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a b s t r a c t 

Reconstruction of dynamical systems from time series is an important problem intensively studied within 

nonlinear dynamics and time series analysis for the last three decades. Its solution is a tool to accom- 

plish prediction, classification, diagnostics and many other tasks. Universal approaches are quite attrac- 

tive, but more specific techniques based on prior information about a system under study often appear 

advantageous in practice. We present an overview of the works of our team where such “class-oriented”

techniques have been developed for realistic situations differing by the degree of prior knowledge: fully 

known structure of the dynamics equations with an accent to dealing with hidden variables and partly 

known structure for time-delay systems and coupled phase oscillators. 

© 2021 Elsevier Ltd. All rights reserved. 
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. Introduction 

Studying living systems is a mainstream of contemporary sci- 

nce. It has got this position to a good deal due to successful de- 

elopment of technology, drastic improvement of available means 

or information retrieval and storage, achievements in computer 

cience and nonlinear dynamics. These factors provided realiza- 

ion of novel methods for experimenting with living systems and 

or empirical modeling, in particular, for reconstruction of mathe- 

atical models from time series of observed variables. The latter 

s quite timely since possibilities of living systems modeling from 

rst principles are limited both due to complexity of those objects 

nd lack of such universal laws as Newton’s or Maxwell’s equations 

n the field of living systems. Professor Vadim Anishchenko in the 

ast decade of XX century paid careful attention to the problems 

f reconstruction of nonlinear models from time series and pub- 

ished a number of works concerning these problems [1-8] . As his 

neighbors” in the university and research (and some of us also as 

is students), we present here our contribution to this topical field. 

According to the degree of prior information about a system 

nder study, one can single out [ 9 , 10 ] the problems of “black

ox” (no information), “white” or “transparent box” (fully known 

orm of equations, only parameter values unknown), and “grey 

ox” (partial knowledge of possible model structure). Along with 
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any other authors (e.g. [11-14] ), we have dealt with reconstruc- 

ion problems under each of these settings in our previous works, 

.g., addressing the choice of dynamical variables for a black box 

ituation [15] , forming a specific model structure for a grey box 

ase of regularly driven systems [16] , and developing parameter es- 

imation technique for one-dimensional chaotic maps as a white 

ox situation [17] . Overall, it appears that success of modeling 

rom data series is often determined by specialization, when a 

odeling technique is developed for sufficiently narrow classes of 

bjects and takes into account their specific features. In this pa- 

er, we overview several practically important specific situations 

classes) and the respective “class-oriented” techniques developed 

n the previous works of our team over the last two decades. These 

ituations include parameter estimation in case of hidden variables 

nder fully known model structure ( Section 2 ), reconstruction of 

elay times in the systems governed by delay-differential equa- 

ions ( Section 3 ), revealing couplings and estimation of coupling 

elays from phase dynamics ( Section 4 ). We conclude in Section 5. 

. Hidden variables and parameter estimation 

Multiple methods for reconstruction of equations from time se- 

ies also assume that some components of state vector cannot be 

easured. When the model structure is unknown, Takens’ theo- 

em [18] together with false nearest neighbor techniques [19] jus- 

ify estimation of the dimension of a reconstructed state vector. 

equential differentiation [20] or time delay embedding [ 21 , 22 ] are 

https://doi.org/10.1016/j.chaos.2021.110972
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2021.110972&domain=pdf
mailto:bezruchkobp@gmail.com
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hen used to get the state vectors. These techniques are often used 

f these is no prior knowledge about model equations form and 

hysical meaning of their parameters [23-26] . When the “white 

ox” problem is considered, physical meaning of all state variables 

nd parameters is indicated. This makes time delay embedding and 

ifferentiation useless except some special cases like van der Pol 

ike generators [27] or specific phase-locked loops [28] in which 

ll unobserved variables are the derivatives or integrals of an ob- 

ervable. As for unobserved variables and unknown parameters en- 

ering model equations, they are usually of great interest for a re- 

earcher and the “white box” modeling serves as a tool for their 

indirect measurement” [10] . The hidden variable problem is right 

he problem of recovering unknown parameters and state variables 

hich cannot be directly measured or computed from an observed 

ime series in case of fully known structure of model equations. 

t might seem to be the simplest reconstruction task, but appears 

uite difficult in practice. 

