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Two quite different types of causal effects are given by (i) changes in near future states of a driven
system under changes in a current state of a driving system and (ii) changes in statistical character-
istics of a driven system dynamics under changes in coupling parameters, e.g., under switching the
coupling off. The former can be called transient causal effects and can be estimated from a time series
within the well established framework of the Wiener–Granger causality, while the latter represent
equilibrium (or stationary) causal effects which are often most interesting but generally inaccessi-
ble to estimation from an observed time series recorded at fixed coupling parameters. In this work,
relationships between the two kinds of causal effects are found for unidirectionally coupled stochas-
tic linear oscillators depending on their frequencies and damping factors. Approximate closed-form
expressions for these relationships are derived. Their limitations and possible extensions are dis-
cussed, and their practical applicability to extracting equilibrium causal effects from time series is
argued. Published by AIP Publishing. https://doi.org/10.1063/1.5017821

Detection of causal1–11 couplings within a complex system
is important in various fields, and the Wiener–Granger
causality12,13 approach including its linear and nonlin-
ear versions14,15 is well established and widely used
for coupling estimation from observed time series. This
approach can be argued to concern so-called transient
causal effects10,16 and cannot assure that a detected cou-
pling is dynamically influential. In many problems, it is
most important to learn how strong and influential is
the detected coupling for the “entire” observed dynam-
ics, e.g., what would change in the driven system dynamics
if the coupling was switched off,16,17 a question similar to
those asked in bifurcation analysis. Coupling characteris-
tics of such kind are called “equilibrium causal effects”
below. There are no general ways of estimating equilib-
rium causal effects from time series, but one may hope
to perform such estimation having found relationships
between the two kinds of causal effects for a restricted
class of systems.16 In this work, such relationships and
approximate closed-form expressions for them are found
for stochastic linear damped oscillators, giving an oppor-
tunity to assess equilibrium causal effects from time series
in a variety of practical situations.

I. INTRODUCTION

Owing to the general importance of detecting and
quantifying directional, or causal1–11 couplings between
time-evolving systems from time series, many approaches
to coupling characterization have been12–15 and are still
being suggested within the frameworks of information
theory,9,11,18–28 nonlinear dynamics,29–48 and linear stochas-
tic processes.49–54 The natural disciplines where these
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approaches are most often required and applied seem
to be neuroscience7,8,14,26–28,34,43–45,47,49–53,55 and climate
science,2,16,17,21,22,54–58 but other applications exist and range
from chemistry38 to ecology.46

In studies of coupled systems from their time series,
one often observes that some coupling characteristics can
be readily estimated from the data, but not of direct inter-
est for a problem at hand, while those of primary interest
are unavailable through time series estimation. To the first
group, one can often ascribe transient causal effects repre-
senting the short-term response of a driven system state to
a change in a driving system state. They can be character-
ized with the Wiener–Granger causality as argued in Refs.
10,16 including the celebrated transfer entropy18,59–61 and tak-
ing into account possible difficulties of its interpretation.62–64

The second group often implies an assessment of an over-
all physical (or dynamical) significance of the coupling, i.e.,
understanding of how important the coupling is for maintain-
ing observed equilibrium characteristics of a driven system
regime, e.g., mean-squared amplitude of oscillations.16 Since
a time series is usually recorded at fixed values of system
parameters, it does not directly contain any information on
what happens if the coupling is switched off, so the desired
characteristics from the second group cannot be extracted
from such time series. Accordingly, numerical values of the
Wiener–Granger causality measures cannot be directly inter-
preted in terms of whether coupling is strong or weak in the
sense of its influence on dynamics.

One may hope that coupling characteristics from the
two groups can be related to each other for restricted, but
reasonably wide classes of systems. Finding such relation-
ships would open an exciting opportunity to extract seemingly
unavailable information about the dynamical significance of
coupling using well established estimates of transient causal
effects. Moreover, it would allow meaningful interpretation of
numerical values of the Wiener–Granger causality estimates.
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A simple relationship between normalized short-term pre-
diction improvement (a measure of the Wiener–Granger
causality) and relative change in equilibrium mean-squared
amplitude due to coupling removal was previously found16

for unidirectionally coupled relaxation systems (overdamped
oscillators) with one-dimensional state spaces. That class of
systems seems too narrow, so it is highly desirable to extend
those results and obtain more general relationships for broader
classes with richer dynamical properties. This is the purpose
of the present work which suggests an essential generaliza-
tion to linear stochastic oscillators with two-dimensional state
spaces.

A note concerning the terminology seems to be in order
here. The term “transient effect” can be also quite reasonably
used for dynamical systems whose parameters change in time
inducing a transient process to a new equilibrium distribu-
tion of states. This meaning is not used here. Wiener–Granger
causality and “transient causal effects” considered below are
defined for systems with constant parameters, so there could
be reasons to call them “equilibrium” rather than “transient.”
However, the term “transient” shows here that a change in
an initial state of the systems under study induces stronger
or weaker changes in the near-future distributions of states
finally evolving to the same stationary distribution. The term
“equilibrium causal effect” is used here to highlight another
property that a change in coupling coefficient changes sta-
tionary (equilibrium) distribution of states. Thus, the terms
“transient” and “equilibrium” here show what is influenced
by coupling, while another possible terminology mentioned
above reflects whether system parameters are constant or
time-dependent. Despite this ambiguity, I believe that the
terminology suggested here is useful in an appropriate con-
text because it sheds new light on the relationships between
quite different coupling characteristics and makes interpre-
tations of their numerical values more accurate and mean-
ingful. To avoid possible confusion, it seems sufficient to
indicate explicitly in which sense the terms are used as it is
done here.

Causal effects under study are defined in Sec. II. Model
systems and design of the study are described in Sec. III.
The obtained relationships and their approximate closed-form
expressions are presented in Sec. IV. Practical applicability of
the obtained relationships and their limitations and extensions
(including nonlinear systems) are discussed in Sec. V. Section
VI concludes.

II. TRANSIENT AND EQUILIBRIUM CAUSAL EFFECTS

Transient causal effects have been defined for state
space systems in terms of “intervention–dynamical effect” as
follows.10 Let systems X and Y be specified by stochastic
differential equations:

ẋ = fX (x) + cXY gX (x, y) + ξX ,
ẏ = fY (y) + cYX gY (y, x) + ξY ,

(1)

where x and y are state vectors of the systems X and Y, respec-
tively, ξX and ξY are mutually independent Gaussian white
noises, the functions fX and fY represent individual dynam-
ics of the systems, gX and gY are coupling functions, and cXY

and cYX are coupling coefficients (cXY = 0 in this work). Let
scalar observables x and y be single-valued functions of the
respective states x and y and denote as ρt(y

∣∣x0, y0) condi-
tional probability density of y at time t, given an initial state
(x0, y0) at time t0 = 0. A transient causal effect X → Y with
respect to the variable y has been defined through a change in
ρt(y

∣∣x0, y0) occurring if an initial state of X is changed from
x0 to x∗

0, given y0. In a simple version, relative transient effect
reads16

F2
X→Y (t) =

〈
{E[y(t)

∣∣x0, y0 ] − E[y(t)
∣∣x∗

0, y0 ]}2

var[y(t)
∣∣x0, y0 ] + var[y(t)

∣∣x∗
0, y0 ]

〉
x0,x∗

0,y0

,

(2)
which is the squared difference between conditional means
expressed in units of the respective conditional variances to
quantify separation of the conditional distributions. Angle
brackets denote averaging over stationary distribution of y0
while x0 and x∗

0 are independently drawn from conditional
stationary distribution, given y0. Such a change in the state
of X has been called “intervention”1–5,7,8 or “state space
intervention.”10 Such an effect is a kind of “orbital” or
“transient” effects10 since it refers to non-established, finite-
time conditional expectations and variances. Specifically, the
causal effect (2) shows how far an ensemble (a beam) of phase
orbits y(t) emanating from y0 and projected to the variable y
shifts in response to the intervention in the state of X.

