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ABSTRACT

The origin of complex irregular dynamics in a cardiovascular system is still being actively debated. Some hypotheses suggest the crucial role
of stochastic modulation of cardiovascular parameters, while others argue for the importance of cardiac pacemakers’ chaotic deterministic
dynamics. In the present study, we estimate the largest Lyapunov exponent and the correlation dimension for the 4-h experimental interbeat
intervals and the chaotic signals generated by themathematical model of the cardiovascular system.We study the complexity of themathemati-
cal model for such cases as the autonomic blockade, the exclusion of all the stochastic components, and the absence of variability of respiration.
The obtained results suggest that the complexity of the heart rate variability is largely due to the chaotic dynamics in the loops of autonomic
control of circulation.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5134833

The origin of the complexity in heart rate dynamics is an intrigu-
ing issue that has been discussed for over 20 years. The particular
importance of this problem is emphasized by well-known exper-
imental studies, which showed that the degree of complexity of
heart rate variability (HRV) can be used as an indicator of cardio-
vascular health. Usually, a high irregularity of the heart rhythm
is typical for healthy subjects, and in patients with diseases of
the cardiovascular system (CVS), the complexity of the dynam-
ics of the heart rhythm decreases. A number of hypotheses have
been proposed to explain this phenomenon. Some of them explain
the complex irregular dynamics of the heart rhythm by stochas-
tic in�uences of various nature. According to other hypotheses,
the origin of complexity in the dynamics of the cardiovascular
system is the process of respiration. The role of autonomic con-
trol in the complex dynamics of the cardiovascular system is still
being discussed. To study the origin of the complex dynamics of
the cardiovascular system, we analyzed both the long experimen-
tal records of the intervals between heart beats of healthy subjects
and the signals from the mathematical model of cardiovascular
system that we proposed earlier. We revealed that the irregular-
ity in heart rate variability originates not only from the stochastic

in�uence but also from the chaotic dynamics of autonomic control
of heart rate. The obtained results allow us to better understand
the operation of cardiovascular system and the origin of its irreg-
ular dynamics. The results can be potentially useful for medical
diagnostics of the state of the cardiovascular system.

INTRODUCTION

The study aims to investigate complex nonlinear dynamics of
cardiovascular system (CVS) that manifests itself in heart rate and
arterial pressure (AP) irregularity. Some investigators suggest that
irregular dynamics of heart rate variability (HRV) andAP signals can
be attributed solely to stochastic interference in CVS (Turcott et al.,
1996; Kaplan et al., 1990; Kanters et al., 1994). Suggested origins of
interference are, for example, stochastic modulation of CVS param-
eters (Ivanov et al., 1998) or “central” dynamical noise (Bunde et al.,
2000; Togo et al., 2001). However, many researchers inclined to see
the origin of CVS irregularity in nonlinear dynamics and develop-
ment of relatively low-dimensional deterministic chaos (Glass et al.,
1988; Pool, 1989; Barahona et al., 1996).
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Meanwhile, many researchers have reported the presence of
complex dynamics in CVS signals of healthy subjects and patients
without cardiac tissue impairments. The origin of such behavior and
the preferred method of quanti�cation of complex CVS dynamics
are heavily debated. Active discussion is held around the role of
respiration in forming of complex dynamics (Wessel et al., 2009).
Some researchers assume that the autonomic control of circulation
can be the source of chaotic dynamics (Wagner et al., 1998; Porta
et al., 2017). Ernst (2017) and a number of other authors suggest
that complex CVS dynamics is caused mostly by the in�uence from
higher brain center onto autonomic control. Clemson et al. (2014)
hypothesize that the combination of previously mentioned factors
is necessary. The revealing of origins of irregularity in CVS signals
is important for understanding the process of blood circulation and
applications in clinical medicine (Wessel et al., 2009; Pavlov et al.,
2000; Goldberger, 1996).

A lot of studies are dedicated to the development of chaotic
dynamics in heart itself. It was shown that the chaotic behavior
of the heart is due to spiral waves and activity patterns caused by
disturbances in mechanical and conductive properties of cardiac
tissue. Most commonly, aforementioned disturbances are symptoms
of pathologic processes and associated with acute arrhythmia. Such
phenomena were extensively studied in human and animal studies
and in mathematical models and biological models, such as isolated
heart (Bittihn et al., 2017; Krogh-Madsen et al., 2017; Gomes et al.,
2017; Guevara et al., 1981).