.1. Initial value (single shooting) approach 

The earliest implementation of hidden variable approach was 

roposed in [29] . The problem is following. We have a model 

2.1) in the form of 
→ 

x = (x 1 , ..., x D ) ODEs (the state vector is 
→ 

x =
x 1 , ..., x D ) ) with M free (i.e. to be estimated) parameters 

→ 

c =
c 1 , c 2 , ..., c M 

) : 

d � x 

dt 
= 

�
 f ( � x , � c ) (2.1) 

he functions �
 f = ( f 1 , f 2 , ..., f D ) are known, but only part of the 

tate vector � x components are observed in the form of a vector 

ime series x i (t n ) , i = 1 , ..., (D − Q ) of the length ( N + 1 ) at time

nstants (t 0 , t 1 , ..., t N ) , other Q variables are hidden. Those hidden

ariables cannot be obtained using any direct technique like time 

elay embedding or sequential differentiation. Therefore, estima- 

ion of � c from time series via usual regression is impossible. 

The idea of hidden variable approaches is to consider the initial 

onditions for hidden variables as additional unknown parameters. 

ne makes a starting guess for the parameter vector � c (denote it 
 

  ) and for the hidden variables initial values (s Q+1 (t 0 ) , ..., s D (t 0 )) .

or that starting guess, one computes a trajectory of the model by 

olving the ODEs numerically. The obtained model time series of 

he variables (x 1 , ..., x Q ) are compared to their originally observed 

ime series. Now, combine parameters and initial conditions into a 

ingle vector ζi , i = 1 , ..., K = M + Q , where the first M components

re parameters and the last Q ones are initial conditions for the 

idden variables. One constructs a cost function S( � ζ ) as a weighted 

um of square differences (2.2) between the originally observed 

 i ( t n ) and the model ˜ x i ( t n ) values of the first ( D − Q ) variables.

 

(
�
 ζ
)

= 

D ∑ 

i = Q+1 

w i 

N ∑ 

n =1 

( ̃  x i ( t n ) − x i ( t n ) ) 
2 (2.2) 

The weights w i can be quite generally set as w i = 1 /σ 2 
i 

where 

i is the standard deviation of the i -th variable which is readily es- 

imated from data. Then, one minimizes the function S . This func- 

ion is implicit and its derivatives can be calculated only numer- 

cally. As an option, consider the gradient descent method. It as- 

umes that a correction 

−→ 

�ζ to a current guess � ζ is made via solv- 

ng Eq. (2.3) , where ˆ H ( � ζ ) and 

�
 g ( � ζ ) are Hessian and gradient of S

t � ζ , respectively: 

ˆ 
 

(
�
 ζ
)−→ 

�ζ = −�
 g 
(
�
 ζ
)

(2.3) 

o compute ˆ H ( 
−→ 

ζ ) and 

−→ 

g ( 
−→ 

ζ ) one has to perturb the trajectory via 

hanging each component of 
−→ 

ζ in turn by a small value δζi (in 

eneral, it is taken to differ for different components) and solving 
2 
q. (2.1) to obtain the trajectories corresponding to the perturbed 

�
 . For example, i -th component of the gradient can be estimated 

s follows: 

 i = 

∂S 

∂ ζi 

≈ 1 

2 δζi 
( S ( ζ1 , ..., ζi + δζi , ..., ζK ) − S ( ζ1 , ..., ζi − δζi , ..., ζK ) )

(2.4) 

This requires solving the equations 2 K times. Analogously, a 

omponent h i, j of the Hessian 

ˆ H can be estimated using the for- 

ula (2.5) which requires solving Eq. (2.1) 4 K 

2 times. 

