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a b s t r a c t 

We study the problem of reconstructing the model equations for the network of 3rd order neuron-like 

oscillators from time series. The nodes of the network are phase-locked loop systems, which are able to 

exhibit different dynamical regimes including quasiharmonic oscillations, spiking, bursting, and chaotic 

behavior. Different network topologies are considered, including star, ring, chain, and random architec- 

tures. 

A special approach using the idea of node nonlinear function continuity for constructing the target func- 

tion is applied, which allows to reduce the model parametrization. Both the coupling parameters and pa- 

rameters of individual nodes are estimated. Methods for the automatic noise reduction and superfluous 

coupling term removal are suggested and verified. These approaches provide a possibility to reconstruct 

the network topology even in the presence of a 10% measurement noise from the single scalar observ- 

able from each node in the case of different dynamical regimes and coupling architectures. This can find 

practical applications in neuroscience, in particular, for network reconstruction from experimental signals 

of individual cells. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Reconstructing dynamical systems from time series (system 

dentification) is a very well known inverse problem [1–4] . While 

 large number of different algorithms has been developed, we are 

till far beyond the general theory. After the first attempts to con- 

truct a general approach [5] , it occurred that most successful tech- 

iques target some specific task, usually some particular class of 

ystems like nonautonomous ordinary differential equations (ODEs, 

6] ), time-delay systems [7] , stochastic phase oscillators [8,9] , or 

scillators which can have a limited (usually only two) number of 

tates [10] , including spiking systems for which only spiking and 

ilence states are considered [11] . For all specific cases, using of 

 priori knowledge was always assumed [12] . There are also at- 

empts to provide the theory for reconstruction of networks from 
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vent time series [13] , when the complete continuous-time evo- 

ution is inaccessible. Some methods [14,15] , being able to target 

any different types of systems, still need to know what type the 

onsidered object belongs to. The other methods need information 

bout the structure of equations, but can either guess nonlinear 

unction from a wide range of possible candidates [16–18] or re- 

onstruct at least one nonlinear function as table-defined with no 

xplicit equation for this function [19,20] . 

Here, we propose an approach to reconstruct a network of os- 

illators based on a phase-locked loop system [21] , which were 

ecently shown to exhibit neuron-like behavior [22,23] . Our in- 

erest to this system originates from the following practical rea- 

ons. First, this is the only known neuron-like 3rd order system 

n which all dynamical variables can be naturally obtained from 

he single observed variable by its numerical integration or differ- 

ntiation, that is not possible for FitzHugh–Nagumo [24] , Morris–

ecar [25] , Hindmarsh–Rose [26] and other models [27] . Since 

eal neurons often demonstrate complex behavior for individual 

odes [28] , networks of simple first-order relaxators reconstructed 

n Refs. [20,29] can be insufficient and 3rd order equations are 

uch needed. Using hidden variable techniques developed for re- 
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onstruction of single autonomous systems [30,31] for networks 

including time delayed equations [32] ) is not possible due to de- 

ands to solve the optimization problem in very large dimension. 

Second, the neurooscillator proposed in the papers [22,23] has 

een already implemented in hardware [33] . If we aim to sub- 

equently pass from reconstructing equations from their own 

umerical solution to the reconstruction of network from in- 

ra/extracellular recordings measured from real brain, it is better 

o have some intermediate stops to reveal and fix possible short- 

omings step by step. A radio-engineering circuit may be the first 

tep and a cell culture may be the second one. 

Third, the system [22,23] was constructed in such a manner 

hat the observed variable corresponding to a trans-membrane po- 

ential is a derivative of another variable and an antiderivative of 

he third one. It means that one of two unobserved variables can 

e obtained with a numerical differentiation and the other one 

ith a numerical integration of the observable. Such an approach 

eems to be the optimal for a 3D system, while for 2D system con- 

idered in Ref. [19] there is no need in integration and for 1D sys-

ems, including time delayed systems considered in Ref. [34] there 

s no need in differentiation too. An approach, which requires to 

ifferentiate two times to obtain both unobserved variables, is 

ore sensitive to noise. On the other hand, if it is neccessary to in-

egrate two times to define the unobserved variables, it will force 

o take into account an unknown linear time trend in one of the 

ariables. When only one antiderivative is used, we have to deal 

ith a constant, but further we will show that an unknown con- 

tant is not a problem for our approach in contrast to a linear 

rend. Several approaches were specially designed for the recon- 

truction of stochastic equations [35] , while the other used the 

ayesian technique for the reconstruction of dynamic systems [36] , 

ut application of such methods to real neuroscience data is lim- 

ted by relatively short time series length due to both insufficient 

ime resolution in most neuroscience experiments and nonstation- 

rity of biological systems. 