It was shown that the degree of CVS complexity correlates with
the physiological condition (Valente et al., 2018; Porta et al., 2017;
Dimitriev et al., 2016; Shiogai et al., 2010; Anishchenko et al., 1993).
It can be applied in medical diagnostics and treatment of various dis-
eases (Lerma et al., 2017; Denton et al., 1990; Ivanov et al., 1999).
However, the problem is yet to be solved, despite a long history of
the debates. Some researchers are skeptical about the validity of non-
linear complexity measures estimated from experimental data since
real CVS signals are noisy and typically short. Aforementioned prob-
lems lead to large errors in the estimation of complexitymeasures and
complicate the interpretation of the results (Valente et al., 2018; Tan
et al., 2013; Bezerianos et al., 1995; Glass et al., 1990). A promising
way of solving these issues is to study the signals from mathemat-
ical models of CVS. However, reliable results can be obtained only
frommodels that are developed from the �rst principles, simulate the
structure of real CVS, and have physically meaningful parameters.

To model the complex dynamics of a healthy CVS, we decided
to focus on autonomic control of circulation. Cavalcanti and Belar-
dinelli (1996) proposed the CVS model in the form of three dif-
ferential equations with delay to represent autonomic control. They
demonstrated that with an increase in delay time, the Hopf bifurca-
tion occurs and stable focus goes into limit cycle. Further increase
in delay time leads to a cascade of period-doubling bifurcations
and chaotic dynamics. However, this model cannot be applied to
the problem under study since the parameters of the model are
nonphysiological that was criticized by Vielle (2005).

Based on the study of Seidel and Herzel (1998), Kotani et al.
(2005) proposed the CVS model with physiological parameters and
the ability to exhibit stable oscillations and chaotic dynamics. How-
ever, in this model (Kotani et al., 2005), the loops of autonomic
control of mean arterial pressure and heart rate are represented by

nonautonomous linear relaxation oscillators with delay. This sim-
pli�cation makes it impossible to simulate some experimentally
observed phenomena (Karavaev et al., 2009; 2018), in particular, the
synchronization between the autonomic control loops and respira-
tion with linearly increasing frequency. The importance of cardiores-
piratory coupling was reported in Wessel et al. (2009), Schäfer et al.
(1998; 1999), and Hramov et al. (2007). Other known experimen-
tal studies (Ringwood et al., 2001; Burgess et al., 1997) argue for the
nonlinear and self-exciting nature of circulation autonomic control.

We have proposed a modi�ed mathematical CVS model based
on Kotani et al. (2005) that takes into account the nonlinear
properties of autonomic control. The modi�ed model demonstrates
better agreement with the experimental data and explains the exper-
imentally observed nonlinear phenomena (Karavaev et al., 2016;
Ishbulatov et al., 2017).

This study aims to provide a quantitative analysis of CVS com-
plex nonlinear dynamics and investigate its origins through a com-
parison between the signals of the CVS mathematical model and the
4-h experimental records of interbeat intervals.

EXPERIMENTAL DATA

To study the complex dynamics of CVS, we analyze 4-h
experimental electrocardiogram (ECG) records of �ve healthy sub-
jects (four males and one female, ages 20–25 years). All the sub-
jects signed a written consent. The experimental studies were per-
formed in accordance with the Declaration of Helsinki and approved
by the local research Ethics Committee of the Saratov Research
Institute of Cardiology (Saratov, Russia). All experimental signals
were recorded using the standard electroencephalograph analyzer
EEGA-21/26 “Encephalan-131-03” (Medicom MTD Ltd., Taganrog,
Russia) (http://medicom-mtd.com/en/products/eega.html). The sig-
nals were recorded from 2 p.m. to 6 p.m. at rest, when the subjects
were lying in a quiet, dimly lit roomwith temperature control, at least
2 h after the last meal. The subjects were breathing spontaneously. All
signals were sampled at 250Hz and digitized at 14 bits. The record
of respiration was used to control evenness of breathing. Sections
of the records containing artifacts were carefully excluded from the
analysis.