For the stochastic system (1), the quantity F2
X→Y (t) is

typically small for small response time t, reaches its maxi-
mal value for some intermediate t close to characteristic time
scales of X and Y, and quickly decreases at greater response
times.10 Denote that maximal value F2

X→Y ,max = sup
t>0

F2
X→Y (t)

and the respective response time τX→Y = arg sup
t>0

F2
X→Y (t).

Since such measures relate to finite-time responses, they
were also called “short-term causal effects” and found to
be well approximated by normalized prediction improvement
(Wiener–Granger causality measure).16 Therefore, F2

X→Y (t)
and F2

X→Y ,max can often be estimated from a time series
via the well established Wiener–Granger causality estimation
techniques.

To characterize an “overall contribution” of the coupling
X → Y to the observed dynamics of Y, one can determine
changes in statistical properties of the process y which would
occur if the coupling X → Y was switched off. In a simple
version, one can consider stationary (equilibrium) variance of
y. Denote σ 2

y (cXY , cYX ) this variance at given values of cou-
pling coefficients cXY and cYX . Denote σ 2

y (cXY , 0) = σ 2
y,0 this

variance in case of suppressed influence X → Y (cYX = 0).
Then, the contribution of the coupling X → Y to the variance
σ 2

y (cXY , cYX ) is defined as16

SX→Y = σ 2
y (cXY , cYX ) − σ 2

y,0

σ 2
y,0

. (3)

This characteristic belongs to the family “parametric inter-
vention–stationary effect.”10 Since it quantifies a change in a
stationary statistic which manifests itself only in the long-term
behavior, i.e., over a time interval including many character-
istic time scales of the systems, it was also called “long-term
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causal effect.”16 Here, the term “equilibrium causal effect” (in
the sense of equilibrium probability distribution) is used as
probably more accurate and convenient.

Apart from variance, any other statistical characteristics
(e.g., higher-order moments or Shannon entropy of single-
time or multiple-time stationary distributions) may well be
used, especially for nonlinear systems where variance may
appear non-informative as discussed in Sec. V B. However,
for unidirectionally coupled linear systems (Sec. IV) and
weakly nonlinear oscillators far from synchronization regime
(Sec. V B), the stationary variance is a quantity which depends
monotonously on a coupling coefficient and is simply com-
putable. So the choice of the stationary variance to define a
basic characteristic of an equilibrium causal effect seems to
be justified.

There is no general way to estimate SX→Y from an
observed time series of x and y. One such possibility could
be based on relating SX→Y to more readily estimated tran-
sient causal effects. Having estimated F2

X→Y (�t) at small �t

and knowing the value of fX→Y = d
dt

(
F2

X→Y (t)
SX→Y

)∣∣∣
t=0

, which

can be called “very short-term response” rate, one gets
SX→Y ≈ F2

X→Y (�t)/(fX→Y �t). This relationship is valid at
�t � f −1

X→Y and depends on �t, being in this sense subjec-
tive. A more objective characteristic is based on the maximal
effect F2

X→Y ,max and, therefore, of a special interest is the

ratio rX→Y = SX→Y
F2

X→Y ,max
which is free of an arbitrary temporal

parameter and shows by what number the equilibrium causal
effect exceeds (or is less than) the maximal transient causal
effect.

In order to supplement the previous study,16 I introduce
here a useful auxiliary concept of a “form-factor” mX→Y .
Note that to have a more complete theoretical picture, it
is desirable to learn a connection between very short-term
and maximal transient causal effects. It can be specified
in the form fX→Y τX→Y SX→Y

F2
X→Y ,max

= mX→Y , where mX→Y is the

form-factor describing deviation of the temporal dependence
F2

X→Y (t)/SX→Y from a straight line fX→Y t over the time
interval [0, τX→Y ] [Fig. 1(a)]. As shown in Sec. IV, finding
certain limit values of mX→Y and τX→Y and using rela-
tionship rX→Y = mX→Y /(fX→Y τX→Y ) provide approximate
closed-form expressions for rX→Y .

III. MODEL SYSTEMS AND DESIGN OF THE STUDY

Relationships between the transient and equilibrium
causal effects are found below for unidirectionally coupled
stochastically perturbed linear damped oscillators:

ẍ + 2γX ẋ + ω2
0X x = ξX ,

ÿ + 2γY ẏ + ω2
0Y y = ξY + cYX x,

(4)

where x = (x, ẋ) and y = (y, ẏ) are two-dimensional state
vectors, γX and γY are damping factors, ω0X and ω0Y

are natural frequencies, cYX is the coefficient of unidi-
rectional coupling, ξX and ξY are mutually independent
one-dimensional Gaussian white noises with autocovari-
ance functions (ACFs) 〈ξX (t1)ξX (t2)〉 = 	ξ ,X δ(t1 − t2), and

〈ξY (t1)ξY (t2)〉 = 	ξ ,Y δ(t1 − t2), 	ξ ,X and 	ξ ,Y are noise inten-
sities. If γX and γY are less than the respective natural fre-
quencies, the oscillators are weakly damped. This is the main
situation of interest here, since it differs from the overdamped
oscillators (relaxation systems) considered previously16 and
corresponding to damping factors which strongly exceed
the respective frequencies. In the latter case, the oscillator
equations (4) reduce to

ẋ + αX x = ζX ,
ẏ + αY y = ζY + c̃YX x,

(5)

where the state vectors are one-dimensional (x and y),
αX = ω2

0X /2γX , αY = ω2
0Y /2γY , c̃YX = cYX /2γY , and ζX and

ζY are white noises with 〈ζX (t1)ζX (t2)〉 = 	ζ ,X δ(t1 − t2),
〈ζY (t1)ζY (t2)〉 = 	ζ ,Y δ(t1 − t2), 	ζ ,X = 	ξ ,X /4γ 2

X , and 	ζ ,Y =
	ξ ,Y /4γ 2

Y .
For the sake of methodological clarity and systematic

development of the formulas for rX→Y , Sec. IV A starts with
the simplest system (5) repeating some results of Ref. 16
and providing additional information on the values of mX→Y .
Then, X and Y are made in turn oscillatory. Namely, Sec. IV B
considers the case of an oscillator driving a relaxation system:

ẍ + 2γX ẋ + ω2
0X x = ξX ,

ẏ + αY y = ζY + c̃YX x.
(6)

Section IV C presents the case of a relaxation system driving
an oscillator:

ẋ + αX x = ζX ,
ÿ + 2γY ẏ + ω2

0Y y = ξY + cYX x.
(7)

Section IV D considers coupled oscillators (4). To compare
results for any of the systems (4), (6), or (7) with a simpler
analogue, an oscillator can be replaced by a respective (i.e.,
reasonably well approximating) relaxation system. The lat-
ter is defined here as follows: say, for X : αX = ω2

0X /2γX for
γX /ω0X > 1, αX = γX for γX /ω0X < 1/2, and αX = ω0X /2
for 1/2 ≤ γX /ω0X ≤ 1.