h i, j = 

∂ 2 S 
∂ ζi ∂ ζ j 

≈ S + i + j −S + i − j −S −i + j + S −i − j 

4 δζi δζ j 

 + i + j = S(ζ1 , ..., ζi + δζi , ..., ζ j + δζ j , ..., ζK ) , 
 + i − j = S(ζ1 , ..., ζi + δζi , ..., ζ j − δζ j , ..., ζK ) , 
 −i + j = S(ζ1 , ..., ζi − δζi , ..., ζ j + δζ j , ..., ζK ) , 
 −i − j = S(ζ1 , ..., ζi − δζi , ..., ζ j − δζ j , ..., ζK ) . 

(2.5) 

The formulae (2.3-2.5) provide an iterative algorithm to ob- 

ain estimates for all initial conditions and parameters. If the step 

ize appears large, the value S( � ζ + 

−→ 

δζ ) at some step can become 

arger than S( � ζ ) . Then, a reduced step 

−→ 

δζ / 2 is to be applied. If

( � ζ + 

−→ 

δζ / 2 ) ≥ S( � ζ ) , the 
−→ 

δζ / 4 is considered and so on, until either

he condition S( � ζ + 

−→ 

δζ / 2 i ) < S( � ζ ) would be satisfied on i -th iter- 

tion, or a preset maximum number of iterations i max is reached. 

n the last case the algorithm is stopped and an achieved local ex- 

remum is considered as its result. 

.2. Multiple shooting approach and its extensions 

In case of chaotic time series, the main problem of the initial 

alue approach is that a long enough model trajectory ̃  �
 x (t) is very 

ensitive to small perturbations of a current guess due to positive 

yapunov exponent. Actually, if the observed series length is about 

 times as large as the Lyapunov time (an exact “threshold” value 

epends on the measurement noise and other factors), the recon- 

truction becomes practically impossible since the basin of attrac- 

ion of global minimum becomes too narrow. 

A possible solution was proposed by Bock et al in [29-31] . The 

dea is to consider multiple initial conditions distributed along the 

rajectory: ̃  �
 x ( t 0 ) , ̃  �

 x ( t η) , ̃  �
 x ( t 2 η) , …, ̃  �

 x ( t ( L −1 ) η) , where η is the num-

er of points in one piece of the time series and L is a number of

arts, so that N = η × L . If so, the calculation formula for the cost

unction (2.2) remains the same, but dimension of � ζ is larger: 

 

ζ = 

(
c 1 , ..., c M 

, ̃  x Q+1 ( t 0 ) , ..., ̃  x Q+ L ( t 0 ) , ̃  x Q+1 

(
t η

)
, ..., ̃  x Q+ L 

(
t η

)
, ..., 

˜ x Q+1 

(
t η( l−1 ) 

)
, ..., ̃  x Q+ L 

(
t η( l−1 ) 

))
(2.6) 

n additional continuity restriction (2.7) is formulated in [29] , 

hich means that a trajectory starting from the condition 

�
 s ( t η−1 ) 

omes to the next one � s ( t η) : 

 

˜ x 
(
t iη, � s η−1 

)
= 

�
 s η
(
t iη

)
(2.7) 

This leads to the conditional optimization problem. First, all L 

ieces of the time series are considered independently, with calcu- 

ation of corrections similarly to the initial value approach. Then, a 

orrection to initial conditions for all � s i except the last one is per- 

ormed by means of linear decomposition of (2.7) and backward 

ropagation of corrections. 

This approach is more efficient. It was demonstrated that 3D 

ystem of equations such as Lorenz or Rössler’s system can be re- 

onstructed from a scalar time series of one of its variables, with 

-3 parameters estimated with a fine precision [ 29 , 32 ]. However, it

ppears to be still insufficient for many practical tasks. The prob- 

em of bad divergence for long chaotic time series persists, though 

he multiple shooting approach allows one to use longer time se- 

ies than the initial value approach. A segmentation technique, 
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hen the entire original series is divided into a number of seg- 

ents is not sufficient in most cases since if the estimates are bi- 

sed for a single segment, their average would be also biased. To 

x this problem, a number of elaborated techniques were proposed 

32-36] . 