Heart rate variability (HRV)wasmeasured from the experimen-
tal data as it is recommended in Task Force of the European Society
of Cardiology and the North American Society of Pacing Electro-
physiology (1996); sequences of RR intervals, i.e., the series of time
intervals between the two successive R peaks in ECG. Then, the RR
intervals were interpolated via cubic β-splines, resampled at 5Hz,
and �ltered with the 0.05–0.40Hz bandpass �lter to extract the sig-
nals of heart rate and vascular tone autonomic control. We use these
signals throughout the paper for the analysis. The parameters of the
experimental data are presented in Table I.

MATHEMATICAL MODEL

The mathematical model proposed by us in Karavaev et al.
(2016) is based on the Kotani et al. (2005) and Seidel et al. (1998)
models. The model simulates the following processes: main heart
rate, barore�ectory control of heart rate and heart contractility, and
forming of arterial pressure (AP) during the cardiac contraction and
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TABLE I. Parameters of the experimental data.

Signal type RR intervals

Length (h) 4
Number of patients 5
Age (years) 20–25
Resampling frequency (Hz) 5
Resolution (bits) 14
Filtration band (Hz) 0.05–0.40

cardiac �lling phases. The model also simulates the in�uence of
respiration on the aforementioned processes. The structure of the
model is presented in Fig. 1.

Themodel consists of four �rst-order di�erential equationswith
a time delay. To model the respiration, we used a sinusoidal sig-
nal with stochastic modulation of frequency (see the supplementary
material). We introduced the stochastic component [see Eq. (1)
in the supplementary material] to simulate the processes excluded
from the model, namely, the dynamical noise of central origin
(Bunde et al., 2000; Togo et al., 2001) and low-frequency (LF) CVS
humoral control. The detailed description of the model is given in
the supplementary material.

METHODS

To investigate complex chaotic dynamics of both the exper-
imental and model cardiovascular signals, we applied several

FIG. 1. Structure of the mathematical model. Blocks indicated with solid bold
red rectangles represent the heart rate sympathetic control. Blocks indicated with
solid blue rectangles represent the heart rate parasympathetic control. Blocks
indicated with dashed bold red rectangles represent the sympathetic control of
the vascular tone.

techniques of chaos theory, namely, the estimation of fractal dimen-
sion from the correlation integral (Grassberger et al., 1983) and cal-
culation of the largest Lyapunov exponent (Rosenstein et al., 1993).
The analysis of the experimental and model signals involves the
reconstruction of attractor from a single time series. We used the
method of delays as it is recommended in Rosenstein et al. (1993).

The correlation dimension dwas estimated from the correlation
integral C(l) (Grassberger et al., 1983) de�ned as

C(l) = lim
N→∞

n(l)

N2
, (1)

where n(l) is the number of points of the reconstructed attractor,
for which the Euclidean distance to the nearest neighbor is smaller
than l. The values of l are varied in the range of 0.1–0.3 of the stan-
dard deviation of RR intervals. N is the number of points used for
calculation. We used N= 5000 throughout the paper. For dynamical
systems, C(l)∼ ld and d can be estimated as

d =
ln(C(l))

ln(l)
. (2)

To estimate the largest Lyapunov exponent, we used the Rosen-
stein algorithm (Rosenstein et al., 1993) since it can be applied to
short time series. The �rst step of the Rosenstein algorithm is to �nd
the nearest neighbor for each point of the reconstructed attractor.
The close in time neighbors should be excluded from the analysis
(Rosenstein et al., 1993). For dynamical systems, the mean rate of
separation of the nearest neighbors obeys the following equation:

ln(L) ≈ ln(L0) + λ0t, (3)

where L0 is the initial distance, λ0 is the largest Lyapunov exponent,
and t is the time of calculation. The time t= 0.6 s corresponds to the
time of the linear law of separation of the nearest neighbors. λ0 is
calculated as follows:

λ0 =
〈ln(L)〉

t
. (4)

The parameter values used for the calculation of correlation
dimension and the largest Lyapunov exponent are presented in
Table II.