All the quantities of interest, i.e., rX→Y , τX→Y , mX→Y ,
and fX→Y , are determined versus the parameters of the oscil-
lators which are varied in a wide range covering at least two
orders of magnitude. Results depend only on non-dimensional
ratios of parameters and are expressed via αX /αY in Sec. IV
A, γX /ω0X and αY /ω0X in Sec. IV B, γY /ω0Y and αX /ω0Y in
Sec. IV C, and γX /ω0X , γY /ω0X , and ω0Y /ω0X in Sec. IV D.
To determine the quantities of interest, linear ordinary differ-
ential equations for the first and second conditional moments
and linear algebraic equations for the stationary moments are
solved10 as summarized in Appendix, fX→Y and SX→Y being
always found explicitly. In addition to the methods of previous
studies,10,16 asymptotic behavior of all these quantities with
diminishing damping factors is studied and approximating
formulas for rX→Y are derived.

The quantity SX→Y is quadratic with respect to the cou-
pling coefficient cYX for the class of systems considered.
F2

X→Y ,max is also quadratic if cYX is small enough. There-
fore, the ratio rX→Y is independent of cYX , if cYX (or the
respective SX→Y ) is only moderately large. In particular, this
independence holds true to a typical error of the order of 1%
if SX→Y < 0.1 (Sec. V A). For each set of parameter values
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FIG. 1. Causal effects in coupled relaxation systems (5): (a) Relative transient causal effects versus response time for two sets of parameter values, open and
filled circles indicate maxima of the plots, long dashes show the extrapolated very short-term effect fX→Y t, vertical dashed lines guide an eye to see the distances
from both plots to the extrapolated straight line; (b) the normalized maximum response time αY τX→Y [triangles, left axis, the open and filled circles correspond
to those in Fig. 1(a)] with two pieces of its analytic approximation (thin solid lines, Sec. IV A) and the form-factor mX→Y (thick solid line, right axis) with its
analytic approximation (dashed line, Sec. IV A) versus the ratio of relaxation rates; (c) the equilibrium-to-transient effect ratio rX→Y [solid line, the open and
filled circles correspond to those in Fig. 1(a)] with its analytic approximation (8) (dashed line) versus the ratio of relaxation rates.

below, cYX is specified so to provide SX→Y = 0.01. Extensive
checks confirmed that the results for SX→Y = 0.1 are almost
indistinguishable, and even SX→Y up to 0.5 most often leads
to quite moderate changes in rX→Y .

A brief summary of the numerical results is presented in
Table I for convenience. It can be seen in advance that the
magnitude of rX→Y (which is the main quantity of interest)
covers broad ranges of possible values from those much less
than unity (0.03) to those considerably greater than unity (4.9)
for the reasonable intervals of parameter values studied. To
give an idea about the meaning of the concrete numerical val-
ues of rX→Y , I note that rX→Y ≈ 5 shows that seemingly small
maximal prediction improvement (Wiener–Granger causal-
ity measure) about several percents (e.g., F2

X→Y ,max = 0.05)
corresponds to quite noticeable equilibrium causal effect
(SX→Y = 0.25, i.e., stationary variance increases by a quarter
due to the presence of coupling). Hence, for some systems so
small prediction improvements cannot be ignored as insignifi-
cant. An opposite situation is also possible, e.g., rX→Y ≈ 0.03
shows that a quite large prediction improvement of 30% cor-
responds to a very small equilibrium causal effect of SX→Y =
0.01, i.e., 1%. Thus, for some systems even large prediction
improvements correspond to couplings whose overall contri-
bution to the variance is negligibly small. It is thus important
to learn conditions for both situations in order to be able to
interpret the Wiener–Granger causality estimates properly.

IV. ANALYTIC AND NUMERICAL RESULTS

A. Coupled relaxation systems

The equilibrium causal effect for the system (5) reads
SX→Y = c2

YX σ 2
x,0/[2αY (αX + αY )σ 2

y,0] and the response rate is
fX→Y = (αX + αY )/2. Relative transient causal effects are
presented in Fig. 1(a) for two cases: a fast system driving a
slow one (αX = 1, αY = 0.1) and vice versa (αX = 0.1, αY =
1). In both cases, fX→Y is the same, but the maximum response
time differs: τX→Y ≈ 1.25/αX if the driving system is faster
and τX→Y ≈ 2.3/αY if the driven system is faster [Figs. 1(a)
and 1(b)]. The form-factor also differs: in the first case, the
extrapolated value of the very short-term effect fX→Y τX→Y

exceeds the value of F2
X→Y (τX→Y )/SX→Y by mX→Y ≈ 3 times

and in the second case by mX→Y ≈ 2 times [Figs. 1(a) and
1(b)]. Finally, one gets rX→Y ≈ 4.5 in the first case and
rX→Y ≈ 1.5 in the second case [Fig. 1(c)].

Overall, within a reasonable range 0.1 ≤ αX /αY ≤ 10
comprising both close and considerably different relaxation
times, the value of mX→Y rises from 2 to 3 almost linearly in
ln(αx/αy), the relative error of such approximation being less
than 5% [Fig. 1(b), dashed and thick solid lines], and

rX→Y = 3.1 + 0.75 ln(αX /αY ), (8)

with the relative error less than 10% [Fig. 1(c)]. The
maximum response time [Fig. 1(b), triangles] is accurately



075303-5 Dmitry A. Smirnov Chaos 28, 075303 (2018)

TABLE I. Brief summary of the numerical values obtained for the causal effects under study. The first column—model systems. The second column—ranges
of parameter values checked. The third column—ranges of the obtained values of the equilibrium-to-transient causal effects ratio rX→Y . The fourth
column—maximum response time τX→Y . The fifth column—form-factor mX→Y .