To increase the robustness of the method, we will adapt the 

deas of implicit (table) reconstruction of nonlinear function for 

ach single oscillator, using the length of a line connecting the 

oints of this function as a target function following [19,34] , where 

he similar approaches were developed for the 2nd order differ- 

ntial equations and time-delay systems, respectively. Since we do 

ot need any explicit approximation for a single node nonlinear 

unction, such an approach gives us the following three significant 

dvantages. First, the method robustness increases because it does 

ot fail due to improper parametrization of the function, and fewer 

arameters have to be fitted for the model (mostly only parame- 

ers of coupling between the nodes have to be fitted). Second, the 

ethod becomes more general, since if the real nonlinear func- 

ion is different from the model function proposed in the works 

22,23] (we have to expect this situation), the method efficiency 

ill not be affected. Third, the problem with an unknown constant 

n one of the variables rising from numerical integration of observ- 

ble is solved (see below for details). 

To distinguish between actual and superfluous connections in 

he network, we perform a step by step addition or elimination of 

oupling coefficients in the model using Fischer F-criterion. In con- 

rary to Ref. [34] , where such an approach was performed, elimina- 

ion of spurious coupling terms was done for the whole ensemble 

not individually for each reconstructed oscillator) and Bonferroni 

orrection for significance was applied. In Ref. [19] no technique 

or reduction of superfluous connections was proposed. 

Further we will show that the proposed technique is able to 

econstruct the network of ten oscillators of type [22,23] for dif- 

erent architectures and to reveal both the network couplings and 

he nonlinear functions and parameters of individual nodes. Only 

calar observable is necessary for each node, with a measurement 
2 
oise being up to 10% by standard deviation. It is also shown how 

o overcome some problems specific for the considered neuron 

odel. 

. Models and methods 

.1. Model and coupling architecture 

We consider the model described by the following system of 

ifferential equations: 

dϕ 

dt 
= y, 

dy 

dt 
= z, (1) 

 1 ε 2 
dz 

d t 
= γ − (ε 1 + ε 2 ) z − (1 + ε 1 cos ϕ) y, 

here the variables ϕ and y are the instantaneous phase differ- 

nce and the corresponding frequency difference between a tun- 

ble oscillator and a master oscillator, respectively, z is the veloc- 

ty of changing of the phase difference y, the parameter γ defines 

n initial frequency detuning, and ε 1 and ε 2 are the parameters of 

ontrol loop. In relation to neuron dynamics, the variable y can be 

nterpreted as a variable describing a change in the membrane po- 

ential, the parameters ε 1 and ε 2 allow one to set the necessary 

ynamical regime, and γ has an effect similar to that of an exter- 

al current in the Hodgkin–Huxley model [37] . 

Here, the phase-locked loop system was considered in four dif- 

erent regimes following [23] : 

1. Quasiharmonic regime ( γi ∈ [0 . 26 ; 0 . 30] , ε i, 1 ∈ [1 ; 3] , and ε i, 2 =
10 ); 

2. Spiking regime ( γi ∈ [0 . 065 ; 0 . 085] , ε i, 1 ∈ [4 . 5 ; 8] , and ε i, 2 = 10 );

3. Bursting regime ( γi ∈ [0 . 185 ; 0 . 195] , ε i, 1 ∈ [25 ; 29] , and ε i, 2 =
10 ); 

4. Chaotic regime ( γi ∈ [0 . 24 ; 0 . 26] , ε i, 1 ∈ [18 ; 21] , and ε i, 2 = 10 ). 

In all four cases, we consider ensembles of ten coupled oscilla- 

ors (2) : 

dϕ i 
dt 

= y i , 

dy i 
dt 

= z i , (2) 

 i, 1 ε i, 2 
dz i 
dt 

= γi − (ε i, 1 + ε i, 2 ) z i − (1 + ε i, 1 cos ϕ i ) y i + 

D ∑ 

j =1 , j � = i 
k i, j (y j − y i ) , 

here coefficients k i, j provide a matrix of couplings between indi- 

idual oscillators (nodes), in which the number i is the number of 

 driven node (in a row) and the number j is the number of a driv-

ng node (in a column). The parameters ε i, 1 , ε i, 2 , and γi can be set

ifferent for different oscillators. The parameters γi and ε i, 1 were 

niformly distributed in the corresponding range with smaller val- 

es corresponding to smaller oscillator number i . 

Additive measurement normal noise was added to the system. 

he standard deviation of noise was 1% , 5% , and 10% of the stan-

ard deviation of the signal without noise that corresponded to the 

ignal-to-noise ratio equal to 40 dB, 26 dB, and 20 dB, respectively. 