COMPARISON OF MODEL AND EXPERIMENTAL DATA

In Fig. 2, typical time series and power spectra of RR intervals
are presented for a healthy subject and the mathematical model of
CVS.

The low-frequency (LF) rhythms associated with the heart rate
sympathetic control are observed in the 0.05–0.15Hz band of the
model power spectrum. In themodel and experimental signals, these
rhythms correspond to the self-exciting dynamics of the sympa-
thetic control of vascular tone and heart rate (Seidel et al., 1998;
Ringwood et al., 2001). The high-frequency (HF) rhythms associated
with the respiration and the parasympathetic control of heart rate
are observed in the 0.15–0.40Hz band (Task Force of the European
Society of Cardiology and the North American Society of Pacing
Electrophysiology, 1996). It is seen in Fig. 2(b) that HF peak in the
model power spectrum agrees well with the HF peak in the power
spectrum of the experimental signal. However, the width of the LF
peak in the model is narrower than in the experiment.
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TABLE II. Parameters of the methods for calculating the correlation dimension and the largest Lyapunov exponent. τ is the delay used to reconstruct the embedding space

with the delay method, and l is the maximal Euclidian distance between the nearest neighbors normalized to the standard deviation of the filtered RR intervals.

Calculation of correlation dimension Calculation of the largest Lyapunov exponent

Embedding dimension 13 Embedding dimension 13
τ (s) 0.04 τ (s) 1
l 0.1–0.3 t (s) 0.6
Window lengths (s) 1000 Window lengths (s) 1000

RESULTS

Reliability of complexity indices estimated from the experimen-
tal CVS data highly depends on the algorithm of embedding space
reconstruction and embedding dimension. For the reconstruction
of embedding space, we used the popular delay method with delays
de�ned as time, within which the autocorrelation function decreases
by a factor of e (Rosenstein et al., 1993). Average delay estimated from
experimental data was 1.0 s. This value was used for all calculations
in our paper.

The problem of choosing the embedding dimension for the sig-
nal of vascular tone autonomic control extracted from RR intervals
using the bandpass �ltration has not been discussed in the literature.
The embedding dimension of the non�ltered RR intervals was esti-
mated to be 3 (Skinner et al., 1990), 4 (Dimitriev et al., 2016), and
even 5 (Negoescu et al., 1993). According to the delay embedding
theorem (Takens, 1981; Sauer et al., 1991), a chaotic dynamical sys-
tem can be reconstructed from a sequence of observations of the state
of a dynamical system if the attractor is embedded in the Euclidean
space with the dimension D> 2D0, where D0 is the box counting
dimension. It has been shown that one canuse the embedding dimen-
sionD=D0 + 1 for the calculation of fractal dimension (Sauer et al.,
1991; 1993). However, the authors noted that in this case, the self-
crossing of the phase trajectories is possible and recommended to
specify the theoretical estimations with the further empirical test for
each particular system. In our study, we calculate the largest Lya-
punov exponent from the 4-h experimental RR intervals �ltered in
the bandpass 0.05–0.40Hz for dimensions varied from 7 to 25. The
obtained results are shown in Fig. 3.

As can be seen in Fig. 3(a), the increase of D leads to the satu-
ration of the largest Lyapunov exponent value. With an increase ofD
from 7 to 13, the standard deviation of the largest Lyapunov expo-
nent σ (λ0) monotonically decreases, Fig. 3(b). ForD≥ 13, the values
of σ (λ0) �uctuate around a constant value. Therefore, for further
calculations, we choose the embedding dimension D= 13.

The more reliable estimation of the complexity measures
requires the time series containing tens and hundreds of charac-
teristic oscillation periods. However, the technical and ethical rea-
sons limit the possible length of experimental signals. Moreover, in
Sharma et al. (2009), it was noted that nonstationarity of the exper-
imental data can have a signi�cant e�ect on the complexity indices.
To achieve better reliability of the results, we used 1500-s windows
(150 characteristic periods of the sympathetic control loop) of the
time series.

