ) = (φX

t − φX
0 ,φY

t − φY
0 )

to an initial state (φX
0 ,φY

0 ) as

1φX
t = F(t)X (φ

X
0 ,φY

0 )+ εX
t ,

1φY
t = F(t)Y (φ

Y
0 ,φX

0 )+ εY
t ,

(2)

where the functions F(t)X and F(t)Y are conditional expectations

F(t)X (φ
X
0 ,φY

0 ) = E(1φX
t |φX

0 ,φY
0 ) and F(t)Y (φ

Y
0 ,φX

0 ) = E(1φY
t |φX

0 ,φY
0 )

over realizations of the noise (ξX
t , ξY

t ) on the interval (0, t) repre-
sented in general as trigonometric polynomials of arbitrary orders,
and (εX

t , εY
t ) is a zero-mean random vector representing deviations

of (1φX
t ,1φY

t ) from the expectation. Since the phases in Eq. (1) are
influenced by a stationary noise, the evolution map (2) remains the
same if any two time instants (t′, t′ + t) are used instead of (0, t). A
squared partial derivative describing steepness of the dependence of
1φX

t on φY
0 serves1 as a quantifier of the coupling Y → X,

C(t)Y→X =
1

4π 2

π
∫

−π

π
∫

−π

(

∂F(t)X (φ
X
0 ,φY

0 )

∂φY
0

)2

dφX
0 dφY

0 . (3)

Later, Paluš and Stefanovska3 suggested to characterize the
dependencies captured by the evolution map (2) via an appropri-
ate conditional mutual information.79 The latter for the direction
Y → X is defined as a reduction of uncertainty in the value of1φX

t if
the value of φY

0 is taken into account, given φX
0 . So, it is the difference
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of the two conditional Shannon entropies,

T(t)Y→X = H(t)
X|X − H(t)

X|X,Y

=
π
∫

−π

H(1φX
t |φX

0 )p̃
st
X(φ

X
0 )dφ

X
0

−
π
∫

−π

π
∫

−π

H(1φX
t |φX

0 ,φY
0 )p̃

st
XY(φ

X
0 ,φY

0 )dφ
X
0 dφY

0 , (4)

where p̃st
XY is the stationary probability distribution function (PDF)

of the phases (φ̃X
t , φ̃Y

t ) wrapped to an interval (−π ,π), p̃st
X is the

marginal stationary PDF of the wrapped phase φ̃X
t ,

H(1φX
t |φX

0 ) = −
∞
∫

−∞

p(1φX
t |φX

0 ) ln p(1φX
t |φX

0 )d(1φ
X
t ) (5)

is the Shannon entropy of the PDF of 1φX
t conditioned only on the

concrete value φX
0 , and

H(1φX
t |φX

0 ,φY
0 ) = −

∞
∫

−∞

p(1φX
t |φX

0 ,φY
0 ) ln p(1φX

t |φX
0 ,φY

0 )d(1φ
X
t )

(6)

is the Shannon entropy of the PDF of φX
t conditioned on both values

φX
0 andφY

0 . The information-theoretic measure (4) is invariant under
a nonlinear change of coordinates. Another name of this conditional
mutual information is TE,80 see also the discussion in Refs. 3 and 79.

The third quantifier under study is the sum of squared cou-

pling coefficients21 in the trigonometric polynomial F(t)X normalized
in different ways. The non-normalized sum is interpreted as predic-
tion improvement (PI) in the mean-square sense for weak enough
couplings, see also Appendix A. Let us define that quantifier here in
the general form of PI. The non-normalized PI reads

P(t)Y→X =
π
∫

−π

π
∫

−π

(var(1φX
t |φX

0 )

− var(1φX
t |φX

0 ,φY
0 ))p̃

st
XY(φ

X
0 ,φY

0 )dφ
X
0 dφY

0 , (7)

where var(φX
t |·) denotes the conditional variance with var(1φX

t |φX
0 ,

φY
0 ) = var(εX

t |φX
0 ,φY

0 ). Being divided by the variance of the noise εX
t ,

it becomes the relative PI and reads21

G(t)
Y→X = P(t)Y→X

/

〈

var(1φX
t |φX

0 ,φY
0 )
〉

, (8)

where
〈

var(1φX
t |φX

0 ,φY
0 )
〉

=
π
∫

−π

π
∫

−π
var(1φX

t |φX
0 ,φY

0 )p̃
st
XY(φ

X
0 ,φY

0 )dφ
X
0

dφY
0 . For Gaussian distribution of εX

t (φ
X
0 ,φY

0 )with variance indepen-
dent of (φX

0 ,φY
0 ), the relative PI relates to the TE as43,81

T(t)Y→X =
1

2
ln(1 + G(t)

Y→X). (9)

Furthermore, for small (i.e., much less than unity) values of
both quantifiers as is the case for nonzero noises and small enough t,

Eq. (9) simplifies to T(t)Y→X ≈ G(t)
Y→X/2. So, the right-hand side of

Eq. (9) can be considered an approximate value of the TE (4) or as
an alternative to the TE similarly to Ref. 39. A nonzero difference
between the two sides of Eq. (9) at a given t indicates that the PDF
of εX

t differs from a constant-variance Gaussian law.
Below, the TE (4) is used as a basic quantifier due to its uni-

versality. The relative PI is also studied and turns out to provide
often a good approximation of the TE. The differential quantifier
(3) is only sometimes similar to the TE and PI as commented in
Sec. IV E. Meanings of these quantifiers within the dynamical effects
framework39–44 are described in Sec. III, where another useful quan-
tifier is introduced for inter-comparisons and richer interpretation
of the TE numerics.

III. DYNAMICAL CAUSAL EFFECTS

A. Transient dynamical causal effects

Dynamical causal effects are introduced39 for stochastic
dynamical systems (SDSs) where a state vector uniquely determines
PDFs of the future states. That is, a time realization of the full
state vector of an SDS is a first-order (in general, high-dimensional
vector-valued) Markov process. In other words, SDS is understood
as a Markovian random dynamical system.82 System (1) is such an
SDS with the two-dimensional state vector (φX

t ,φY
t ).