Systems under study Parameters values presented rX→Y τX→Y mX→Y

Relaxation system X drives relaxation system Y (5) 0.1 ≤ αX /αY ≤ 10 1.5 − 4.6 (0.12 − 2.5)/αY 2.1 − 3.0
Oscillator X drives relaxation system Y (6) 0.1 ≤ αY /ω0X ≤ 10, 0.01 ≤ γX /ω0X ≤ 100 0.17 − 3.5 (0.43 − 30.0)/ω0X 1.6 − 4.0
Relaxation system X drives oscillator Y (7) 0.1 ≤ αX /ω0Y ≤ 10, 0.01 ≤ γY /ω0Y ≤ 100 0.13 − 4.9 (0.13 − 12.0)/ω0Y 1.2 − 3.3
Oscillator X drives oscillator Y (4) 0.01 ≤ γX /ω0X ≤ 100, 0.1 ≤ γY /ω0Y ≤ 10, 0.2 ≤ ω0Y /ω0X ≤ 5 0.03 − 4.5 (0.63 − 120)/ω0X 0.94 − 3.3

approximated by two pieces [Fig. 1(b), thin solid lines]:
τX→Y = [0.1 + ln(1 + αY /αX )]/αY for 0.1 ≤ αX /αY < 1 (the
error is less than 0.5%) and τX→Y = (1.25 − 0.5αY /αX )/αX

for 1 < αX /αY ≤ 10 (the error is less than 5%). These rough
approximations are convenient for fast practical assessments.
More precise approximate expressions valid over a broader
interval of αX /αY are readily obtained, but appear more
cumbersome, so they are not reported here.

B. An oscillator drives a relaxation system

The system (6) exhibits features both different from
and common with the simpler system (5). Here and below,
explicit formulas for SX→Y are somewhat cumbersome and
not reported. The very short-term response rate is fX→Y =
[ω2

0X /(2γX + αY ) + αY ]/2. It is close to that of the system (5)
with αX = ω2

0X /(2γX ) if γX /ω0X 	 1 (for any αY ). Numeri-
cal results show that γX /ω0X ≥ 3 suffices for the difference
in rX→Y between the system (6) and the respective system
(5) to be less than 6% for any αY /ω0X . For γX /ω0X ≥ 2, this
difference is less than 12%.

Another, less expected, case of closeness in rX→Y for the
systems (6) and (5) is very large relaxation rate of the driven
system αY /ω0X 	 1 and almost any γX /ω0X [Fig. 2(a)].
Namely, for αY /ω0X ≥ 10, the difference in rX→Y between the
two systems is less than 10% if γX /ω0X ≥ 2 or γX /ω0X ≤ 1/6
and less than 20% if γX /ω0X ≥ 3/2 or γX /ω0X ≤ 1/3 [Fig.
2(d)]. Recall that in case of γX /ω0X ≤ 1/3 the respective
relaxation system is that with αX = γX : then the maximum
response times for the systems (5) and (6) are close to each
other, temporal dependencies F2

X→Y (t)/SX→Y over long inter-
vals are mutually close too [Fig. 2(a)] with a superposed
oscillatory component for the system (6). The closeness can
be anticipated noticing fX→Y ≈ αY /2 for large αY /ω0X in
the system (6) similarly to the respective system (5) with
αY 	 αX . Thus, the property of the relaxation system with
αX = γX to reflect the exponentially decaying envelope of the
oscillator’s ACF suffices to reproduce the overall behavior
of the transient causal effect in Fig. 2(d). Some difference
between the systems (5) and (6) occurs for an intermediate
damping 1/3 < γX /ω0X < 2 where the relative difference in
rX→Y reaches 26% (and 50% between the maximum response
times) for γX /ω0X = 1/2. This is because ACF for such an
oscillator is poorly approximated by a relaxation system. Still,
the difference is moderate, not by an order of magnitude.

The strongest difference between the systems (6) and (5)
holds in case of a weakly damped oscillator γX /ω0X ≤ 1/3
and a slow relaxation system αY /ω0X ≤ 1/2. The stronger the
inequalities, the greater this difference [Figs. 2(c) and 2(f)].

For γX /ω0X � 1 (i.e., for narrow-band oscillator), the max-
imum response time tends to τX→Y ≈ 2/ω0X [Fig. 2(h)] and
the form-factor to mX→Y ≈ 1.6 [Fig. 2(i)]. The latter num-
ber can be understood as being close to the form-factor for a
sine function which equals π/2. Based on these approximate
limits, one can derive an explicit closed-form expression:

rX→Y = 1.6

(
ω0X

2γX + αY
+ αY

ω0X

)−1

, (9)

which is quite accurate in the range γX /ω0X ≤ 1/3 and
αY /ω0X ≤ 1/2 [Fig. 2(f), long dashes]. In particular, for
γX /ω0X = αY /ω0X = 0.1 Eq. (9) gives rX→Y = 0.48 which
is very close to the exact rX→Y = 0.46. Thus, in order to
determine the equilibrium causal effect one must divide the
maximal transient causal effect by 2 instead of multiplying
it by some number from 1.5 to 4.5 as it holds for the sys-
tem (5). In the limit of infinitely narrow-band oscillations
(γX /ω0X → 0), for αY /ω0X = 0.1 one gets rX→Y = 0.16, i.e.,
the equilibrium causal effect is even six times as small as
the maximal transient causal effect. Observing that here a
fast oscillatory system drives a slower relaxation system, one
could erroneously guess rX→Y ≈ 5 using a naive analogy
with the system (5). This demonstrates that the case of an
oscillatory driving system is quite different.

For an intermediate relaxation rate αY /ω0X = 1, the for-
mula (9) is not accurate but can be adjusted if the maximum
response time is corrected to τX→Y = 1.5/ω0X [Fig. 2(h)].
Then, the factor 1.6 in (9) should be replaced by 2.1 and
the approximation still works well [Fig. 2(e), long dashes].
For other cases of intermediate relaxation rates and moder-
ate damping [thick solid lines, circles, and triangles in Figs.
2(g)–2(i)], the ratio rX→Y and other quantities of interest also
cannot be approximated well by the formula (9) and are not
close to those for the system (5). They take on intermediate
values which can be estimated in practice via interpolation
between nearby points accessible to approximations via one
of the above two ways. In the specific case of αY /ω0X = 1
and γX /ω0X = 1, one gets rX→Y = 1.75 quite different from
rX→Y = 2.5 for the respective system (5).

To summarize, the equilibrium-to-transient causal effects
ratio rX→Y may strongly differ between the cases of relax-
ation (5) and oscillatory (6) driving systems, its value for
the respective system (5) being always an upper bound to
that for the system (6). The strongest difference occurs for
a weakly damped oscillator and a slow driven system, where
the approximate formula (9) applies.
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FIG. 2. Causal effects in the system (6): an oscillator drives a relaxation system. The first row shows relative transient causal effects for the system (6) with
γX /ω0X = 0.1 (solid lines) and for the respective system (5) (dashed lines). The second row shows the ratio rX→Y for the system (6) (solid lines) and for the
respective system (5) (short dashes) along with the approximation (9) [long dashes, the factor 2.1 is used instead of 1.6 in Fig. 2(e)], αY /ω0X = 10 in Figs.
2(a) and 2(d), αY /ω0X = 1 in Figs. 2(b) and 2(e), and αY /ω0X = 0.1 in Figs. 2(c) and 2(f). The third row shows rX→Y (g), the relative maximum response time
ω0X τX→Y (h), and the form-factor mX→Y (i) for different relaxation rates of the driven system αY /ω0X versus damping γX /ω0X in the driving oscillator.