Four types of coupling architectures were considered: chain, 

ing, star, and random couplings ( Fig. 1 ). For three coupling archi- 

ectures: chain, ring, and random couplings, all non-zero couplings 

ere set the same and equal to k = 0 . 01 . For a star, the coupling

oefficients characterizing the coupling from the central oscillator 

o the peripheral oscillators were equal to k = 0 . 02 , while the cou-

ling coefficients characterizing the coupling in the opposite direc- 

ion were equal to k = 0 . 01 . 
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Fig. 1. Coupling architecture: a ) Chain, b ) Ring, c ) Star, d ) Random couplings. 
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It was shown in Ref. [19] that for oscillators in a periodic 

egime, the error in reconstructing their parameters from time se- 

ies is greater than for oscillators in a chaotic regime. Moreover, in 

he case of the network reconstruction from periodic time series, 

everal couplings can be missed [38] . The quality of coupling ar- 

hitecture reconstruction depends on the noise level and the oscil- 

ation regime [20] . We also assume that the method accuracy may 

epend on the coupling architecture in the network. 

.2. Reconstructing equations of single neuron 

In the radioengineering experiment with phase-locked loop sys- 

ems, the variable y is the only one measured [33] . The same vari-

ble corresponds to the membrane potential when Eq. (1) is con- 

idered as a neuron model. Therefore, the reconstruction task is 

ormulated further in the way, that only the variable y is observed. 

o reconstruct the complete state vector, the variable z is obtained 

ith numerical differentiation using smoothing polynomial, con- 

tructed from m data points. Usually, m is set depending on the 

easurement noise level under the assumption 3 ≤ m ≤ (T / �t) 
8 , 

here �t is a sampling time, T is the minimal time scale over all 

ime scales at which significant activity is demonstrated, measured 

n units of �t . However, such an approach to m selection is not op- 

imal, especially if different time scales are inherent to the signal. 

herefore, we use another technique, which is described further. 

n the absence of noise and low noise levels, the minimal m = 3 

alue is suitable. The variable ϕ can be reconstructed by numerical 

ntegration using the Simpson method. Since this method requires 

arabolas to be constructed at time intervals of 2�t (3 data points 

re necessary), let us assume N (the total number of data points 

n the measured time series) to be odd. If this is not the case, we

emove the last data point. 

Let us rewrite the last equation in Eq. (1) for the isolated oscil- 

ator (without coupling) in the following form: 

dz 
d t 

= α0 + α1 z − f (ϕ) y, (3) 

α0 = 

γ
ε 1 ε 2 

, α1 = − ε 1 + ε 2 
ε 1 ε 2 

, 

here f (ϕ) in general case is an unknown nonlinear continuous 

unction. Thus, the unknown constant arising from the numerical 

ntegration used for obtaining the variable ϕ can be safely ignored. 

lso, let us consider the 2 π-periodic phase ϕ in the range 0 ≤ ϕ < 

 π . 

Following the ideas of Ref. [34] , we construct a target func- 

ion for the recovery of parameters α0 and α1 , by minimizing 

he length of a line connecting the points of reconstructed non- 

inear function f . This approach makes it unnecessary to expand 

he function f in a row. Therefore, the method becomes more gen- 

ral (it can be used for arbitrary f ) and at the same time, the 

arametrization is sufficiently reduced (fewer number of coeffi- 

ients α to be estimated), given better statistical properties of esti- 

ates for remaining coefficients. Let us rewrite Eq. (3) , expressing 
3 
f by other terms: 

f (ϕ) = α0 
1 
y 

+ α1 
z 
y 

− 1 
y 

dz 
d t 

. (4) 

ime series of dz 
d t 

can be also calculated using numerical differen- 

iation. 

Then, we consider a sorting map Q(n ) ( n is the number of data

oint in the time series), matching the number n in the original 

ime series with the number Q(n ) in the time series sorted by in- 

rease of ϕ. An inverse map Q 

−1 matches the number of a point in

he sorted time series with its number Q 

−1 (Q(n )) = n in the orig-

nal time series. Let us consider a data point located in the sorted 

ime series immediately before the point with the number Q(n ) . 

uch a point will have a number Q 

−1 (Q(n ) − 1) in the sorted time

eries, which we denote as p n for convenience. Then, the incre- 

ent of the function f on the interval 
(
ϕ (p n ) ;ϕ (n ) 