Let us specify the values of an initial state (φX
0 ,φY

0 ) and a param-
eter vector a. The latter may include coupling coefficients (axy, ayx),
individual natural frequencies, etc. Then, an ensemble of time real-
izations is readily obtained via numerical simulations of Eq. (1), e.g.,
as described in Appendix B. Given the value of a, a dynamical causal
effect (DCE) Y → X is defined39 according to Pearl’s interventional
causality viewpoint30 as a future effect of an initial intervention to the
value of φY

0 . In Ref. 44, the term “initial intervention” was changed
to the “initial variation” of φY

0 .
More generally, an ensemble of realizations may start from

an initial distribution of states with some PDF w(φX
0 ,φY

0 ) rather
than from a single initial state. Such initial PDF can be called44 a
(functional) initial condition. Let us specify a reference initial con-
dition w1(φ

X
0 ,φY

0 ) and an alternative initial condition w2(φ
X
0 ,φY

0 )

with the same marginal PDF w1,X(φ
X
0 ) = w2,X(φ

X
0 ). If there is no

coupling Y → X, then the evolutions of X from the two initial con-
ditions are the same. A DCE Y → X on a finite temporal horizon

t is any measure of difference between the PDFs p(t)X [φX
t |w1] and

p(t)X [φX
t |w2], where the square brackets show that the PDF is obtained

as a result of the evolution from a functional initial condition and
so can be called a “functionally conditional” PDF.44 It is found via
marginalization of the ordinary conditional PDF with the initial
condition w as

p(t)X [φX
t |w] =

π
∫

−π

π
∫

−π

p(t)X (φ
X
t |φX

0 ,φY
0 )w(φ

X
0 ,φY

0 )dφ
X
0 dφY

0 . (10)

Having computed such “elementary” DCEs for many initial
variations (i.e., for many pairs of functional initial conditions), one
naturally aims at “assembling” them into a single number. For that,
one can parameterize initial variations with a vector λ (e.g., loca-
tions of Dirac-delta PDFs) and then average over λwith some weight
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function. After such assemblage,44 one finally gets a desired concrete
DCE. If the temporal horizon t is not much greater than character-
istic times of the coupled system, then the DCE is called short-term
or transient.39–41,44

B. Transfer entropy and other quantifiers

To see that the TE (4) is a specific DCE,42 let us
take a Dirac-delta reference initial condition w1 = δ(φX

0 − φX
0,1)

δ(φY
0 − φY

0,1), where both initial phases are given, and an alter-
native initial condition w2 = δ(φX

0 − φX
0,1)p̃

st
Y|X(φ

Y
0 |φX

0,1), where the

phase φY
0 is “freed” to vary according to the stationary condi-

tional PDF of the wrapped phase φ̃Y
t . Define an elementary DCE

as the difference of the functionally conditional Shannon entropies
H[φX

t |w2] − H[φX
t |w1] and average it over the assemblage parameter

λ = (φX
0,1,φ

Y
0,1) with the stationary PDF p̃st

XY(φ
X
0,1,φ

Y
0,1) to get

T(t)Y→X =
π
∫

−π

π
∫

−π

(H[φX
t |w2] − H[φX

t |w1])p̃
st
XY(φ

X
0,1,φ

Y
0,1)dφ

X
0,1dφ

Y
0,1.

(11)

Indeed, writing down marginalization over w1 and w2 in the
right-hand side of Eq. (11) explicitly, one can immediately see that
this transient DCE coincides with the TE (4).

The non-normalized PI (8) is formulated as a DCE similarly to
the above TE, but with the functionally conditional variances instead
of the functionally conditional Shannon entropies

P(t)Y→X =
π
∫

−π

π
∫

−π

(var[φX
t |w2] − var[φX

t |w1])p̃
st
XY(φ

X
0,1,φ

Y
0,1)dφ

X
0,1dφ

Y
0,1.

(12)

The relative PI G(t)
Y→X is the corresponding relative difference of

the same variances.
The differential quantifier (3) is readily seen to compare evo-

lutions from infinitesimally close initial states w1 = δ(φX
0 − φX

0,1)

δ(φY
0 − φY

0,1) and w2 = δ(φX
0 − φX

0,1)δ(φ
Y
0 − φY

0,1 − δφ). One should
just take the squared difference of expectations and average it with
the uniform PDF to get

C(t)Y→X = lim
δφ→0

1

4π 2

π
∫

−π

π
∫

−π

(E[φX
t |w2] − E[φX

t |w1])
2

(δφ)2
dφX

0,1dφ
Y
0,1. (13)

So, from the DCE viewpoint, all these quantifiers appear con-
ceptually similar to each other. Appendix A provides further details
and other versions of these quantifiers.

For the SDS (1), the finite-time TE T(t)Y→X is typically small at
small response time t, reaches its maximal value at some interme-
diate t close to some characteristic time of the coupled system, and
decreases at greater response times.39,43 The maximal TE is denoted

Tmax
Y→X = sup

t>0

T(t)Y→X and the respective temporal horizon tmax
Y→X

= arg sup
t>0

T(t)Y→X. Another useful parameter-free quantifier is the

TE rate τY→X = dT
(t)
Y→X
dt

∣

∣

∣

∣

t=0

, which characterizes responses at very

small temporal horizons. The TE rate has the dimension of inverse
time. The respective dimensionless quantifier is the TE rate mul-
tiplied by some characteristic time tchar.43 The quantity TY→X

= τY→Xtchar is the TE reduced to the time tchar called in Ref. 43
just “reduced TE.” The same consideration applies to the relative
PI and to the differential quantifier. In particular, the relative PI

rate gY→X = dG
(t)
Y→X
dt

∣

∣

∣

∣

t=0

exactly equals the doubled TE rate gY→X

= 2τY→X for SDS (1) with nonzero noises.37

C. Asymptotic effect on phase diffusion

The second important type of DCE originates from the ini-
tial variations of the parameter a. For example, one can switch the
coupling Y → X “on” or “off” by introducing or zeroing the cor-
responding coupling coefficient. Then, it is natural to ask about
the dynamics as a whole, i.e., about an asymptotic regime or
DCEs on the infinite temporal horizon. Such DCEs are called
long-term or asymptotic39,44 (and also long-term, stationary, and
equilibrium).39–41 As an example relevant here, let us define an ini-
tial condition w = δ(φX

0 − φX
0,1)p̃

st
Y|X(φ

Y
0 |φX

0,1), set t → ∞, and take
the variance divided by t to get the phase diffusion constant.
The constant at given coupling coefficients (axy, ayx) is denoted as
DX(axy, ayx), i.e.,

DX(axy, ayx) = lim
t→∞

(var[φX
t |w, axy, ayx]/t). (14)

Let us denote this constant in the uncoupled regime (i.e.,
axy = 0) as DX,0 = DX(0, ayx). Then, the effect of coupling Y → X
on the phase diffusion constant of X under other equal conditions is

DY→X =
DX(axy, ayx)− DX,0

DX,0

. (15)

This asymptotic DCE exists for system (1), despite a stationary
PDF of the non-wrapped phases does not exist: the process of the
non-wrapped phase variations is nonstationary with variance lin-
early growing in time. The quantifier (15) is dynamically meaningful
by definition: Its positive value shows how strongly switching the
coupling Y → X on increases the phase diffusion constant of X, i.e.,
decreases the quality of oscillations46,47 (recall that the width of the
power spectral line of the signal cosφX

t is often proportional to the
phase diffusion constant45,46). It is desirable to relate the TE to this
asymptotic DCE to have as clear dynamical interpretation of the TE
numerics.