C. A relaxation system drives an oscillator

The results for the system (7) appear similar to those for
the system (6) with some additional complexities. The very
short-term response rate is fX→Y = (3/8)[αX + ω2

0Y /(2γY +
αX )], i.e., characteristics of the driving and driven systems
are interchanged and an additional factor of 3/4 appears in
comparison with the system (6). In the overdamped case of
γY /ω0Y 	 1, one could expect a coincidence between the
results for the system (7) and the respective system (5), i.e.,
that with αY = ω2

0Y /(2γY ). Indeed, such coincidence takes
place, but under an additional condition of γY 	 αX (specifi-
cally, γY > 5αX suffices). This is because the driven system in
(7) possesses two characteristic times corresponding to small
relaxation rate ω2

0Y /2γY of the variable y and large relaxation
rate γY of the variable ẏ. The latter is damped in the free sys-
tem Y, but under the influence of a very fast system X (with

γY ≤ αX ) this “half-degree of freedom” of the system Y gets
excited too. This makes a difference with the system (6) where
that half-degree of freedom enters only the driving system
and is not excited. Now, for γY 	 αX the systems (7) and (5)
should be almost the same, why do the values of fX→Y dif-
fer then by the factor of 3/4? This apparent contradiction is
due to the fact that fX→Y is defined via a derivative and so
implies infinitesimally small response times t, less than any
characteristic time scales of the system. The systems (7) and
(5) do differ at time scales less than 1/γY . If the derivative in
the definition of fX→Y is replaced by a finite difference over
a larger response time t, e.g., 5/γY or greater, then numerical
results show that the transient causal effects for the systems
(7) and (5) coincide as expected.

Another complication is that for a very fast driving sys-
tem X [αX /ω0Y 	 1, Figs. 3(a) and 3(d)] the results are
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FIG. 3. Causal effects in the system (7): a relaxation system drives an oscillator. The first row shows relative transient causal effects for the system (7) with
γY /ω0Y = 0.1 (solid lines) and for the respective system (5) (dashed lines). The second row shows the ratio rX→Y for the system (7) (solid lines) and for the
respective system (5) (short dashes) along with the approximation (10) [long dashes, the factor 4.5 is used instead of 0.9 in Fig. 3(e)], αX /ω0Y = 10 in Figs.
3(a) and 3(d), αX /ω0Y = 1 in Figs. 3(b) and 3(e), and αX /ω0Y = 0.1 in Figs. 3(c) and 3(f). The third row shows rX→Y (g), the relative maximum response time
ω0Y τX→Y (h), and the form-factor mX→Y (i) for different relaxation rates of the driving system αX /ω0Y versus damping γY /ω0Y in the driven oscillator.

not so close to the respective relaxation systems (5) as they
are for the system (6) with αY /ω0X 	 1. The difference in
rX→Y between the system (7) and the respective system (5)
is about 20% for a weakly damped oscillator Y and about
10% for a strongly damped oscillator with γY /ω0Y = 10 [Fig.
3(d)]. This should also be attributed to the excited second
variable of the subsystem Y in (7) at variance with the
system (6).

In other respects, the results for the system (7) are similar
to those for the system (6), including small ratios rX→Y for
a narrow-band oscillator Y (γY /ω0Y � 1) and a slow driving
system (αX /ω0Y � 1) in Figs. 3(c) and 3(f). Limit values of
τX→Y and mX→Y somewhat differ from those for the system
(6): the maximum response time tends to τX→Y = 3/ω0Y [Fig.
3(h)] and the form-factor to mX→Y = 1. The latter tendency
is already seen in Fig. 3(i); however, one still has mX→Y =
1.2 even for αX /ω0Y = 0.1. Then, an approximate asymptotic

expression reads

rX→Y = 0.9

(
ω0Y

2γY + αX
+ αX

ω0Y

)−1

. (10)

For an infinitely narrow-band oscillator, one gets rX→Y =
0.9αX /ω0Y which is almost two times as small as that for
the system (6) with αY /ω0X = αX /ω0Y . For αX /ω0Y = 0.1,
an approximate value of rX→Y = 0.09 is reasonably close to
the exact value of rX→Y = 0.13 [Fig. 3(g)], i.e., the maximal
transient effect is 7.5 times as great as the equilibrium causal
effect.

As in the previous example, the results for intermediate
parameter values can be obtained via special adjustment of
coefficients or via interpolation. For example, for αX /ω0Y = 1
[Figs. 3(b) and 3(e)] it holds τX→Y = 1.4/ω0X [Fig. 3(h), thick
line] and mX→Y = 2.4 [Fig. 3(i), thick line] that gives another
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multiplier in Eq. (10) and a good approximation in Fig. 3(e)
(long dashes).

To summarize, the equilibrium-to-transient causal effects
ratio rX→Y may strongly differ between the cases of relaxation
(5) and oscillatory (7) systems Y, its value for the respective
system (5) always being an upper bound for that in the sys-
tem (7). The strongest difference occurs for a weakly damped
oscillator and a slow driving system, where the formula (10)
is accurate.

D. Coupled oscillators

The central point of this study is the oscillators
(4). The very short-term response rate reads fX→Y =
3
16

(ω2
0Y −ω2

0X )
2+4(γX +γY )(γX ω2

0Y +γY ω2
0X )

γX ω2
0X +γY ω2

0Y +4γX γY (γX +γY )
. If either γX /ω0X ≥ 3 or

γY /ω0Y ≥ 3, then this case reduces to the respective system
(6) or (7). Therefore, the most interesting case is that of simul-
taneously small values of γX /ω0X ≤ 1/3 and γY /ω0Y ≤ 1/3.
It divides into three sub-cases according to the frequencies
ratio ω0Y /ω0X which can be (i) much less than unity (a fast
oscillator drives a slow one, left columns in Figs. 4 and 5), (ii)
much greater than unity (a slow oscillator drives a fast one,
right columns in Figs. 4 and 5), and (iii) about unity (close
oscillation frequencies, central column in Figs. 4 and 5).

The case (i) is illustrated in Figs. 4(a) and 4(d) where
ω0Y /ω0X = 1/5 and γY /ω0Y = 0.1, and the results are com-
pared to the respective system (6) with αY = γY . The results
for the systems (4) and (6) are not strongly different, espe-
cially for 0.05 ≤ γX /ω0X ≤ 0.5. Overall, the ratio rX→Y is
somewhat less for the system (4). Thus, for γX /ω0X = 0.01
it holds rX→Y = 0.035 [Figs. 4(d) and 5(a)] compared to
rX→Y = 0.056 for the system (6), τX→Y = 2.8/ω0X [Fig. 5(d)]
compared to τX→Y = 2.3/ω0X , and mX→Y = 1.6 [Fig. 5(g)]
for both systems. Using the latter two values and taking
γX /ω0X → 0 and γY /ω0Y → 0, one gets approximately

rX→Y = 3ω0X (γX ω2
0X + γY ω2

0Y )

(ω2
0Y − ω2

0X )
2 . (11)

For strongly different frequencies, it becomes rX→Y ≈
3

[
γX
ω0X

+ γY
ω0Y

(
ω0Y
ω0X

)3
]

. If γX /ω0X and γY /ω0Y are of the same

order, it further simplifies to rX→Y ≈ 3γX /ω0X . For γX /ω0X =
0.01 and γY /ω0Y = 0.1, even the latter approximation gives a
reasonable result of rX→Y = 0.03, while the full expression
for fX→Y with the corresponding asymptotic τX→Y and mX→Y

[Fig. 4(d), long dashes] gives rX→Y = 0.035 with the error
less than 1%.