)
will be ex-

ressed as follows: 

n = f (ϕ(n )) − f (ϕ(p n )) = −�ζ (n ) + α0 �y −1 (n ) + α1 �υ(n ) , 

�ζ (n ) = 

1 

y (n ) 

dz 

d t 
(n ) − 1 

y (p n ) 

dz 

dt 
(p n ) , 

�y −1 (n ) = 

1 

y (n ) 
− 1 

y (p n ) 
, (5) 

�υ(n ) = 

z(n ) 

y (n ) 
− z(p n ) 

y (p n ) 
. 

ote that n for which Q(n ) = 0 (we numerate the points starting 

rom zero, i. e. n = 0 , 1 , . . . , N − 1 ) is not allowed, since it does not

ave the corresponding p n (there is no previous point in the time 

eries because the value φn is minimal). After these preparations, 

he value L can be used as a target function: 

L (α0 , α1 ) = 

∑ 

n 
δ2 

n . (6) 

The quadratic dependence of L on α0 and α1 is obvious from 

5) . Thus, Eq. (5) can be considered as a formulation of a least 

quare problem for approximation of �ζ (n ) with �y −1 (n ) and 

υ(n ) , which can be considered as basis functions. In such a case, 

n represents residuals. At the right choice of α0 and α1 , the target 

unction L is many times smaller than at the wrong choice of these 

arameters when f has discontinuities in almost all points. 

Since even for the actual values of parameters α0 and α1 

he target function stays nonzero L > 0 in general case, the esti- 

ates obtained with such a technique should be biased for any 

nite N. However, if the function f is continuous, then δn → 0 

t N → ∞ , since 0 ≤ ϕ < 2 π, and the infinite number of mea-

ured values of ϕ(n ) will fill the finite range. If we additionally as- 

ume the function f to be differentiable in the range 0 ≤ ϕ < 2 π, 

hen δn → df (ϕ(p n )) and, therefore, δn is an approximation of f

ifferential in the point ϕ(p n ) from the right side or, alterna- 

ively, in the point ϕ(n ) from the left side, that gives the same 

or differentiable function in the limit. Then, lim 

N→∞ 

L = 

∫ 
( df ) 

2 = 
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(
df 
dϕ 

)2 

( dϕ ) 
2 = 

(
df 
dϕ 

)2 

dϕ → 0 , providing asymptotically unbiased 

stimates of α0 and α1 . 

The proposed approach allows us to estimate α0 and α1 , which 

re the combinations of the original parameters γ , ε 1 , and ε 2 . 
owever, one can see from the third equation of the system 

1) that separate estimation of γ , ε 1 , and ε 2 becomes impos- 

ible when we switch to the function f (ϕ) = 1 + ε 1 cos ϕ, since

ll terms have unknown coefficients including the term at the 

eft-hand side of the equation. It means, that a possible system 

f equations constructed to estimate the coefficients will be ill- 

efined. Consequently, the proposed approach is not limited com- 

aring with any other approach, which proposes an explicit expan- 

ion of the function f (ϕ) in a row similar to Ref [5] . 

.3. Reconstructing equations of coupled neurons 

The proposed algorithm is promising for reconstructing a net- 

ork (2) with a large number D of coupled oscillators (1) , since it

llows to reconstruct not only parameters of individual oscillator, 

ut also coupling coefficients and reveal the coupling architecture. 

To adapt the method to multiple nodes, we rewrite Eq. (4) as 

ollows: 

f i (ϕ i ) = αi, 0 

1 

y i 
+ αi, 1 

z i 
y i 

− 1 

y i 

dz i 
dt 

+ 

D ∑ 

j =1 , j � = i 
βi, j 

(
y j 

y i 
− 1 

)
, (7) 

here αi, 0 and αi, 1 have the same sense as for individual node 

nd additional coefficients βi, j = 

k i, j 

ε i, 1 ε i, 2 
represent the coupling. The 

ormula (5) is rewritten as follows: 

δi,n = f i (ϕ i (n )) − f i (ϕ i (p n,i )) = 

− �ζi (n ) + αi, 0 �y −1 
i 

(n ) + αi, 1 �υi (n ) + 

D ∑ 

j =1 , j � = i 
βi, j �Y i, j (n ) , 

�ζi (n ) = 

1 

y (n ) 

dz 

dt 
(n ) − 1 

y (p n,i ) 

dz 

dt 
(p n,i ) , (8) 

y −1 
i 

(n ) = 

1 

y i (n ) 
− 1 

y y (p n,i ) 
, 

�υ(n ) = 

z i (n ) 

y i (n ) 
− z i (p n,i ) 

y i (p n,i ) 
, 

�Y i, j (n ) = 

y j (n ) 

y i (n ) 
− y j (p n,i ) 

y i (p n,i ) 
. 