D. Design of numerical experiments

The simplest version of system (1) is given by the Kuramoto
oscillators83

φ̇X
t = ωX + kXY sin(φY

t − φX
t )+ ξX

t ,

φ̇Y
t = ωY + kYX sin(φX

t − φY
t )+ ξY

t ,
(16)

where ωX and ωY are natural frequencies of the oscillators, cou-
plings are given as sine of the phase difference18t = φY

t − φX
t , and

kXY ≥ 0 and kYX ≥ 0 are the coupling coefficients, non-negative
in this work. Due to its simplicity, this model is used as a basis
for studying synchronization phenomena in ensembles of coupled
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oscillators47,83 and many other problems. Here, it is taken as a
basis to study numerics of the phase-dynamic directional coupling
quantifiers.

A stationary solution to the FPE for the phase difference 18
wrapped to the interval (−π ,π) can be computed in a closed form
via taking the following integral:

p̃st(18) =
1

C

18+2π
∫

18

e−1̃(ψ−18)−K̃(cosψ−cos18)dψ , (17)

where 1̃ = 21ω/06 , K̃ = 2K6/06 , 06 = 0X + 0Y is a total noise
intensity,1ω = ωY − ωX is a frequency mismatch, K6 = kXY + kYX

is sometimes called a total “coupling strength,” and C is a normal-
izing constant. Equation (17) is derived and discussed in detail in
Ref. 45 [see Eq. (18.52)] and briefly in Ref. 47 [see Eq. (9.11)]. For
zero noise, transition to synchronization occurs at the threshold

K̃c = 1̃. If 1̃ � 1, the transition is step-like, and otherwise it is
smeared (Fig. 6 in Appendix B).

Conditional future PDFs entering the definition of all causal-
ity quantifiers under study are computed numerically. To get a
usual conditional PDF of the future phase, given an initial state,
one can either solve the Fokker–Planck equation (FPE) or simu-
late an ensemble of stochastic time realizations. The latter method
often appears more convenient and fast as shown by Anishchenko
et al.,84–86 and so it is used here as a basic one (see Appendix B for
details).

IV. NUMERICAL RESULTS

The TE rate and its relations to the asymptotic effect on phase
diffusion are studied for SDS (16) well below the synchronization

threshold K̃c = 1̃, around the threshold, and well above it, i.e., in
an effective synchronization regime47,77,78 (Subsections IV A–IV D).
Then, its relations to the finite-time TEs are revealed, and other
quantifiers are commented (Subsection IV E).

A. Transfer entropy rates: Strong information flow in

effective synchronization regime

Let us first fix 0X = 0Y (so 06 = 20X) and kXY = kYX (so K6
= 2kXY). Then, the TE rates in both directions coincide, τY→X

= τX→Y. Just to define time units, let us specify 0X = 1, and so

06 = 2, 1̃ = 1ω, and K̃ = K6 . The TE rate for 1ω = 50 is pre-
sented in Fig. 1(b) with a thick line. It first rises with K6 and then
quickly decreases near the synchronization threshold due to a more
narrow PDF of the phase difference [see Fig. 6(b) in Appendix B].
Such a decrease of any directional coupling quantifier with tran-
sition to synchronization is often observed in time series analysis
of exemplary systems. A common thought is that such a quantifier
must be close to zero in an almost synchronous regime due to weak
variations of the simultaneous subsystems’ states relative to each
other. However, note that the TE rate in Fig. 1(b) rises linearly with
a further increase of the coupling coefficients within the domain
of effective synchronization, where the mean phase coherence quite
slowly changes tending to unity [see Fig. 6(c) in Appendix B].

This behavior of the TE rate is readily explained via lineariza-

tion of Eq. (16) using the condition of
∣

∣

∣φY
t − φX

t − arcsin 1ω

K6

∣

∣

∣ � 1,

which applies in the case of K6 >> |1ω|. Then, one can get

φ̇X
t = ωX +

kXY

K6

√

K2
6 − (1ω)2(φY

t − φX
t )+ ξX

t ,

φ̇Y
t = ωY +

kYX

K6

√

K2
6 − (1ω)2(φX

t − φY
t )+ ξY

t ,

(18)

and the evolution equation for the phase difference18t = φY
t − φX

t

reads

18̇t = 1ω −
√

K2
6 − (1ω)218t + ξt, (19)

where ξ is the white noise with variance 06 . The TE rate for the
linear system (18) is found as43

τY→X =
k2

XY(1 − (1ω)2/K2
6)var(18t|φX

t )

20X

, (20)

FIG. 1. TE rates for system (16) with 0X = 0Y = 1 and kxy = kyx = K6/2: (a)1ω = 0 (dashed line),1ω = 5 (thick solid line), and1ω = 10 (solid line); (b)1ω = 25
(dashed line),1ω = 50 (thick solid line), and1ω = 75 (solid line).
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where the numerator is the squared coupling coefficient multiplied
by the conditional variance of the phase difference and the denom-
inator is the doubled intensity of the noise in the subsystem X,

doubling arises due to the relation T(t)Y→X = G(t)
Y→X/2 for infinitesi-

mally small t. The conditional variance of the phase difference in
Eq. (18) equals the stationary variance of the phase difference in
Eq. (19) and is much less than unity. So, it holds var(18t|φX

t )

= var(18t) = 06

2
√

K2
6

−(1ω)2
. Then,

τY→X =
k2

XY06

√

1 − (1ω)2/K2
6

40XK6
≈

k2
XY06

40XK6
, (21)

and for equal coupling coefficients and noise intensities τY→X

= K6

√
1−(1ω)2/K2

6

8
≈ K6

8
. So, an interplay of the two factors—

increase of the coupling coefficient and decrease of the phase dif-
ference variance—provides an unbounded (linear) increase of the
TE rate in the effective synchronization domain τY→X →

K6→∞
K6
8

, i.e.,

the TE rate becomes infinitely large when an effective synchrony
approaches the strict synchrony.