Nonstationarity and variation of the largest Lyapunov expo-
nent were analyzed during its estimation in the windows of di�erent
lengths (200–2000 s). Typical dependence of the largest Lyapunov
exponent on the length of the analyzed window is presented in
Fig. 4(a). No trends can be seen in the time dependences of λ0 in
Fig. 4(a). This result suggests the relative stationarity of λ0 during the
4-h study conducted in healthy resting subjects.

It is evident that the estimation of the largest Lyapunov expo-
nent in shorter windows leads to lower values and greater variation.
Figure 4(b) shows the dependence of coe�cient of variation (CV)
(percentage of the ratio of the mean value to the standard deviation)
of λ0 on the length of the experimental time series used for the cal-
culation. It is seen from Fig. 4(b) that the estimation of the largest
Lyapunov exponent from the time series of greater duration is more
stable. The obtained results suggest that 1000-s windows are reason-
able for calculation of the largest Lyapunov exponent. Such lengths
of the windows were used further in the paper.

The proposedmathematical model allows us to conduct a series
of numerical simulations, in which the largest Lyapunov exponent λ0

and the correlation dimension d were calculated under a number of
speci�c conditions (Fig. 5). The obtained results were compared with
the complexity indices of CVS system in healthy subjects.

We considered the following situations:

(1) The noise of central origin is excluded from the heart rate
[see Eq. (1) in the supplementary material]. The respiration is

FIG. 2. Typical RR intervals (a) and
their Fourier power spectra (b). Red line
corresponds to the model, and black line
corresponds to experimental data.

Chaos 29, 121101 (2019); doi: 10.1063/1.5134833 29, 121101-4

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1063/1.5134833#suppl


Chaos ARTICLE scitation.org/journal/cha

FIG. 3. (a) Estimation of the largest
Lyapunov exponent from the 4-h exper-
imental filtered RR intervals for different
embedding dimensions D. Whiskers rep-
resent the standard deviation. (b) Stan-
dard deviation of the largest Lyapunov
exponent for different embedding dimen-
sions.

modeled as a sinusoidal signal with a constant frequency (see
the supplementary material). This case is denoted as Model No
Noise (MNN).

(2) The model under the autonomic blockade. We excluded the
parasympathetic control of heart rate [see Eq. (1) in the
supplementary material] and sympathetic control of heart rate
[see Eq. (1) in the supplementary material], heart contractility
[see Eq. (3) in the supplementary material], and vessels tone [see
Eq. (5) in the supplementary material]. This case is denoted as
Model under Autonomic Blockade (MAB).

(3) The model in which the respiration is modeled as a sinusoidal
signal (see the supplementary material). This case is denoted as
Model No Respiration Variability (MNRV).

(4) The model containing experimental signal of respiration (see
the supplementary material). This case is denoted as Model
Experimental Respiration (MER).

The values of the largest Lyapunov exponent and the cor-
relation dimension estimated from the experimental signals (E)
are 0.027± 0.005 (mean± standard deviation) and 2.185± 0.146,
respectively, see Fig. 5. For the model signals (M), the largest Lya-
punov exponent and the correlation dimension take the values
0.029± 0.002 and 2.234± 0.023, respectively. These results con-
�rm complex, irregular nature of the experimental and model CVS
signals.

Themodel without stochastic components (MNN in Fig. 5) also
demonstrates a chaotic behavior: λ0 is positive (0.0024± 0.0008) and
d is a noninteger and greater than 2 (2.014± 0.004). These results
suggest that irregularity of humanHRV is caused by dynamical chaos
inCVS that originates from the loops of autonomic control of circula-
tion.With respect to the model of a healthy subject, the model under
autonomic blockade (MAB in Fig. 5) demonstrates higher values

of the largest Lyapunov exponent (0.048± 0.004). Also, the corre-
lation dimension is higher for the MAB model (2.547± 0.017) that
agrees well with the experimental observations (Porta et al., 2017),
suggesting the stabilizing role of CVS autonomic control.