The case (ii) is illustrated in Figs. 4(c) and 4(f), where
ω0Y /ω0X = 5 and γY /ω0Y = 0.1. The ratio rX→Y = 0.18

FIG. 4. Causal effects in the general system (4) with γY /ω0Y = 0.1. The first row shows relative transient causal effects in the system (4) (solid lines) with
γX /ω0X = 0.1 and for the respective system (6) (dashed lines). The second row shows the ratio rX→Y for the system (4) (solid lines) and for the respective
system (6) (short dashes), ω0Y /ω0X = 1/5 in Figs. 4(a) and 4(d), ω0Y /ω0X = 1 in Figs. 4(b) and 4(e), and ω0Y /ω0X = 5 in Figs. 4(c) and 4(f). Long dashes are
approximations: Eq. (11) in Fig. 4(d), Eq. (13) in Fig. 4(e), and Eq. (12) in Fig. 4(f).
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FIG. 5. Causal effects in the system of coupled oscillators (4). The first row shows the ratio rX→Y , the second row—the relative maximum response time
ω0X τX→Y , and the third row—the form-factor mX→Y for different damping factors γY /ω0Y of the driven oscillator [the legend in Fig. 5(a)]. The first column
corresponds to the ratio of frequencies ω0Y /ω0X = 1/5, the second column—to ω0Y /ω0X = 1, and the third column—to ω0Y /ω0X = 5.

appears much less than that for the respective system (6),
i.e., for an approximation of the envelope of the ACF of
the driven oscillator using a relaxation system. In fact, rX→Y

varies from 0.16 to 0.19 for the entire range of γX /ω0X in
Fig. 4(f). For γX /ω0X = 0.01, it holds rX→Y = 0.17 [Figs. 4(f)
and 5(c)], τX→Y = 0.63/ω0X [half the period of the driven
oscillator, Fig. 5(f)], and mX→Y = 0.95 [Fig. 5(i)]. Using the
latter two values, γX /ω0X → 0 and γY /ω0Y → 0, one gets
approximately [Fig. 4(f), long dashes]

rX→Y = 8ω0X (γX ω2
0X + γY ω2

0Y )

(ω2
0Y − ω2

0X )
2 . (12)

For strongly different frequencies, it becomes rX→Y ≈
8ω0X
ω0Y

[
γY
ω0Y

+ γX
ω0X

(
ω0X
ω0Y

)3
]

. For close relative bandwidths, it

further reduces to rX→Y ≈ 8γY ω0X /ω2
0Y . For γX /ω0X = 0.01

and γY /ω0Y = 0.1, even the latter formula gives an accurate
approximate value of rX→Y = 0.16.

The case (iii) is illustrated in Figs. 4(b) and 4(e) where
ω0Y = ω0X and γY /ω0Y = 0.1. It is very different from both
cases (i) and (ii). The difference is two-fold. First, the ratio
rX→Y increases with decreasing γX /ω0X < 1 while γX /ω0X is
moderately small (greater than 0.2). This can be explained
using Figs. 5(e) and 5(h) where for intermediate 0.25 ≤
γX /ω0X ≤ 0.6 and under decreasing γY /ω0Y down to 0.1 the
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maximum response time stabilizes at τX→Y ≈ 2.2/ω0X [Fig.
5(e)] and the form-factor at mX→Y ≈ 1.3 [Fig. 5(h)]. Hence,
one gets an approximation [Fig. 4(e), long dashes]

rX→Y = 0.8(γX ω2
0X + γY ω2

0Y )

(ω2
0Y − ω2

0X )
2 + 4(γX + γY )(γX ω2

0Y + γY ω2
0X )

,

(13)
reducing to rX→Y ≈ 0.8 ω0X

γX +γY
for equal frequencies. Thus,

one observes increasing rX→Y with decreasing γX /ω0X or
γY /ω0Y .

The approximation (13) would be accurate for even
smaller γX /ω0X if one related the first (i.e., attained at small-
est t) maximum of F2

X→Y (t) to the equilibrium causal effect.
However, the second difference of the case (ii) is that under
decreasing damping terms the dependence F2

X→Y (t) exhibits
a progressively greater number of local maxima [Fig. 4(b)].
Its global maximum is attained at progressively greater τX→Y

which changes via jumps by about half an oscillation period
[Fig. 5(e)]. Therefore, the maximal transient causal effect
rises faster than the first maximum of F2

X→Y (t) and the ratio
rX→Y starts to decrease with a further decrease of γX /ω0X

[at γX /ω0X < 0.2 in Fig. 4(e)]. In particular, it reaches the
maximal value of rX→Y ≈ 2.6 at γX /ω0X ≈ 0.1. For smaller
damping γY /ω0Y = 0.01 (not shown), the ratio rX→Y reaches
a greater maximal value of 3.9 at a smaller γX /ω0X = 0.05.
The value of rX→Y for so narrow-band oscillators in the
system (4) coincides with that for the relaxation systems
(5) whose relaxation rates are αX = γX and αY = γY , i.e.,
accounting only for the decaying envelopes of the oscillators’
ACFs suffices to describe temporal dependences F2

X→Y (t). It
leads to a conjecture that for γY /ω0Y → 0 the ratio rX→Y takes
on progressively greater maximal values tending to 4.9 [max-
imal possible value of rX→Y for the system (5) as shown in
Ref. 16] attained at progressively smaller values of γX /ω0X .

Finally, Fig. 6 shows the phenomenon of resonant behav-
ior of the ratio rX→Y . The usual linear resonance in the system
(4) with γX /ω0X � 1 and γY /ω0Y � 1 manifests itself as a
relatively narrow peak in the variance σ 2

y (0, cYX ) and, hence,
in SX→Y [Fig. 6(b), solid lines] under variation in the driv-
ing frequency ω0X for all other parameters fixed, including
the coupling coefficient (see caption to Fig. 6). However, the
maximal transient effect F2

X→Y ,max also exhibits a resonant
behavior [Fig. 6(a), solid lines] so the question about rX→Y is
not clear in advance. Figure 6(c) shows that the resonance in
rX→Y is seen as clearly as that in SX→Y for reasonably narrow-
band oscillators (solid lines) and, moreover, a broad peak in
rX→Y is observed even for strongly damped oscillators where
the resonances in F2

X→Y ,max and SX→Y are not seen (Fig. 6,
dashed lines).

In summary, the oscillatory system (4) can exhibit the
ratios rX→Y both very small [less than those for the respec-
tive systems (6) and (7)] and quite large [close to the maximal
one for the system (5)]. The case of equal frequencies in the
system (4) provides the largest possible rX→Y (13), while the
smallest ratios are observed when a fast oscillator drives a
slow one (11). Similarly, the maximum response time for the
system (4) varies in a wider range and depends on the oscilla-
tors’ parameters in a more complicated way than that for the
respective systems (5), (6), and (7).