A modified Bock’s technique. We focus here on a relatively 

imple extension of Bock’s technique proposed in our work [32] . 

 similar idea was mentioned in [37] . At variance with a direct 

egmentation technique, the idea of [32] is to keep the same pa- 

ameters for the whole series, but to allow ν discontinuities. This 

eans that the condition (2.7) is not imposed at ν time instants. 

 resulting trajectory would be discontinuous that reduces the dif- 

culty related to sensitivity of a chaotic trajectory to small pertur- 

ations. 

In [32] , a comparative study of the original Bock’s technique 

nd its above extension was performed for Lorenz (2.8) and 

össler’s (2.9) systems. Since the results of both techniques signif- 

cantly depend on the starting guesses of parameters, the calcula- 

ions were performed for a large range of starting guesses in order 

o estimate the convergence radius r μ in the normalized parameter 

pace ( b 1 , ..., b M 

) , where b i = ( ̃ c i − c i ) / c i are the normalized to the

ctual (true) value parameters and 0 ≤ μ ≤ 1 is a ratio of the num- 

er of starting guesses for parameters from which the global min- 

mum was reached to the whole number of trial starting guesses 

or parameters. 

˙ 
 1 = c 1 x 2 − x 1 

˙ 
 2 = −x 2 + x 1 ( c 3 − x 3 ) 

˙ 
 3 = −c 2 x 3 + x 1 x 3 

˙ 
 1 = −x 2 − x 3 

˙ 
 2 = x 1 + c 1 x 2 

˙ 
 3 = c 2 + x 3 ( x 1 − c 1 ) (2.9) 

The convergence radius r μ for different r for Lorenz and Rössler 

ystems shows that the modified technique is approximately 1.2- 

.4 times better than the original one, and in both cases, it is pos- 

ible to get rather good estimates. 

.3. Delay-differential equation reconstruction 

As it was previously mentioned, the larger is the number of 

nknown initial conditions to be reconstructed, the less are the 

hances for success due to the larger dimension K of the vector 
�
 . This is since the optimization problem complexity is rising very 

ast with increase of number of optimized function variables, in- 

luding rise in number of local minima and reduction of global 

inimum basin of attraction. If we consider the time-delay equa- 

ions, which are usually considered as a next step model after 

DEs (a system that is somewhat more complex and regime rich 

ut not completely different [ 38 , 39 ]), we face a great problem: the

umber of initial conditions to be set as unknown parameters is 

nfinite and nothing can be done using hidden variable approach. 

However, if we consider some numerical scheme for some par- 

icular situation, it seems to be a little bit different. If the system to 

e reconstructed from data has a small delay time, for which nu- 

erical scheme used to solve it is stable for relatively large time 

tep (this actually means that the delay τ is “small in data points”, 

.e. τ = θ�t , where θ˜ < 10 ), we can generally try to solve such a 

roblem. 

The first attempt to do this was performed in [40] for two 

nidirectionally coupled simplest DDEs with quadratic nonlinear- 

ty (2.10): 

˙ 
 ( t ) = −x ( t ) + λx − x 2 ( t − τ ) + ky ( t ) , 

˙ 
 ( t ) = −y ( t ) + λy − y 2 ( t − τ ) , (2.10) 
3 
here there are three unknown parameters λx , λy and k . The 

ariable x of the driven oscillator was considered as an observ- 

ble and the variable y of the driving one was hidden. Different 

egimes were tested. For some simple regular regimes with θ = 10 

r θ = 11 , the reconstruction was successful providing estimates of 

wo parameters ( λx and λy with k considered to be known) and 

imes series of variable y . The results of parameter estimation for 

ifferent starting guesses are shown in Fig. 2.2 in the same way as 

or Lorenz and Rössler’s systems previously ( b 1 and b 2 correspond 

o ˜ λx and 

˜ λy for the fixed 

˜ k = k ). One has to notice that the pa-

ameter plane in Fig. 2.2 is very crossed compared to Fig 2.1 and 

ven for starting guesses very close to the actual values there is a 

ossibility not to reach the global minimum. Therefore, the radius 

 1 ≈ 0 . This is a result of large number of initial conditions for the 

elayed hidden variable. For more complex regimes with larger θ , 

ne can find neither global minimum nor any local one close to it. 