Here, the number p n,i has additional index i, since the sorting 

ap Q i (n ) is different for different nodes, meaning that the same n 

t different i is projected to different p n,i . Using the new definition 

or δi,n , the target function is written similar to the autonomous 

ase (6) except the dependence on the coupling parameters: 

L i (αi, 0 , αi, 1 , βi, 1 , . . . , βi,D ) = 

∑ 

n 
δ2 

i,n 
. (9) 

Now, we have a specific target function L i for each oscillator, 

hich minimization leads to estimates for both parameters of in- 

rinsic dynamics αi, 0 and αi, 1 and the coupling parameters βi, j . 

ach oscillator is reconstructed independently from the others. The 

east squares originating from minimization of the target function 

9) is linear and can be solved using a linear routine, it does not 

equire use of simplex method as in Ref. [34] . Therefore, it does 

ot require starting guesses to be set, demands much less time for 

alculation (usually 5–100 times less) and guarantees convergence 

o the global minimum. 

.4. Detection of insignificant couplings 

For large enough D, the values δi,n are distributed by the law 

lose to the normal one, since they are the sums of large number 
4 
f similar elements. For N → ∞ , their mean tends to zero. Thus, 

heir sum L i should have the distribution close to χ2 with (N − 1) 

egrees of freedom. However, it is not so due to the two reasons. 

irst, the consequent δi,n are constructed partly from the same data 

nd are not independent. It means that one half of values have to 

e ignored. Second, to calculate L i , we used (D + 1) free parame-

ers: two αi and (D − 1) number of βi . Using these properties, we 

onstruct the algorithm of sequential elimination of insignificant 

ouplings from the model of i th oscillator. 

First, we remove each coupling separately from the model 

2) and construct (D − 1) reduced models. They will have a target 

unction larger than the original full model. Among all the reduced 

odels, we choose the one, for which the target function is min- 

mal. For convenience, we denote as δ′ 
i,n 

the values similar to δi,n , 

ut calculated in the absence of one coupling term. Now, we can 

onstruct the value �i,D −1 as a ratio of target function values for 

he full and reduced model: 

i,D −1 = 

N/ 2 ∑ 

n =1 

δ2 
i, 2 n 

N/ 2 ∑ 

n =1 

δ
′ 2 
i, 2 n 

, (10) 

here the lower index (D − 1) of �i,D −1 means that it was ob- 

ained by elimination of one coupling from the full model (8) . The 

alue �i,D −1 has to be distributed by the Fisher law. If the calcu- 

ated value does not lie at the distribution tail, i. e. the inequality 

11) is valid, it means that the target functions of full and reduced 

odels are from the same distribution and the removed coupling 

erm is superfluous and was removed rightly. 

 �i,D −1 

(
N 

2 

− (D + 1) , 
N 

2 

− D 

)
< 1 − p 

D − 1 

, (11) 

here p is a confidence level, i.e. the probability to remove the 

oupling term erroneously, with the Bonferroni correction for (D −
) couplings in the network. 

If the reduced model is accepted, the procedure should be re- 

eated testing the models with two removed couplings. Then, we 

emove three couplings and so on until the following inequality 

ecomes valid: 

 �i,r i 

(
N 

2 

− (r i + 2) , 
N 

2 

− (r i + 1) 
)
� 1 − p 

r i 
, (12) 

here r i is the number of kept couplings for i th oscillator, with 2 

nd 1 placed in Eq. (12) after r i due to parameters αi, 0 and αi, 1 re- 

ponsible for the autonomous dynamics. Validity of Eq. (12) means 

hat no more couplings should be removed. 

The alternative approach is also possible. Let us start from the 

utonomous system and add coupling terms one by one. At each 

tep, we construct all possible models with one extra coupling, but 

nly one of them, which has the minimal target functions should 

e tested for significance. At the first algorithm step, when the first 

oupling is added to the autonomous system, we calculate the fol- 

owing ratio: 

i, 1 = 

N/ 2 ∑ 

n =1 

δ2 
i, 2 n 

N/ 2 ∑ 

n =1 

δ
′ 2 
i, 2 n 

, (13) 

here δ2 
i 

corresponds to the autonomous system and δ′ 2 
i 

corre- 

ponds to the system with one extra coupling. If the value �i, 1 

elongs to the tail of the Fisher distribution, i. e. the inequality 

14) takes place, then this coupling should be added to the model. 