V. DISCUSSION

The equilibrium-to-transient causal effects ratio rX→Y is
found to vary in a wide range (Table I) from values arbitrar-
ily close to zero (one subsystem is narrow-band, another is
either wide-band or has a different frequency) up to about
5 (two narrow-band oscillators with equal frequencies). The
formulas (8)–(13) relate the equilibrium causal effect SX→Y

to the maximal transient causal effect F2
X→Y ,max. Expressions

for SX→Y via the very short-term response rate and, hence,
via F2

X→Y (�t) are also derived above. These formulas can be
applied in practice to extract SX→Y from time series (Sec. V
C). Consideration of this issue is preceded by the discussion
of limitations and possible extensions of the formulas (Sec. V
A) as well as complications due to nonlinearity (Sec. V B).

A. Limitations and extensions

The first limitation consists in the condition of a suffi-
ciently weak coupling which is necessary to obtain expres-
sions for rX→Y independent on the coupling coefficient cYX .
Previous numerical experiments16 have shown that the for-
mula (8) for the relaxation systems (5) gives the ratio rX→Y

with the relative error less than 10%, if SX→Y is less than a cer-
tain upper bound depending on parameters: SX→Y < 0.17 for
αX /αY = 1, SX→Y < 0.4 for αX /αY = 10, and SX→Y < 0.1
for αX /αY = 0.1. Numerical results here show that the respec-
tive conditions for oscillatory systems are similar or even
milder. If the relaxation system X in (5) is replaced with
a strongly damped oscillator (αX = γX , γX /ω0X ≈ 1), upper
bound values of SX→Y assuring less than 10% error of the
approximation (9) are close to those for the approximation (8)
at the respective αY .

If the damping in X is smaller, e.g., γX /ω0X = 0.05,
the situation differs. For αY /ω0X = 0.02, the upper bound
SX→Y is about 0.25, and for αY /ω0X = 10 it is about 0.3. For
αY /ω0X = 1 the error of the approximation (9) remains less
than 7% even for SX→Y up to unity. If the relaxation sys-
tem Y in (5) or (6) is replaced with an oscillator, the upper
bounds for applicability of the respective formulas (10)–(13)
remain almost unchanged. Thus, the obtained formulas for
rX→Y remain valid within the error of 10% up to considerable
values of SX→Y (typically, from 0.2 to 0.4), the strictest con-
dition SX→Y < 0.1 corresponds to a relaxation system driving
a much faster one. If necessary, for greater values of SX→Y

the ratio rX→Y can be corrected to higher values maintaining
the validity of the approximating formulas. However, such
cases of strong couplings are often not the most interesting
in practice, so the limitation on coupling strength is not very
restrictive.

Another limitation is related to possibly bidirectional
couplings. The equilibrium causal effect is then determined by
the coupling coefficients in both directions, while the transient
causal effects are determined mainly by the respective cou-
pling coefficient if the coupling strength is not too large. After
zeroing one of the coupling coefficients, one gets unidirec-
tionally coupled systems and can introduce “unidirectional”
causal effect for the respective direction. In the previous study
of relaxation systems,16 the equilibrium causal effect (3) has
appeared to be a function of such elemental unidirectional
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FIG. 6. Causal effects in the system of coupled oscillators (4) versus the ratio of frequencies for ω0Y = 1, cYX = 0.1, σ 2
0x = σ 2

0y = 1, γX /ω0Y = 0.1, and different
damping factors of the driven oscillator (the legend): (a) the maximal transient causal effects; (b) the equilibrium causal effects; (c) the ratio rX→Y of those effects.
Resonant character is exhibited by all plots if the damping is weak enough.

effects and some other system parameters. A search for such a
function in case of oscillatory systems (4) may deserve further
study and the two kinds of equilibrium causal effects (full and
unidirectional) seem to be a relevant extension of the concept.

A very restrictive condition is the form of coupling func-
tion. All the formulas are obtained here for the simplest (but
quite general as a first approximation) linear couplings in Eqs.
(4)–(7). If coupling is parameterized in another way (e.g.,
if it is diffusive), expressions for the ratio rX→Y may well
appear different. This is an inevitable property of the equilib-
rium causal effect which compares dynamics at two values of
coupling coefficient and, therefore, depends on the coupling
parameterization by definition. Since the coupling considered
here is elemental, the obtained formulas may well be use-
ful to be generalized to other, broader classes of coupling
functions.

B. Nonlinear oscillators

Nonlinearity of individual oscillators (4) can often violate
the obtained relationships, but can also leave them unchanged.
As an example of the latter situation let the restoring force
term ω0Y y in (4) or (7) be replaced with ω0Y y(a + by2).
The oscillator Y becomes nonlinear with “hard spring” non-
linearity for a = 1, b > 0 (oscillation period decreases with
amplitude) and “soft spring” for a = 1, b < 0. The equilib-
rium causal effect can be shown to decrease (increase) with
|b| in the former (latter) case since the restoring force rises
(decreases) with amplitude. The transient causal effect is
expected to depend on b in approximately the same way for
the same reason. If so, the ratio rX→Y should quite weakly
depend on b if the latter is not too large (|b| < 1/〈y2〉 should
hold in any case). Accordingly, the formulas (9)–(13) for
rX→Y should also work well in a wide enough range of |b|.
Obviously, they remain quite accurate if |b| is sufficiently
small.

As an example of inapplicability of the obtained for-
mulas, consider a double-well (a = −1, b = 1) overdamped
(γY 	 ω0Y ) oscillator Y. This system demonstrates random
jumps between two states “0” (around y = −1) and “1”
(around y = 1) with frequency rising with the noise intensity
	ξ ,Y . A simplified model of this oscillator useful to obtain
exact results is a discrete-time two-state Markov chain with

transition probabilities qY0 (from state “0” to state “1”) and
qY1 (from state “1” to state “0”). The values qY0 �= qY1 cor-
respond to asymmetric potential of the original oscillator or
different noise intensities in the two wells. For definiteness, let
the system X be a similar two-state Markov chain with param-
eters qX 0 and qX 1. Then, an influence X → Y is expressed via
changes in the transition probabilities of Y depending on the
current state of X. Let qY0 + �qY0|1 be the probability for Y
to jump from “0” to “1” under the condition that the current
state of X is “1,” and qY0 + �qY0|0 under the condition that
it is “0.” Similarly, the probabilities to jump from “1” to “0”
read qY1 + �qY1|1 and qY1 + �qY1|0 . The quantities �qY are
coupling strengths. Numerical experiments show that quite
different values of rX→Y can be encountered.

First, it may be that the equilibrium distribution of Y does
not change with the coupling strength while transient causal
effects rise strongly and even tend to infinity, i.e., rX→Y = 0
for arbitrarily strong couplings. This happens for qY0 = qY1 =
qX 0 = qX 1 and a “symmetric influence,” i.e., if the “0” state
of X increases the probability for Y to remain at “0” and to
quit “1” by the same value of �qY1|0 , and the “1” state of X
changes by the same value the probability for Y to remain at
“1” and to quit “0.”