Significant advance in the field is possible if one takes into ac- 

ount that the starting guesses for the hidden variable are not ac- 

ually independent, but the realization has to be continuous. In 

41] it was proposed to take into account only a small number L s 
f them and to obtain the others by means of cubic spline inter- 

olation. Though interpolation introduces some additional source 

f error, the results were significantly better than previously and 

t occurred to be possible to perform reconstruction for the 3D 

ystem (Lang-Kobayashi Eq.s (2.11) ) with two unknown parameters 

rom a single observable including the case of additive measure- 

ent noise: 

˙ ( t ) = F ( t ) ρ( t ) + Aρ( t − τ ) cos (φ( t ) − φ( t − τ ) + �τ ) , 

ρ( t ) ˙ φ( t ) = αF ( t ) ρ( t ) 

+ Aρ( t − τ ) sin (φ( t ) − φ( t − τ ) + �τ ) , 

T ˙ F ( t ) = P − F ( t ) − ( 1 + F ( t ) ) ρ2 ( t ) , (2.11) 

here ρ(t) and φ(t) are the modulus and the phase of complex 

lectric field E(t) = ρ(t ) exp (iφ(t )) , respectively, F ( t ) is the excess

arrier number, T is the ratio of the carrier lifetime to the photon 

ifetime, P is the dimensionless pumping current above threshold, 

is the ratio of the external cavity round-trip time and the pho- 

on lifetime, A is the strength of the feedback, α is the linewidth 

nhancement factor, and � is the dimensionless angular frequency 

f the solitary laser. The parameters P and A are assumed to be 

nknown, while the variables φ( t ) and F ( t ) are hidden (see [41] for

etails). 

Due to spline approximation, there is no any strict dependency 

n θ and it can be up to 20 0 0 and even more. The only signif-

cant point is how many oscillations take place within the delay 

ime. If additional smaller time scale is present as for the inter- 

ittency regime in Fig 2.3 c, the results are much worse, while the 

lobal minimum is still reachable from at least 10% of the consid- 

red starting guesses. For both regular and chaotic regimes consid- 

red in Fig. 2.3 a,b, this percentage is about 60%. The regular regime 

akes advantage of zero Lyapunov exponent, and the chaotic one 

rovides more information for the reconstruction (the Lyapunov 

ime is less than the length of used time series and, therefore, 

rajectory divergence is not significant for the reconstruction tech- 

ique). 

To finish this subsection, note that the “white box” problem ad- 

ressed using hidden variable approaches seems to be the simplest 

ne over all reconstruction problems. However, in this field there 

s a little progress in the last three decades. It seems that the main 

eason is that there is no possibility to avoid the global optimiza- 

ion of function of large number of variables. In some cases, re- 

onstruction techniques based on global optimization of such func- 

ions occurred to be successful, even with great number of vari- 

bles up to several hundred [42] , but that was due to specific 

eatures of nonlinear functions in the equations (sigmoids) which 
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Fig. 2.1. “The map of convergence” — values of the cost function depending on two normalized parameters b 1 and b 2 of Lorenz system (2.8) — panels (a,b) and Rössler’s 

system (2.9) — panels c,d are plotted in grey scale (the darker means the larger). The convergence radius r μ for different values of μ. 