A number of research studies suggest that the respiration plays
an important role in generation of irregular CVS dynamics (Wessel
et al., 2009). We investigated this hypothesis by conducting two
numerical experiments: without the stochasticmodulation of the res-
piration rate (MNRV in Fig. 5) and with the experimental signal of
respiration introduced to the model (MER in Fig. 5). The obtained
indices of complexity (λ0 = 0.032± 0.002 and d= 2.276± 0.016 for
the MNRV model and λ0 = 0.028± 0.002 and d= 2.224± 0.018 for
the MER model) showed no signi�cant changes with respect to the
original model (M in Fig. 5). Therefore, the obtained results do not
support the hypothesis about the signi�cance of the respiration in
generation of CVS complexity that agrees well with the results from
Eduardo et al. (2016).

DISCUSSION

Origins and characteristics of the complex nonlinear CVS
dynamics are subjects of active debates. Many questions are not
solved yet despite high researcher’s interest and importance of the
system. The present study is aimed to solve some problems that were
outlined in the earlier papers. Draghici and Taylor (2016), Tan et al.
(2013), and others pointed out that most of the studies are conducted
with 5–10min experimental signals, which are too short for the reli-
able estimation of the largest Lyapunov exponent and the fractal
dimension. For example, Sharma mentions in Sharma et al. (2009)
that artifacts in experimental data can lead to an incorrect result.
In Kamalesh et al. (1995), the nonstationarity of experimental data
was mentioned to cause di�culties in estimation of the complexity
measures.

FIG. 4. Estimation of the largest Lya-
punov exponent in windows of different
lengths. (a) Typical time dependences of
the largest Lyapunov exponent calculated
in nonoverlapping windows of the experi-
mental time series. Dashed line, thin line,
bold red line, and dotted line are plotted
using 200-s, 500-s, 1000-s, and 2000-s
windows, respectively. (b) Dependence
of coefficient of variation of λ0 on the
window length.
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FIG. 5. Comparison of complexity indices estimated from experimental and model data: (a) the largest Lyapunov exponent; (b) correlation dimension. E—experimental
data; M—the proposed model; MNN (Model No Noise)—the model with no stochastic elements; MAB (Model Autonomic Blockade)—the model under full blockade of the
autonomic control; MNRV (Model No Respiration Variability)—the model with sinusoidal signal used as respiration; MER (Model with Experimental Respiration)—the model
with incorporated experimental signal of respiration.

The promising approach to study CVS nonlinear dynamics
is the mathematical modeling. However, an adequate mathemati-
cal model is necessary to obtain reliable results. The model should
resemble the real system in structure, have physically meaningful
parameters, and be capable of quantitative and qualitative simulation
of experimental data and phenomena. In our model, we took into
account the in�uence of respiration and loops of autonomic control
of circulation, which can be the origin of CVS complexity (Shiogai
et al., 2010; Wessel et al., 2009; Kaplan et al., 1991).

We used the mathematical model of CVS (Karavaev et al., 2016;
Ishbulatov et al., 2017), in which much attention is given to the CVS
autonomic control loops, which are modeled using nonlinear self-
exciting loops. Earlier we demonstrated that this approach resulted
in better (in comparison to other models of similar complexity and
structure) simulation of the spectral and statistical properties of the
experimental data. Taking into account the nonlinear control loops,
it is possible to simulate the synchronization between the loops of
autonomic control (Karavaev et al., 2016; Ishbulatov et al., 2017).

From the stationary, noiseless, and long model time series, we
were able to reliably estimate the widespread complexity measures,
namely, the largest Lyapunov exponent and correlation dimension.
Using the model, we were also able to estimate the in�uence of
the dynamical noises and the various CVS subsystems on the com-
plexity. To verify the model, we compared the model signals with
the 4-h experimental interbeat intervals recorded from healthy sub-
jects under resting conditions. Reliability of the complexity indices
estimated from the experimental data is veri�ed by their repro-
ducibility for each patient and through the group of patients and
good correspondence to the other experimental studies. Therefore,
CVS nonstationarity seems to not a�ect the complexity indices in our
experimental study.

In Tan et al. (2013), it was pointed out that CVS complexity
may change after the pharmacological blockade of the CVS auto-
nomic control. However, the experimental study by Tan et al. (2013)
could not provide reliable con�rmation. In ourmodel, the autonomic
blockade resulted in signi�cant changes in the complexity indices
(MAB in Fig. 5).