The phase difference relaxation time is tchar = 1√
K2
6

−(1ω)2

= →
K→∞

1
K6

, which is arbitrarily small for large enough couplings. At

large enough times t � tchar, the finite-time TE is arbitrarily small,
being inversely proportional to t as illustrated in Sec. IV E [Fig. 3(a)].
So, the finite-time TE estimated in practice is non-small only on
small enough temporal horizons. Hence, one needs a very high res-
olution with respect to phases and time to detect a nonzero TE from
a time series. Otherwise, one gets an approximate, coarse-grained3

TE that effectively compares evolutions from the same initial condi-
tions w1 ≈ w2 and so turns out to be, indeed, zero. The theoretical
non-small TE rate is probably not so essential in practical estima-
tion, but it is of a basic interest to realize that the information flow in
an effective synchronization regime for the basic Kuramoto model
gets infinitely strong with rising coupling coefficients rather than
arbitrarily weak.

The reduced TE equals TY→X = τY→Xtchar = 1/8 nats for any
sufficiently large K6 > |1ω|. This is a characteristic value for the
basic case of effectively synchronized Kuramoto oscillators with
equal coupling strengths and noise intensities. This number can
be understood in practically clear terms as follows. The maximal
finite-time TE is reasonably close to the reduced TE and is achieved
approximately on a temporal horizon tchar = 1/K6 (see Sec. IV E).
Note that a finite-time TE is approximately equal to half the relative
PI (up to a moderate factor if close to the synchronization transi-
tion, Sec. IV E). So, the relative PI (8) of the tchar-future phase of X
is equal to 25%. If the non-normalized PI is divided by the individ-
ual prediction error variance instead of Eq. (8), it gives a normalized
PI PY→X/(1 + PY→X) equal here to 20%. The relative PIs on smaller
temporal horizons are obtained just as proportionally smaller per-
centages. It is interesting that in a highly synchronous regime (i.e.,
a very large K6) leading to arbitrarily small variations of the current
phase of Y around the current phase of X, such weakly varying cur-
rent phase of Y contributes a constant non-negligible relative value
of ∼20% to the future variance of X. Still, since the temporal horizon
of that affected future decreases as 1/K6 , the absolute (not relative)

values of the conditional variances and the contribution to variance
(i.e., PI) get progressively smaller as well.

B. Transfer entropy rates below synchronization

threshold

In general, the TE rate for the system (16) reads

τY→X =
k2

XYvar(sin18t|φX
t )

20X

, (22)

extending Eq. (20), which holds only if var(18t|φX
t ) � 1. For the

couplings well below the synchronization threshold K̃c = 1̃, one has
var(sin18t|φX

t ) = var(sin18t) ≈ 1
2

and

τY→X ≈
k2

XY

40X

. (23)

For equal coupling coefficients and equal noise intensities,

it reads τY→X = K2
6

806
. For 1̃ = 50, this relation holds true up to

K̃ ≈ 0.81̃ [Fig. 1(b)] and the upper bound seemingly approaches

K̃ ≈ 1̃ with 1̃ → ∞. So, the TE rate reaches its maximum over K̃
roughly right before the threshold K̃c with the value roughly assessed

as τY→X ≈ (1ω)2

806
= 1̃206

32
. Right after the threshold, it is roughly

τY→X ≈ 1ω

8
= 1̃06

16
. The ratio is

τY→X,before

τY→X,after
≈ 1̃

2
, i.e., a large jump if 1̃

is large. As observed in Fig. 1(b), an actual value of this ratio is about
0.41̃

2
for 1̃ = 50 and about 0.51̃

2
for 1̃ = 75. So, one must apply an

additional factor of about 1/2 to get the ratio at such finitely large 1̃.
To get the reduced TEs, the characteristic time can be esti-

mated below K̃c as tchar = 1
1ω

, which is the time when the coupling
term manifests its nonlinear character. Then, the reduced TE reads

TY→X = K2
6

8061ω
= K̃2

161̃
nats. So, right before K̃c, one has roughly

TY→X = 1̃

16
nats. Right after K̃c, the reduced TE is roughly TY→X

= 1
8

nats since the characteristic time is tchar = 1
K6

.

For a smaller 1̃, synchronization transition is smeared

stronger, see, e.g., Fig. 1(a) (thick line) for 1̃ = 5. The above approx-
imations apply only to larger frequency mismatch-to-noise ratios,

e.g., 1̃ > 10. For smaller ones 1 < 1̃ < 10, one should divide the

“right before K̃c” values by larger values of about 4 to 5. For zero 1̃,
only the effective synchronization domain is present [Fig. 1(a)].

C. Unequal coupling coefficients and noise intensities

If one varies coupling coefficients and noise intensities in such a
way that their sums K6 and 06 remain constant, then the stationary
PDF of the wrapped phase difference (17) does not change and the
TE rates are obtained from the previous expressions via a simple
rescaling. Let us first vary only the coupling coefficients and denote

their ratio rxy = kxy

kyx
, so kxy/(K6/2) = 2rxy

rxy+1
and denote the TE rate

for equal couplings found above as τ
eq
Y→X = τ

eq
Y→X(K6 ,06). Then, the

TE rate for unequal couplings reads τY→X =
(

2rxy

rxy+1

)2

τ
eq
Y→X with the

ratio τY→X
τX→Y

= r2
xy. For a unidirectional coupling (rxy = ∞), the TE

rate achieves the maximal value of τY→X = 4τ
eq
Y→X with τX→Y = 0.
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Let us now vary noise levels in such a way that 06 = const
at equal coupling coefficients and denote r′

xy = 0X
0Y

. Then, τY→X

= r′xy+1

2r′xy
τ

eq
Y→X, τY→X

τX→Y
= 1

r′xy
, and 1

τY→X
+ 1

τX→Y
= 2

τ
eq
Y→X

. So, an increase

of the noise level decreases the TE rate twice at maximum, while a
decrease of the noise level increases the TE rate arbitrarily strongly
because the TE rate is inversely proportional to the noise inten-
sity. If both noise levels and coupling coefficients are varied, then
τY→X
τX→Y

= r2xy

r′xy
. For finite-time (e.g., maximal) TEs, such scaling with

respect to rxy and r′
xy applies approximately.