Fig. 2.2. “The map of convergence” — values of the target function depending on 

two normalized parameters b 1 and b 2 corresponding to ˜ λx and ˜ λy are plotted in 

grey scale. 
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ircumstance protected the algorithm from divergence. Possibility 

o compute derivatives of the cost function explicitly (analytically) 

ould be helpful too, but for the hidden variable problem setting 

he cost function itself is determined implicitly. There were at- 

empts to escape the global optimization using machine learning 

echniques like reservoir computing [43] which can be considered 

s a kind of brute force. However, comparison of results obtained 

n [43] and in [41] definitely shows that specialized approaches oc- 

ur to be more powerful, recovering more information in greater 

umber of regimes with less additional assumptions. Another dif- 

culty is that any inaccuracy in an evolution operator form or im- 

roper account of measurement function make hidden variable ap- 
4 
roaches inoperable since the cost function is constructed based on 

trict correspondence between the observed dynamics and model- 

ng equations. 

Nevertheless, advances in hidden variable technique develop- 

ent seem to be possible due to the following three opportuni- 

ies. First, reduction of the number of initial conditions to be es- 

imated and, therefore, simplification of the cost function is al- 

ays helpful. Use of any additional information about the hidden 

ariables like continuity, range and periodicity should help. Sec- 

nd, improved optimization techniques together with an increase 

n computational power suggest that some problems too complex 

ow can be addressed in the future. Third, reformulation of the 

ost function based on a model generalization like it was done in 

 27 , 42 , 44 , 45 ] can reduce the method fragility. 

. Reconstruction of delay times from time series of 

elay-differential equations 

Systems with time delays are widespread in nature, technology, 

nd living systems. Many physical, chemical, climatic, and biologi- 

al self-oscillating systems have time-delayed feedback, which has 

 great influence on their dynamics. Time delays must be taken 

nto account when studying spatially developed systems in which 

ignals propagate at a finite speed and they need time to cover 

istances. Generally, the time-delay systems are modeled by delay- 

ifferential equation 

 n x 
( n ) ( t ) + ε n −1 x 

( n −1 ) ( t ) + · · · + ε 1 ̇ x ( t ) = 

F ( x ( t ) , x ( t − τ1 ) , . . . , x ( t − τk ) ) , (3.1) 

here x ( t ) is the system state at time t , x (n ) (t) is the time deriva-

ive of order n , τ1 , . . . , τk are the delay times, ε 1 , . . . , ε n are the pa-

ameters characterizing the inertial properties of the system, and F 

s a function. System (3.1) has an infinite-dimensional phase space, 
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Fig. 2.3. “The map of convergence” — values of the cost function depending on two normalized parameters b 1 and b 2 corresponding to parameters A and P of the system 

(2.11) are plotted in grey scale (the darker means the larger) for three considered regimes: regular (a) with τ = 60 . 5 , chaotic (b) with τ = 63 . 5 , and intermittency (c) with 

τ = 65 . 
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ecause it is necessary to prescribe the initial conditions in the 

ntire time interval [–τ k ,0] in order to uniquely define its dynam- 

cs. Therefore, one has to use special approaches for reconstructing 

ime-delay systems, since their direct reconstruction using conven- 

ional time-delay embedding techniques often fails. 

A lot of special methods have been proposed for recovering the 

arameters of time-delay systems and especially the delay times. 

ost of these methods are intended for the reconstruction of first- 

rder systems (3.1) having a single delay time τ 1 : 

˙ 
 ( t ) = F ( x ( t ) , x ( t − τ1 ) ) . (3.2) 

An efficient approach for reconstructing time-delay systems 

3.2) is based on the projection of the system trajectory from 

he infinite-dimensional phase space to several three-dimensional 

paces ( x ( t − τ ) , x ( t) , ˙ x ( t) ) upon variation of τ . The time deriva- 

ives ˙ x (t) in this case are numerically estimated from time series. 