 �i, 1 

(
N 

2 

− 3 , 
N 

2 

− 2 

)
> 1 − p. (14) 
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Fig. 2. Reconstructed nonlinear function of a neuron in bursting regime with added 1% noise. a ) without removed points ( ν = 0 ); b ) with removed points at ν = 0 . 2 . 
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Then, the second coupling term should be added into the model 

nd tested in a similar way. This procedure is repeated until the 

dding of the term having the number (r i + 1) results in the fol-

owing inequality: 

 �i,r i 

(
N 

2 

− (r i + 3) , 
N 

2 

− (r i + 2) 
)
� 1 − p. (15) 

After that, no more couplings should be added and r i couplings 

tay in the model. 

. Results 

.1. Reconstruction of state vector and model parameters for 

utonomous neuron 

The Eq. (1) were solved by the 4th-order Adams’ method with 

n adaptive integration step. The sampling interval was �t = 1 / 32 . 

 1% , 5% , and 10% measurement noise was added to the time se-

ies. The absolute value of noise dispersion was different for differ- 

nt regimes and depended on the dispersion of the time series of 

 . 

There is a division by zero in Eq. (5) for y (n ) = 0 or for y (p n ) =
 . While precise zero is unlikely, all very small values of y are

angerous for the proposed technique, since the matrix of basis 

unction values used at solving the least squares problem becomes 

ll-conditioned. Measurement noise can deteriorate this situation 

hifting some sampled values of y closer to zero. Therefore, there 

ppears an additional method parameter, allowing to distinguish 

etween appropriate y (n ) values and those, which are too close 

o zero. We can provide some absolute value ν, which should de- 

end on the signal variance, with all δn for which | y (n ) | < ν or

 y (p n ) | < ν to be excluded from the target function (6) . Some bal-

nce should be kept when choosing ν . Very small ν is obviously 

nappropriate since too many ill-defined rows stay in the basis 

unction matrix. Very large ν leads to removal of most data from 

he least squares routine leading to two problems: first, statisti- 

al properties of estimates become worse, second, for many y, the 

onlinear function will be not defined. The optimal value ν = 0 . 2 

as defined empirically, but it can be substantiated by the follow- 

ng ideas. If we remove about 1 / 3 or 1 / 2 of all y (n ) , the statistical

roperties of parameter estimates should not deteriorate much, but 

ll kept y (n ) will be of the same order. Fig. 2 shows how different

values affect the results of nonlinear function reconstruction. 

For reconstructing the model equations in the absence of noise, 

t is sufficient to use three points of time series for differentiation. 

hen noise is added, the number of points required for smooth- 
5 
ng at differentiation increases significantly. The optimal number of 

oints m opt used for differentiation was selected for each regime 

ndividually by minimizing the target function L (m ) . The results of 

uch calculations with added 1% noise are shown in Table 1 . Such 

n approach does no demand any a priori knowledge and seems to 

e impartial because the decision is made based on unambiguous 

riterion, but needs a lot of calculations. It is interesting to note, 

hat m opt occurs to be significantly larger for periodic regime than 

or other considered regimes. 

The reconstructed model parameters ˆ α0 and ˆ α1 at the optimal 

 opt and relative errors of parameter estimation �α0 and �α1 are 

resented in Table 1 . The relative errors were estimated as follows: 

α = 

| α − ˆ α| 
α

. (16) 

.2. Reconstruction of coupling architecture 

To objectively evaluate and compare the efficiency of the meth- 

ds of elimination of couplings and addition of couplings, we ana- 

yze their sensitivity Eq. (17) and specificity Eq. (18) : 

ens = 

T P 

T P + F N 

· 100% , (17) 

pec = 

T N 

T N + F P 
· 100% . (18) 

The sensitivity is the proportion of actual positives, which are 

orrectly identified. It is calculated out of the true positives (TP) 

nd false negatives (FN) as described by Eq. (17) . Specificity mea- 

ures the proportion of negatives, which are correctly identified, 

nd is calculated out of the true negatives (TN) and the false pos- 

tives (FP) as defined by Eq. (18) . For example, in Figs. 3 and 4 , TP

re shown as black squares, FN are shown as red squares, FP are 

hown as green squares, and TN are shown as white squares. 

In the absence of measurement noise, the addition technique 

emonstrates poor specificity (68–98%) for all the considered 

egimes and architectures. While the sensitivity is 100% for the 

hain, ring, and random architectures, it is only 55% for the star 

rchitecture in the quasiharmonic regime. When the noise level is 

ncreased to 10%, the sensitivity remains at 100% for all regimes ex- 

ept quasiharmonic. Even for the relatively moderate 1% noise, two 

ouplings are missed for the quasiharmonic regime, as it is shown 

n Fig. 3 a in comparison to other regimes, see Fig. 3 b–d . When dif-

erent architectures are compared, the sensitivity is always lower 

or the star architecture, for which it drops to 0% for the quasi- 

armonic regime, when the 10% noise is added. For the moder- 
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Table 1 

Reconstructed model parameters for single neuron with added 1% noise. 