To get a closer “feeling” of the range of numerical values (as in
Sec. IV A), consider an effective synchronization regime and the two
coupling coefficients differing by the factor of rxy = a > 1 for equal

noise intensities. Then, the reduced TE is TY→X = a2

2(a+1)2
. In the

limit of unidirectional coupling Y → X, it reaches TY→X = 1/2 nats,
i.e., the relative PI is e2TY→X − 1 ≈ 1.7 and so the normalized PI or
the contribution of the current phase of Y to the future variance
of the phase of X is 1.7/2.7 or 63%, while the opposite TE and PIs
are zero. If in an effective synchronization regime, the noise intensi-
ties differ by the factor of r′

xy = b under equal coupling coefficients,

then the reduced TE TY→X = b+1
16b

. In the limit of zero noise intensity
in the source Y, it reaches TY→X = 1/16 nats, i.e., the correspond-
ing normalized PI is about 6%, while in the opposite direction, the
reduced TE is infinite and the normalized PI is 100% because the
joint prediction error on an infinitesimally small temporal horizon
is an infinitesimally small quantity of higher order.

D. Transfer entropies vs asymptotic effects on phase

diffusion

Figure 2 presents the values of the reduced TE and the asymp-
totic effect on the phase diffusion (15). The latter is shown with solid
lines and obtained as an empirical ensemble variance for the ini-
tial condition w = δ(φX

0 )p̃
st(φY

0 ) at large time tint = 100/1ω divided
by tint. Recall that the phase diffusion constants for the uncoupled
oscillators are equal precisely to DX,0 = 0X and DY,0 = 0Y.

A simple approximation below the synchronization thresh-
old is that the phase diffusion constant equals roughly the sum

DX ≈ k2
xy

2|1ω| + 0X. The first term is the squared coupling term aver-

aged with the uniform PDF (which gives the factor 1/2) and mul-
tiplied by the characteristic time for the non-synchronized region
|1ω|−1. So, the asymptotic effect equals just the doubled reduced
TE,

DY→X ≈
k2

xy

20X|1ω|
= 2TY→X. (24)

This approximation works quite well, e.g., for 1̃ ≈ 5 [Fig. 2(a),
dashed line] up to half the threshold value of K6 . For weaker noises
(namely, for 1̃ > 10), this formula does not apply since the contri-
bution of the coupling term to the phase diffusion is determined by
a more complex interplay of the noise and coupling terms. An addi-
tional factor of 1/5 is applied to get an approximation shown with

the dashed line in Fig. 2(b). In general, the factor of 10/1̃ seems to

be applicable for 1̃ > 10.
For an effective synchronization, the diffusion constants read

DX = DY = k2
xy0yy+k2

yx0xx

(kxy+kyx)
2 [see, e.g., Eq. (9.15) in Ref. 47]. Hence, an

asymptotic effect on phase diffusion reads

DY→X =
k2

xy0yy/0xx + k2
yx

(kxy + kyx)
2

− 1, (25)

which can be rewritten as

DY→X =
1 + r2

xy/r
′
xy

(1 + rxy)
2

− 1. (26)

Recalling the TE rates’ ratio τY→X
τX→Y

= r2xy

r′xy
, one can see that

the asymptotic effect (26) essentially depends on the TE rates. To
explore it in more detail, consider for definiteness r2

xy � r′
xy, i.e., the

coupling Y → X is predominant with respect to the TE rate. There
are two following cases.

FIG. 2. Asymptotic effect of coupling on the phase diffusion for system (16) with equal noise intensities 0X = 0Y = 1 and equal coupling coefficients: (a) 1ω = 5 and
(b)1ω = 50. Each inset shows an amplified fragment of the respective plot. Dashed lines show approximations via the reduced TE (24), with an additional factor of 0.2 in
panel (b). The asymptotic DCE equals−1/2 units in an effective synchronization regime, i.e., the phase diffusion constant decreases twice due to switching the coupling on.
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If rxy � 1, i.e., the coupling Y → Xis also predominant with
respect to the coupling coefficient, one has DY→X ≈ −1 + 1/r′

xy,
which is very large as DY→X ≈ 1/r′

xy for a relatively weaker noise
in X (r′

xy � 1) indicating that the phase diffusion in X strengthens

1/r′
xy times due to the coupling from the higher diffusion source

Y and becomes equal to DY,0. The opposite DCE DX→Y ≈ −2/rxy

is much smaller than unity, so the phase diffusion constant of the
weakly influenced high-diffusion oscillator Y remains almost the
same becoming the constant for both coupled oscillators. For a rel-
atively stronger noise in X (r′

xy � 1), the effect DY→X ≈ −1 + 1/r′
xy

is close to −1 indicating that the phase diffusion of X weakens r′
xy

times due to the coupling from the lower-diffusion source Y and gets
equal again to DY,0. The opposite DCE is again DX→Y ≈ −2/rxy, so
the phase diffusion constant of the weakly influenced low-diffusion
oscillator Y remains the same and applies to both synchronized
oscillators.

If rxy � 1, i.e., the coupling Y → X is deficient with respect to
the coupling coefficient, and X is a lower-diffusion oscillator, the
asymptotic effect just equals the ratio of TE rates DY→X = τY→X

τX→Y
,

i.e., the phase diffusion in X rises
r2xy

r′xy
times due to the coupling

from the higher diffusion source Y, which is deficient with respect
to rxy but predominant with respect to TE rates. In the opposite
direction, one has DX→Y ≈ −1 + r2

xy, i.e., the phase diffusion in Y

weakens r2
xy times due to the coupling from a lower-diffusion source

X. So, the phase diffusion constants of both oscillators in an effec-
tive synchronization regime are equal to each other and so to r2

xyDY,0

� DY,0 and to
r2xyDX,0

r′xy
� DX,0.

In any case, the TE rates play an important role in determining
an asymptotic effect on phase diffusion in a synchronized regime,
though the relation is not as simple as Eq. (24).

E. Finite-time transfer entropies

Let us relate the TE rates to finite-time TEs on various tempo-
ral horizons as in Refs. 40, 41, and 43. The finite-time TE reaches its
maximum near tchar both in non-synchronized and effectively syn-
chronized regimes [Figs. 3(a), 3(c), 3(d), and 3(f)]. Most often, the
maximum time is twice as large as tchar, and it is about five times
as large near the synchronization threshold [Figs. 3(b) and 3(e)]. At

large 1̃ and K̃ near the synchronization threshold, the actual value
of the maximal TE is about twice as small as that of the reduced
TE [Fig. 3(e)]; otherwise, both values are much closer to each other
[Figs. 3(a)–3(d), and 3(f)].