f τ = τ1 , the projected trajectory is confined to a two-dimensional 

anifold, defined by ˙ x (t) − F ( x ( t) , x ( t − τ1 ) ) = 0 . This property 

as used in [46-59] to identify time-delay systems (3.2) and to re- 

over the delay time τ 1 and the function F . The mentioned papers 

mployed different criteria of quality for the reconstructed equa- 

ions, for example, various measures of complexity of the projected 

ime series [46-50] , measures based on the regression analysis [51- 

3] , the minimal forecast error of constructed model [54–58] , or 

he minimal value of information entropy [59] . There are a num- 

er of other special methods for reconstructing time-delay systems 

hat are based on multiple shooting approach [60] , information- 

heory approaches [ 61 , 62 ], adaptive synchronization [ 63 , 64 ], opti-

ization techniques [ 65 , 66 ], or other approaches [67–69] . 

In [70] , we have proposed a simple method for reconstructing 

he delay time of time-delay systems (3.2), which is based on sta- 

istical analysis of time intervals between extrema in the system 

ime series. We have shown that there are practically no extrema 

n x ( t ) separated in time by the delay time τ 1 . Actually, differenti-

tion of Eq. (3.2) with respect to t gives 

¨
 ( t ) = 

∂F ( x ( t ) , x ( t − τ1 ) ) 

∂x ( t ) 
˙ x ( t ) + 

∂F ( x ( t ) , x ( t − τ1 ) ) 

∂x ( t − τ1 ) 
˙ x ( t − τ1 ) . 

(3.3) 

In a typical case of quadratic extrema, ˙ x (t) = 0 and ẍ (t) � = 0

t the extremal points. Therefore, it follows from Eq. (3.3) that 

erivatives ˙ x (t) and ˙ x ( t − τ1 ) do not vanish simultaneously, i.e., if 

˙  (t) = 0 , then ˙ x ( t − τ1 ) � = 0 . Defining, for different values of τ , the

umber N of situations where the points of x ( t ) separated in time

y τ are both extremal, we can construct the N ( τ ) plot and recover

he delay time τ 1 as the value at which the absolute minimum of 

 ( τ ) is observed [70] . 
5 
Fig. 3.1 shows the method application to time series of the 

keda equation [71] 

˙ 
 ( t ) = −x ( t ) + μ sin ( x ( t − τ1 ) − x 0 ) (3.4) 

odeling the passive optical resonator system. The parameters of 

he system (3.4) are chosen to be μ = 20 , τ1 = 2 , x 0 = 

π
3 to pro-

uce a dynamics on a high-dimensional chaotic attractor. Part of 

he time series is shown in Fig. 3.1 (a). The time series is sampled

n such a way that 200 points in time series cover a period of 

ime equal to the delay time τ 1 . The time series contains 20 0 0 0

oints and exhibits about 1100 extrema. For various τ values we 

ount the number N of situations when ˙ x (t) and ˙ x ( t − τ ) are si- 

ultaneously equal to zero and construct the N ( τ ) plot, Fig. 3.1 (b).

he step of τ variation in Fig. 3.1 (b) is equal to the integration 

tep h = 0 . 01 . The absolute minimum of N ( τ ) takes place exactly

t τ = τ1 = 2 . 00 . 

The method turned out to be resistant to noise. The absolute 

inimum in the N ( τ ) plot becomes less pronounced in the pres- 

nce of noise, but is still distinguished at moderate noise levels. 

or example, in the considered above case of Ikeda equation, the 

ocation of the minimum of N ( τ ) allowed us to estimate the de- 

ay time accurately even when a zero-mean Gaussian white noise 

dded to the system time series had a standard deviation of 20% 

f the standard deviation of the data without noise (the signal- 

o-noise ratio was about 14 dB). The method can be extended to 

ime-delay systems (3.1) of high order and with several coexist- 

ng delays [72] . It is still efficient for the recovery of delay times 

f coupled time-delayed feedback systems from their time series 

 73 , 74 ]. 