Regime α0 ˆ α0 �α0 α1 ˆ α1 �α1 m opt 

Quasiharmonic 0.01 0.0092 8% −0.4333 −0.0488 89% 463 

Spiking 0.0011 0.0011 0% −0.225 −0.2181 3% 167 

Bursting 0.0007 0.0007 0% −0.1345 −0.1274 5% 175 

Chaotic 0.0012 0.0013 8% −0.1476 −0.1399 5% 165 

Fig. 3. Schemes of coupling architecture reconstruction using the method of addition of couplings in the presence of 1% measurement noise. The first, second, third, and 

fourth lines correspond to the chain ( a–d ), ring ( e–h ), star ( i–l ), and random architecture ( m–p ), respectively. The first, second, third, and fourth rows correspond to the 

quasiharmonic ( a ), ( e ), ( i ), and ( m ), spiking ( b ), ( f ), ( j ), and ( n ), bursting ( c ), ( g ), ( k ), and ( o ), and chaotic ( d ), ( h ), ( l ), and ( p ) regimes, respectively. The numbers of driving 

neurooscillators are shown on the horizontal axis, while the numbers of driven oscillators are shown on the vertical axis. The squares of different color correspond to 

detected existing couplings (black), removed from the model nonexisting couplings (white), absent by definition couplings to itself at j = i (cross), spuriously detected 

couplings (green), and missed existing couplings (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this 

article.) 

6 
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Fig. 4. Schemes of coupling architecture reconstruction using the method of elimination of couplings in the presence of 1% measurement noise. The first, second, third, 

and fourth lines correspond to the chain ( a–d ), ring ( e–h ), star ( i–l ), and random architecture ( m–p ), respectively. The first, second, third, and fourth rows correspond to 

the quasiharmonic ( a ), ( e ), ( i ), and ( m ), spiking ( b ), ( f ), ( j ), and ( n ), bursting ( c ), ( g ), ( k ), and ( o ), and chaotic ( d ), ( h ), ( l ), and ( p ) regimes, respectively. The numbers of 

driving neurooscillators are shown on the horizontal axis, while the numbers of driven oscillators are shown on the vertical axis. The squares of different color correspond 

to detected existing couplings (black), removed from the model nonexisting couplings (white), absent by definition couplings to itself at j = i (cross) and missed existing 

couplings (red). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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te 1% noise the sensitivity is 44% for the quasiharmonic regime 

nd 100% for the other regimes. The coupling to the central el- 

ment in the star is not detected in most cases except one, see 

ig. 3 i . At the same time, the coupling from this element is al-

ays reconstructed successfully except quasiharmonic regime, in 

hich the number of missed couplings increases with the increase 

f noise level. In the bursting and chaotic regimes, there are a lot 

f false positives in the opposite direction for ring and chain archi- 

ectures, see. Fig. 3 c,d,g,h . When the noise level is increased from 

% to 10%, the specificity remains approximately the same (68%–

8%). The complexity of the coupling structure does not lead to 

etter quality of the method. 
7 
The method of elimination of couplings in the absence of noise 

nd at 1% noise level demonstrates 100% sensitivity and specificity 

or spiking, bursting, and chaotic regimes, see Fig. 4 . The method 

pecificity remains 100% at 5% and even at 10% noise levels as 

ell. At 1%–5% noise levels, the method sensitivity is reduced (up 

o 55–61%) for the quasiharmonic regime, see Fig. 4 ( a,e,i ). More- 

ver, with the increase of the coupling architecture complexity, the 

ethod becomes more sensitive. At the 10% noise level, the sensi- 

ivity drops for all regimes down to 0% for the bursting regime. As 

 result, as the coupling architecture becomes more complex, the 

ethod sensitivity increases, and the specificity of the method is 

lways 100% for all the studied variants. 
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. Conclusion and discussion 

The proposed method is the result of further development of 

reviously proposed approaches to reconstruction [19,20,34,38] . 

owever, the method is applied to the network, which nodes are 

ather unique and have significant specifics, being at the same time 

he model of phased-locked loop system and neuron. This specifics 

f the network nodes can be useful for practical applications, es- 

ecially in neuroscience and telecommunication. 

The novelty of the work is as follows: 

1. For the first time, a network of 3rd order systems with both un- 

known coupling architecture and unknown nonlinear function 

of each node was reconstructed using only scalar time series of 

individual nodes. 

2. Since the individual node can provide a complex dynamics and 

qualitatively different regimes, including simple quasiharmonic 

oscillations, regular spikes and bursts, and chaotic behavior, the 

method was tested for all these regimes and showed its appli- 

cability. 