The mean-squared approximation of the TE [right-hand side
of Eq. (9)] is very close to the actual value of the TE, apart from
the vicinity of the synchronization threshold. The approximate TE
reaches its maximum close to tchar (Fig. 3, dashed lines). This log-
arithmic relative PI21 is an approximation of the TE exactly as the
logarithmic Granger causality is an approximation of the infinite-
history TE in Refs. 43 and 81. Figure 4 provides the values of the
reduced and maximal TEs in a range of coupling coefficient values
confirming the above statements. Synchronization threshold and its
vicinity differ from other domains by an essentially non-Gaussian
character of the conditional PDFs for both phases as illustrated in
more detail in Appendix B.

FIG. 3. Finite-time TEs for system (16) with 0X = 0Y = 1, 1ω = 5 (upper row) and 1ω = 50 (bottom row): (a) K6 = 2.5 (thick lines) and K6 = 4.0 (thin lines);
(b) K6 = 4.5 (thick lines) and K6 = 5.0 (thin lines); (c) K6 = 5.5 (thick lines) and K6 = 10.0 (thin lines); (d) K6 = 25 (thick lines) and K6 = 40 (thin lines); (e) K6 = 45
(thick lines) and K6 = 50 (thin lines); and (f) K6 = 55 (thick lines) and K6 = 100 (thin lines). Logarithmic relative PI approximations given by the rhs of Eq. (9) are shown
with dashed lines.
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FIG. 4. Maximal TEs [(a) and (b)] and their response times [(c) and (d)] (solid lines) and reduced TEs [(a) and (b)] and estimates of the maximum response times [(c) and
(d)] obtained as doubled characteristic times (dashed lines) for system (16) with 0X = 0Y = 1 and equal coupling coefficients: 1ω = 5 [(a) and (c)] and 1ω = 50 [(b)
and (d)].

For large 1̃, the differential quantifier reaches its maximum
on a temporal horizon considerably greater than that for the TE
[Figs. 5(a) and 5(b)]. The plots for the differential quantifier dif-
fer from those for the TE in the domains near and well above the
synchronization threshold. In particular, the values of the former
differ strongly depending on whether the average in its definition
is performed with the uniform [as in the original version, solid
lines in Figs. 5(a) and 5(b)] or the stationary [Appendix A, dashed
lines in Figs. 5(a) and 5(b)] PDF. This is because for a large tem-
poral horizon t, there is a narrow region of the large derivative of
the conditional expectation [Figs. 5(c) and 5(d), solid lines] whose
squared value contributes strongly or weakly to the integral (3)
depending on its weight [Figs. 5(c) and 5(d), dashed lines]. If this
narrow region corresponds to a large enough value of the station-
ary PDF, the stationary averaged quantifier (A5) is greater [Figs. 5(a)
and 5(c)]. Otherwise, the uniformly averaged quantifier (3) is greater
[Figs. 5(b) and 5(d)] Nonetheless, the differential quantifier differs
from the squared-coefficients quantifier (and, hence, from non-
normalized PI) in general. However, in practice, when one uses
low-order trigonometric polynomials in an empirical model (2),
it means that a “smoothed” approximate PDF is used for a cou-
pling characterization, giving smaller values of the corresponding

approximate differential quantifier and making it closer to the cor-
responding approximate squared-coefficients quantifier. So, many
works based on the differential quantifier1,2,4–6,9–14,19,20,22,23 have esti-
mated in fact the (approximate) squared-coefficients quantifier or
the non-normalized PI (up to some moderate distortion), i.e., again
a quantity close to the (approximate) finite-time TE finite-time TE
(up to normalization).

V. DISCUSSION

The transfer entropy rate is a dynamically informative charac-
teristic of directional (causal) coupling in the paradigmatic example
of Kuramoto oscillators. Within the framework of dynamical causal
effects, it is revealed that the reduced TE equals half the value of an
asymptotic effect of coupling on the phase diffusion constant of a
coupling recipient in a non-synchronized regime for a high enough
noise level. Thereby, that asymptotic effect can be often estimated
in practice (including meta-analysis of the published works) on the
basis of reported values of the finite-time TEs.

It is also found that the information flow captured by the TE
rate can be arbitrarily large in an effective synchronization regime
and rises with coupling coefficients, rather than being zero or very
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FIG. 5. Differential quantifiers with uniform [solid lines in (a) and (b)] and stationary [dashed lines in (a) and (b)] weighting PDF for system (16) with 0X = 0Y = 1, equal
coupling coefficients, and1ω = 50: (a) and (c) K6 = 50; (b) and (d) K6 = 100. In panels (c) and (d), conditional PDFs at t= 0.2 are shown with solid lines and stationary
PDFs (17) with dashed lines.

small as it is often thought. The reason is that the coarse-grained
TE is indeed small in such regime, while a sufficiently high resolu-
tion with respect to phases and time reveals a strong information
flow occurring at small scales. The latter is necessary to maintain a
high degree of an effective synchronization. A characteristic value
of the reduced TE in an effective synchronization regime is found
to be 1/8 nats for equal noise intensities and coupling strengths
(Sec. IV A). The range of the reduced TE values for unequal coupling
coefficients and noise intensities are given in Sec. IV C. Such values
for synchronization regimes are of theoretical interest, not of great
practical importance. Still, the entire picture of these characteristic
values and the TE plots for non-synchronous regimes (Figs. 3 and 4)
can serve a reference for dynamically meaningful interpretations of
the TE numerical values encountered in practice.

Note also that a relatively large value of the reduced (or finite-
time) TE is not compulsorily a sign of so large role of the coupling
in dynamics. In particular, consider an effective synchronization
regime where the noise level in a coupling recipient X is close
to zero (r′

xy � 1), the respective coupling coefficient is also very

small (rxy � 1), but the ratio
r2xy

r′xy
is very large. The latter is just

equal to the ratio of the reduced TEs (Sec. IV C) and so TY→X

is much greater than TX→Y. However, synchronization is estab-
lished entirely due to the coupling X → Y whose coefficient is much

greater while the opposite coupling coefficient is negligibly small.
If one switches the coupling X → Y (with arbitrarily small TX→Y)
off, the dynamical regime gets non-synchronous, while switching
the coupling Y → X (with arbitrarily large TY→X) off changes noth-
ing. In general, a large TE value implies a large short-term effect
of the coupling, and only under certain conditions (studied in
Sec. IV D), it evidences an important overall dynamical role of the
coupling.