The analysis of experimental data can give positive values of
the largest Lyapunov exponent and noninteger value of correlation

dimension because of the stochastic factors. Therefore, some
researchers (Turcott et al., 1996; Kanters et al., 1994; Costa et al.,
1999) are skeptical about the presence of the dynamical chaos inCVS.
However, in themodel, we eliminated all sources of dynamical noises
and still obtained a positive value of the largest Lyapunov exponent
and noninteger value of correlation dimension (MNN in Fig. 5).

The results of the numerical simulations with the MNN model
and the small role of the respiration in CVS complexity (MNRV
and MER models in Fig. 5) suggest that the chaotic dynamics of
CVS autonomic control loops is the origin of HRV irregularity. Close
correspondence between the model and experimental complexity
indices argues for the adequacy of themodel and allows extrapolation
of the model data to the real system.

The noninteger values of the correlation dimension and small
positive values of the largest Lyapunov exponent obtained in our
study indicate the presence of weak dynamical chaos in the dynamics
of CVS. Although the absolute values of the largest Lyapunov expo-
nent are small, they exhibit the statistically signi�cant changes during
the physiological tests and signi�cantly di�er in healthy subjects and
patients with pathologies of CVS.

In this study, we revealed the leading role of autonomic control
of circulation in the development of the chaotic dynamics in CVS.
The obtained results suggest that the chaotic dynamics of autonomic
control provides the �exible adjustment of CVS to di�erent exter-
nal conditions and pathological changes. The complexity indices
calculated from the dynamics of autonomic control of circulation
contain useful information for the assessment of the state of the
cardiovascular system.

We agree with the physiological interpretation of the complex-
ity of the heart rate variability given in Task Force of the European
Society of Cardiology and the North American Society of Pacing
Electrophysiology (1996) and Sha�er et al. (2017) and support the
opinion that the complexity of HRV is a re�ection of the organism
adaptation to changing external conditions. A chaotic system can
change its properties faster and within wider ranges than a periodic
system, under the same change in control parameters.

The reliable estimations of the largest Lyapunov exponent
and the correlation dimension of the autonomic control dynam-
ics required the surprisingly high embedding dimension D= 13.
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Probably, such high value of D is explained by the complexity of the
chaotic dynamics in the loops of autonomic control of circulation,
which was modeled by delay-di�erential equations in a number of
studies (Seidel et al., 1998; Ringwood et al., 2001; Kotani et al., 2005).

It should be noted that mathematical modeling of biological
objects is always a compromise between the completeness of the
model and its complexity, which is increased critically when addi-
tional factors are introduced into the model. The proposed model
proved that the introduction of the nonlinear self-exciting loops of
CVS autonomic control into the model is enough for qualitative
explanation and quantitative simulation of the CVS dynamical chaos.
Moreover, the central noise makes a signi�cant contribution to the
complexity. Therefore, in accordance with Shiogai et al. (2010) and
Karavaev et al. (2018), further development of the proposed model
requires the introduction of the higher nervous activity in�uence on
the autonomic control (Van Roon et al., 2004).

CONCLUSION

The complexity of the CVS mathematical model has been
numerically studied for a number of cases. The cases of the absence of
dynamical noises of various origins, the presence of blockade of cir-
culation autonomic control, the absence of variability in respiration
rate, and the introduction of the experimental respiratory signal into
the model have been considered. Calculation of the largest Lyapunov
exponent and the correlation dimension have shown that chaotic
dynamics of CVS autonomic control loops has a signi�cant role in the
origin ofHRV irregularity. The stochastic components thatmodel the
dynamical noise of central origin also give a signi�cant contribution
to CVS complexity, resulting in higher values of the largest Lyapunov
exponent and correlation dimension.

The comparison between 4-h experimental andmodel interbeat
intervals showed good correspondence between them. It con�rms
the reliability of obtained estimations of the complexity indices and
adequacy of the proposed model. However, further development of
the model requires the introduction of the higher nervous activity
in�uence on the autonomic control.

SUPPLEMENTARY MATERIAL

See the supplementary material for the detailed description of
themathematical model of cardiovascular system and the table of the
model parameters.
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