Second, the equilibrium causal effect may be negative,
i.e., rX→Y < 0. It occurs for qX 0 �= qX 1 and symmetric cou-
pling since the latter decreases the equilibrium variance of
Y. It also occurs if qX 0 = qX 1 and coupling is asymmetric:
�qY1|0 = −�qY0|0 > 0 and �qY0|1 = �qY1|1 = 0.

Third, rX→Y may well be positive as in the linear cases,
but take on much greater values. It happens if qY0 �= qY1 and
coupling tends to make these probabilities closer to each other,
e.g., the ratio rX→Y ranges almost up to 100 for qX 1 = qY0 =
0.1, qY1 = qX 0 = 0.5, and symmetric coupling, i.e., it exceeds
the maximal values of rX→Y obtained for the linear systems
above by more than an order of magnitude.

To summarize, nonlinear systems are much richer in
terms of possible relationships between transient and equi-
librium causal effects. Further study of the latter for some
basic classes of nonlinear oscillators seems quite rele-
vant. However, sufficiently weak nonlinearity allows one to
apply the obtained formulas (8)–(13) at least to get a first
approximation.
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C. Application procedure

The relationships (8)–(13) can be applied in practice to
extract the equilibrium causal effect SX→Y from a time series
of coupled oscillators X and Y. In doing so, one assumes that
one of the model equations (4)–(7) is valid, i.e., the limitations
discussed above are not met. The latter can be learnt from a
priori information and plots of the sample ACFs. Using the
latter, one can also estimate relaxation times and oscillation
periods of both systems assuming that the coupling is not
too strong, so the ACF is not distorted as compared to the
uncoupled case.

As mentioned above, the transient causal effects at var-
ious times can be estimated using normalized prediction
improvements (the Wiener–Granger causality measure) at
respective prediction times. At small prediction times, they
provide short-term transient causal effects F2

X→Y (�t). Being
maximized over prediction times, they give the maximal tran-
sient causal effect F2

X→Y ,max. Next, one can use either the
estimate of F2

X→Y ,max and the approximate formulas (8)–(13)
or the estimate of F2

X→Y (�t) and the respective expressions
to obtain the value of SX→Y . Ideally, both versions should
give coinciding results which can be a further test confirm-
ing the validity of the model assumed. If the two estimates
disagree strongly, then the validity of the model assump-
tions is questioned. In particular, if the dynamics over small
times is dominated by noise, so the maximal transient causal
effect is estimated more reliably, the latter should be preferred
for estimation of SX→Y .

Details of the application procedure deserve a careful
study. In particular, selection of state variables65 for an anal-
ysis may well appear appropriate. Here, I only mention that
first attempts of applying the formulas obtained here to real-
world time series already gave meaningful improvements
of the previous results16,66 concerning the following climate
example. A unidirectional influence of equatorial Atlantic
mode (its monthly index X represents sea surface tempera-
ture in the equatorial Atlantic Ocean) on the El-Nino/Southern
Oscillation (ENSO, its monthly index Y represents sea sur-
face temperature in the eastern equatorial Pacific Ocean) was
found in several works.67–69 This influence was estimated16,66

to determine 12% of the ENSO index variance assuming the
validity of the simplest model (5). However, ACF of the
ENSO index exhibits signs of the strongly damped oscillator
with γY /ω0Y ≈ 0.5, so the model (7) should be more rel-
evant. The corresponding formula (10) gives SX→Y ≈ 0.25,
i.e., about twice as large, which is a considerable differ-
ence. More detail on this and other climate examples will be
reported elsewhere.

VI. CONCLUSIONS

Possible numerical values of the equilibrium-to-transient
causal effects ratio rX→Y are studied for unidirectionally
coupled stochastic linear oscillators, including the cases of
weakly and strongly damped oscillators, under the condition
that the coupling is linear and not too strong. This ratio can
approach an upper bound of approximately 5 for (i) two over-
damped oscillators when relaxation time of the driver is much

smaller than that of the response and (ii) two quite weakly
damped (i.e., very narrow-band) oscillators with very close
peak frequencies. This ratio can be arbitrarily small: if one of
the oscillators is weakly damped and the other one is either
strongly damped or possesses a different peak frequency, then
rX→Y is of the order of the ratio “damping factor-to-natural
frequency” for the weakly damped oscillator, its values down
to 0.03 are possible if the oscillators’ time scales differ by no
more than an order of magnitude. This range differs from 1 ≤
rX→Y ≤ 5 reported previously16 for overdamped oscillators.
Dependencies of both causal effects and rX→Y on parameters
of the oscillators are shown, including resonance in rX→Y for
narrow-band oscillators.

Simple approximate formulas (8)–(13) for the ratio rX→Y

depending on oscillation periods and relaxation times are
obtained. They can be used to extract equilibrium causal
effects from a time series recorded at a fixed coupling
strength. Such applications can be performed using estimates
of transient causal effects provided by the well-established
Wiener–Granger causality. Being impossible at the first
glance, estimation of equilibrium causal effects appears
feasible for well defined (and sufficiently broad) class of
oscillatory systems considered here. Limitations and possi-
ble generalizations of the obtained relationships are discussed
in terms of the strength, structure (e.g., uni- or bidirection-
ality), and functional form (parameterization) of coupling
and nonlinearity of the oscillators. The latter two circum-
stances impose the most considerable restrictions and seem
to deserve further studies for selected classes of nonlinearities
and coupling parameterizations.

Finally, it can be noted that such a popular and widely
used coupling characteristic as transfer entropy18 is an
information-theoretic version of the Wiener–Granger causal-
ity and for linear systems it is equivalent59 to the prediction
improvement in terms of mean squared errors used here.
For nonlinear systems, transfer entropy and such prediction
improvement are different quantitative characteristics of tran-
sient causal effects. As well, for nonlinear systems one may
well be interested in other forms of equilibrium causal effects,
e.g., characterizing equilibrium probability distributions in
the information-theoretic terms. Relationships between such
characteristics and transfer entropy for nonlinear systems may
well appear more universal than the ratio studied in this work.
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APPENDIX: COMPUTATIONAL TECHNIQUE

The technique used to determine both equilibrium and
transient causal effects is briefly described here; more details
are given in Refs. 10 and 16. A linear stochastic system used
here as a basic object can be written in the form ż = Az + ξ ,
where z is a d-dimensional state vector consisting of the com-
ponents x and y, matrix A specifies both individual properties
of X and Y and coupling, ξ is d-dimensional Gaussian white
noise with zero mean, and ACF 〈ξ(t1)ξT(t2)〉 = 	δ(t1 − t2),
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T standing for transposition. For an initial state z(0) = z0

and any t > 0, the conditional distribution ρt(z(t) |z(0) = z0)

is Gaussian with expectation mz(t) and covariance matrix
Czz(t). The latter two quantities can be found via solving
linear ordinary differential equations ṁz = Amz and Ċzz =
ACzz + CzzAT + 	. Having these conditional moments, one
can find the transient causal effects based on the definition (2)
in a straightforward manner.10 The equilibrium causal effect is
found after finding the stationary (equilibrium) variances via
solving the linear algebraic equation ACzz + CzzAT = −	.
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