Other coupling quantifiers including the normalized squared-
coefficients quantifier (relative PI) and the differential quantifier
have also a clear interpretation as transient DCEs. These quanti-
fiers are shown to be close to the TE well below the synchronization
threshold for the low-order nonlinearity in the system under study.
The quantifiers may differ from each other stronger (especially the
differential quantifier) for higher-order nonlinearities. Further stud-
ies of these quantifiers for the general phase oscillators (1) seem to
be of interest. Moreover, it would be relevant to study these quanti-
fiers for some physical model oscillators (as, e.g., in Ref. 46) whose
dynamics is only approximately described with phase equations
with corresponding constraints on parameter values, noise prop-
erties, etc., Thereby, one could also get physical interpretations of
the phase-dynamic causalities. From a dynamical systems side, this
research can be continued for more general limit cycle oscillators77,78

and for more than two coupled oscillators in the same manner
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as done here promising practically useful results generalizing the
results presented in this study.

Note that the parameter dependencies of the coupling
quantifiers differing between the non-synchronous and effectively
synchronous regimes (e.g., Fig. 1, below and above the synchro-
nization threshold) are not observed for linear systems. Thus,
Appendix C shows that in a two-dimensional linear SDS formally
quite similar to Eq. (16), such dependence may look either like that
in a non-synchronous regime [Fig. 8(a), proportional coupling] or
like that in a synchronous regime [Fig. 8(b), difference coupling].
In the linear system, this character depends on coupling parame-
terization and the two types of the dependence are not observed in
the same plot, contrary to the phase oscillators (16). So, the nonlin-
ear system (16) exhibits a richer set of relations between coupling
quantifiers and coupling coefficients.

Finally, it is possible to assess a time series length necessary to
obtain sufficiently accurate estimates of the coupling quantifiers. It
definitely depends on how densely all bins of the histogram of the
phase difference 18 constructed from a time series are populated.
As a rough estimate, one can take that 18t must wrap around the
2π interval at least ten times, i.e., the phase difference must change
by 20π within a time series. Its expected increment is the sum of
0t and |1ω|t. If the frequency mismatch term is greater, the mini-
mal time series length is assessed as ≈20π/|1ω| or ≈10Tbeat, where
Tbeat = 2π/|1ω| is a “beating” period. Note that such time series
length does not depend on the values of both periods themselves
contrary to multiple previous attempts to relate it to the number
of basic periods. Still, if the frequency mismatch is about 0.2 of the
mean frequency (as that in the basic example of Kuramoto oscilla-
tors in Refs. 1 and 4), then the beating period is about five times
as great as the mean period T, so one can assess the necessary time
series length as ≈50T, exactly as obtained from numerical simula-
tions and statistical estimation experiments in Refs. 4, 10, and 14.
For a too small (e.g., zero) frequency mismatch, the time series
length required is determined by the noise level rather than by 1ω.
Going a step further, if a coupling function in the direction Y → X
includes strong “modulating” terms like cos(φY

t + δ), the necessary
time series length is determined by the frequency of the coupling
source Y itself.

VI. CONCLUSIONS

Various quantifiers of directional couplings based on phase-
dynamics description are fruitfully used in time series analysis to
detect couplings and estimate temporal variations of their “strength”
or “importance” in terms of these quantifiers. However, it is quite
desirable to have meaningful dynamical interpretations of their
numerical values. Such an opportunity is provided within the frame-
work of dynamical causal effects.39–44 A particularly vivid result of
such consideration is a quantitative relation between certain quanti-
fier of interest and some asymptotic effect of the directional coupling
on the entire dynamics of the coupling recipient.

Here, several phase-dynamic coupling quantifiers (mainly the
TE rate and the TE reduced to a characteristic time) are related
to an asymptotic effect of a coupling on phase diffusion of the
coupling recipient for a paradigmatic system of two stochastic
Kuramoto oscillators with constant couplings. In particular, in a

non-synchronized regime, the reduced TE equals half the asymp-
totic effect on phase diffusion for a high enough ratio of the total
noise intensity to the frequency mismatch. In an effectively syn-
chronized regime, the dependency is more complicated but still
strongly determined by the ratio of the two reduced TEs. It is also
revealed that the information flow expressed by the TE rate (for high
enough resolution with respect to phases and time) unboundedly
rises with the coupling coefficients in the effective synchronization
domain contrary to a widespread thought that the information flow
decreases to zero above the synchronization threshold. A set of char-
acteristic values of the reduced TEs is also reported to serve as a
reference for practical interpretations.

Similar questions concerning oscillators with higher-order
nonlinearities and amplitude dynamics including, more than two
interacting oscillators, various noise properties deserve further stud-
ies that should make a practical analysis of directional couplings
from time series more informative.
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APPENDIX A: FORMAL DETAILS

The function F(t)X in Eq. (2) can be generally written as

F(t)X (φ
X
0 ,φY

0 ) = a0 +
∑

m,n

(am,n cos(mφX
0 + nφY

0 )

+ bm,n sin(mφX
0 + nφY

0 )), (A1)

where m and n are arbitrary integers and the polynomial coeffi-
cients depend on t. For system (16) and t small enough, one can
get a0 = ωXt, b−1,1 = kxyt, and all other coefficients are zero. How-
ever, the polynomial (A1) at large t even for system (16) may include
many considerably nonzero coefficients exhibiting a saw-like plot
[Figs. 5(c) and 5(d)]. The squared-coefficients quantifier21 reads

c(t)Y→X =
1

2

∑

(m,n),n6=0

(a2
m,n + b2

m,n), (A2)

i.e., it sums over all coupling terms. For weak enough couplings, all
terms on the right-hand side of Eq. (A1) are mutually orthogonal,
so Eq. (A2) represents the total contribution of all coupling terms to
the variance of the phase increment,21

var(1φX
t |φX

0 ) = c(t)Y→X +
〈

var(εX
t |φX

0 ,φY
0 )
〉

φY
0
. (A3)

As suggested in Ref. 21 it can be divided by the noise variance

to give the relative PI G(t)
Y→X (8). For stronger couplings, the sum

of squared-coefficients (A1) may differ from the mean-squared PI.
So, the latter quantifier is more widely applicable to characterize an
effect of coupling on the dynamics. As another possibility, it was

suggested21 (similarly to Ref. 18) to divide c(t)Y→X by the mean phase

increment
〈

F(t)X (φ
X
0 ,φY

0 )
〉

, which is equal toωXt for weak enough cou-

plings. However, contrary to TE and PI, such a quantifier does not
simply relate to any dynamical characteristics of system (16) and is
not further discussed here.
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Concerning the differential quantifier (3), it reads

C(t)Y→X =
1

2

∑

(m,n),n6=0

n2(a2
m,n + b2

m,n). (A4)

It selects the same squared-coefficients of coupling, but higher-
order coefficients enter with greater weights. Therefore, if a low-
order approximating polynomial is used in practice,1,2,4–6,9–13,19,20,23

then the differential quantifier gets very close to the squared-
coefficients’ one and, hence, to the non-normalized PI. For system
(16) and small t, both quantifiers coincide. In general, the differen-

tial quantifier may strongly differ from c(t)Y→X, depending on whether

F(t)X has steep local slopes.