3. The combination of numerical differentiation and integration 

was used for reconstruction of the state vector. The specifics of 

the proposed approach when a nonlinear function of one dy- 

namical variable is not expanded in a row, but reconstructed as 

a table, allows to overcome the problem of unknown constant 

rising from numerical integration. 

4. Two approaches to removal of superfluous coupling terms 

based on analytical properties of target function distribution 

were suggested and tested in all considered regimes. 

5. For the first time, an impartial criterion to choose the number 

of points for smoothing the observable was proposed. 

6. Specificity and sensitivity of the method were quantitatively es- 

timated. 

7. Different coupling architectures including chain, ring, star, and 

random architecture were considered, and specifics of recon- 

struction in each case was revealed. In particular, the appear- 

ance of false positives and false negatives occurred to be de- 

pendent on architecture. For example, the reconstruction of the 

architecture with one leading (central) node tends to omit most 

couplings in the direction to this nodes except most reliable. 

The chain and especially the ring architectures show maximal 

number of false positives in the pairs where there is an actual 

coupling in the opposite direction. 

The proposed approach is highly resistant against the measure- 

ent noise and works well for coupling architecture reconstruction 

t noise levels up to 10%. The similar resistance to noise was pre- 

iously reported for network reconstruction algorithms when ad- 

itional special noise properties were assumed [39] . Such a signifi- 

ant resistance against noise was previously shown for reconstruc- 

ion techniques dealing with first-order equations [20] , but even 

or the second-order equation, the noise larger than 1% was often 

ritical [19] . We assume that such robustness to noise is explained 

y the fact that the node nonlinear function is a function of phase. 

he function of phase is 2 π-periodic by definition and cannot grow 

nlimited at the edges of the range as polynomials use to do. Be- 

ides, the phase is an antiderivative of the observable, therefore, 

t is resistant to noise as well as the target function, which de- 

ends on phase. Moreover, the new approach to choose the opti- 

al smoothing parameter m can provide additional advantage. 

In the star architecture, the special position of the central oscil- 

ator leads to asymmetry in the architecture reconstruction results: 

he coupling from this oscillator is usually reconstructed success- 

ully, while the coupling to it is often missed. It is not surprising, 

ince the impact of the central node into the dynamics of other 

odes is very significant, while the impact of any other node into 

he dynamics of the central one is not large due to concurrency be- 
8 
ween them. Another possible reason can be the synchronization in 

he network and, therefore, similarity of oscillations of most nodes. 

hus, when one peripheral node is incorporated into the model for 

he central node, it can imitate the other nodes by increasing the 

oupling coefficient. This hypothesis can be supported by the fact 

hat sometimes one of peripheral nodes “replaces” the central ele- 

ent in the model for others, and it is always the node, the driving 

rom which to the central node was detected. 

In the present paper, we consider only one nonlinear func- 

ion for each node and assume that the coupling functions are 

nown, following the original works [22,23,33] . Since the method 

as developed for this model, we do not consider such limita- 

ions as shortcomings. However, in the case of the model exten- 

ion, the explicit approximation of other functions can be used as 

n Refs. [19,20] , providing possibility to use the proposed approach 

irectly. Another possibility is to use the idea of iterative recon- 

truction of nonlinear functions described in Ref. [11] . 

In this study, the method of numerical differentiation and in- 

egration is used to obtain series of hidden variables following 

1,5,6] . The other, even more popular approach is to use sequential 

ime delays (lags) as it was proposed in Refs. [40] (in [41] more 

eneral case of nonuniform embedding was considered). It is very 

opular in a case when there is very few known about the evo- 

ution operator [2] , including studies when partial directed coher- 

nce (PDC) [42] or conditional nonlinear Granger causality (GC) 

43] is used to detect couplings in the ensemble. These techniques 

re more general than the proposed method and methods pre- 

ented in Refs. [19,20,34,38] for specific systems, but the sensitiv- 

ty and specificity of GC and PDC is much lower; e. g. the same 

ystems were considered in Refs. [43,47] using GC and in Ref. [44–

6] using PDC and in Refs. [19,38] using specific approaches. There- 

ore, use of specific approaches is mostly considered as preferable 

2] . 

In the present study, the phase space reconstruction by means 

f delays approach is hardly to be applicable because the evolution 

perator is stated and the variables in the considered equations 

annot be obtained one from another by means of time shift. There 

re other systems for which in some cases the proposed approach 

an be applicable with minimal changes, e. g. if we consider the 

össler system as it is rewritten in Ref. [6] , and ˙ x is measured. 
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