As for the weighting functions in the TE (11) and the differen-

tial quantifier (13), the former is averaged with the stationary PDF

of the phase difference and the latter with the uniform PDF. One

could perform either choice in each case. Thus, another version of

the differential quantifier reads

C̃(t)Y→X = lim
δφ→0

π
∫

−π

π
∫

−π

(E[φX
t |w2] − E[φX

t |w1])
2

(δφ)2
p̃st

XY(φ
X
0,1,φ

Y
0,1)dφ

X
0,1dφ

Y
0,1.

(A5)

It is briefly compared to the original version (3) in Fig. 5 to
demonstrate that the differential quantifier is sensitive to the loca-
tion of a steep slope, and it is quite difficult to relate it to any
long-term dynamical characteristics. Similarly, uniformly averaged
versions of TE and PI are possible. They are not discussed here in
more detail.

APPENDIX B: NUMERICAL TECHNIQUES

Formula (17) is used with a normalizing constant C, which pro-

vides
π
∫

−π
p̃st(18)d(18) = 1. The integral on the right-hand side of

Eq. (17) is numerically computed here and its value is just the actual
value of C. The stationary PDF obtained in this way coincides with

several exemplary PDFs reported in Ref. 45. Figures 6(a) and 6(b)
present the plots of the stationary PDF of the wrapped phase differ-
ence for different frequency mismatches and coupling coefficients.
Figure 6(c) shows the mean phase coherence ρ =

∣

∣

〈

ei18
〉∣

∣, i.e., the
amplitude of the first Fourier mode of p̃st(18), obtained directly
via integration of p̃st(18) cos18 and p̃st(18) sin18. The syn-
chronization transition at K6 = 1ω is smeared due to the noise.
A full stationary PDF of the two wrapped phases can be found

from the condition that both marginal PDFs are uniform p̃st
X(φ̃

X
0 )

= p̃st
Y(φ̃

Y
0 ) = 1/(2π) as follows from the invariance of Eq. (16) under

any translation of the full initial state (φ̃X
0 , φ̃Y

0 ).
Conditional PDFs of the future states are obtained via

numerical integration of stochastic differential equations with the
Euler–Maruyama technique with an appropriately small step size
of 0.01/1ω. For each initial state (φX

0,1,φ
Y
0,1), 105 time realizations

are generated to obtain a histogram with 100 equidistant bins. It
is set to φX

0,1 = 0, while φY
0,1 is changed from −π to π in steps

of 0.02π . To obtain functionally conditional quantities, the usual
conditional quantities are averaged over φY

0,1 using either the sta-
tionary PDF of the phase difference 18 (for the TE and PI) or
uniform PDF (for the differential quantifier). Averaging over dif-
ferent φX

0,1 is not necessary since the results are independent of this
value. As an alternative approach, a solution to the Fokker–Planck

equation (FPE) gives a PDF p(t)XY(φ
X
t ,φY

t |φX
0 ,φY

0 ) at any time t> 0.
Two approximate methods were used here to solve the FPE for
a wider comparison: Gaussian approximation and second-order
moment approximation.87 It allows us to see the difference of a
conditional PDF from Gaussian.

Figure 7 presents conditional PDFs on different temporal hori-
zons. Even for the simple system (16) with lowest-order nonlinear-
ity, those PDFs appear to be essentially non-Gaussian on non-small
temporal horizons near the synchronization threshold and often
exhibit steep slopes [Fig. 5(c)]. Then, the two approximate FPE solu-
tions diverge. In other cases, those PDFs look either slowly varying
like a wider Gaussian or strongly localized like a narrower Gaussian.
Then, the TE is close to its mean-squared approximation (9) and
both approximate FPE solutions are quite accurate.

FIG. 6. Stationary PDFs of the wrapped phase difference for system (16) with 0X = 0Y = 1 and equal coupling coefficients: (a)1ω = 5 and (b)1ω = 50. Mean phase
coherence (c) is shown for1ω = 5 (dashed line, upper abscissa axis) and1ω = 50 (solid line, lower abscissa axis).
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FIG. 7. Conditional PDFs on temporal horizons corresponding to themaximum of the finite-time TE (Fig. 3) for system (16) with0X = 0Y = 1 and equal coupling coefficients.
Upper row is shown for1ω = 5: (a) K6 = 2.5, (b) K6 = 5.0, and (c) K6 = 10.0; bottom row is shown for1ω = 50: (d) K6 = 25, (e) K6 = 50, and (f) K6 = 100.

APPENDIX C: COMPARISON TO LINEAR EXAMPLE

Figure 8 presents dependencies of the TE rates on the coupling
coefficient for linear relaxation systems. The latter are taken with
two parameterizations of couplings: a proportional coupling,

ẋ = −αxx + kxyy + ξx(t),

ẏ = −αyy + kyxx + ξy(t),
(C1)

and a difference coupling,

ẋ = −αxx + kxy(y − x)+ ξx(t),

ẏ = −αyy + kyx(x − y)+ ξy(t),
(C2)

with αx = 1.1,αy = 0.9, 0xx = 0yy = 1, and kxy = kyx = k. Con-
crete values of the relaxation rates do not influence the conclusions.

FIG. 8. TE rates (dashes) and reduced TEs (solid lines) for the linear systems (C1) and (C2): (a) proportional coupling (C1) and (b) difference coupling (C2).
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One can see that the phase oscillators’ curve [e.g., Fig. 1(b)] com-
bines the linear systems’ curves of the two types. The proportional
coupling curve [Fig. 8(a)] is similar to the non-synchronized phase
oscillators’ curve [left part of Fig. 1(b)], and the difference cou-
pling curve [Fig. 8(b)] is analogous to the synchronized oscillators’
curve [right part of Fig. 1(b)]. Both analogies are explained based
on the asymptotic conditions of either almost independent or very
close phases of the two phase oscillators as discussed in Secs. IV A
and IV B. So, nonlinearity of system (16) makes these parameter
dependencies qualitatively different from the plots for any separate
linear system (C1) or (C2) despite apparently quite similar forms of
the evolution equations.

DATA AVAILABILITY

The data that support the findings of this study are available
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