Another approach for reconstructing the delay time of delayed 

eedback systems is based on the nearest neighbor method, which 

s widely used in different scientific disciplines for classification of 

ystems [75] and prediction of their time series [76] . In [77] , we

ave proposed to employ the nearest neighbor method for the re- 

overy of delay time from time series of time-delay systems. To 

xplain the method idea, let us consider a time-delay system (3.2) 

f the following form: 

 1 ̇ x ( t ) = −x ( t ) + f ( x ( t − τ1 ) ) , (3.5) 

here f is a nonlinear function. 

Analyzing time series, we always deal with variables measured 

t discrete instants of time. Therefore, we pass from differential 

q. (3.5) to the difference equation 

 1 
x ( t + �t ) − x ( t ) 

�t 
= −x ( t ) + f ( x ( t − τ1 ) ) , (3.6) 

here �t is the sampling time. Eq. (3.6) can be rewritten as 

 ( t + �t ) = a 1 x ( t ) + a 2 f ( x ( t − τ1 ) ) , (3.7) 
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Fig. 3.1. (a) Chaotic time series of the Ikeda Eq. (3.4) . (b) Number N of pairs of extrema in the time series separated in time by τ , as a function of τ . N ( τ ) is normalized to 

the total number of extrema in the time series. 

Fig. 3.2. (a) Chaotic time series of the Mackey-Glass Eq. (3.11) . (b) Dependences of D on the trial delay time m for k = 1 (dotted black line) and k = 10 (solid grey line). 
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here a 1 = 1 − �t 
ε 1 

and a 2 = 

�t 
ε 1 

. Let us write Eq. (3.7) in the form

f the discrete-time map 

 n +1 = a 1 x n + a 2 f ( x n −d ) , (3.8) 

here n = 

t 
�t 

is the discrete time and d = 

τ1 
�t 

is the discrete delay

ime. 

Assume that we have a time series { x n } N n =1 
of the system (3.5), 

here N is the number of points. We define vector �
 X i = ( x i , x i −d ) 

nd find its nearest neighbor �
 X j = ( x j , x j−d ) using the Euclidean 

etrics 

 

(
�
 X i , � X j 

)
= 

√ (
x i − x j 

)2 + 

(
x i −d − x j−d 

)2 
, (3.9) 

here j � = i . The vector �
 X j will be the nearest neighbor of �

 X i , if

he distance L ( � X i , � X j ) is minimal. Generally, it is a common prac- 

ice to find not one, but k nearest neighbors for a given vector. 

he nearest neighbor vectors containing the dynamical variable 

f the system (3.8) at the instants of time n and n − d, where

 ∈ [ d + 1 , N − 1 ] , will lead to the close states of the system at the

nstants of time n + 1 . Since the delay time is a priori unknown, we

ary the trial delay times m within some interval and for k near- 

st neighbors of each vector � X n = ( x n , x n −m 

) constructed from the 

ime series, estimate the variance σ 2 
n of the system states at the 

orresponding instants of time n + 1 . 

In the case of false choice of m ( m � = d), the variance of these

tates may be great, because the system states at the instants of 

ime n + 1 do not depend on the system states at the instants of

ime n − m . True delay time d can be estimated as the value at

hich the dependence 

 ( m ) = 

1 

N − m − 2 

∑ N−1 

n = m +1 
σ 2 

n (3.10) 

as the minimum [77] . 

Fig. 3.2 shows the method application to time series of the 

ackey-Glass equation [78] 

˙ 
 ( t ) = −bx ( t ) + 

ax ( t − τ ) 

1 + x c ( t − τ ) 
, (3.11) 
6 
hich can be converted to Eq. (3.5) by division by b . The param-

ters of Eq. (3.11) are chosen to be a = 0 . 2 , b = 0 . 1 , c = 10 , and

= 300 to produce a dynamics on a chaotic attractor. The sam- 

ling time is �t = 1 and the number of points is N = 10 0 0 0 . Part

f the time series is shown in Fig. 3.2 (a). Fig. 3.2 (b) depicts the

ependence of D on the trial delay time m for two different num- 

ers k of nearest neighbors for vector �
 X n = ( x n , x n −m 

) . The value 

f m is varied from 1 to 500 with a step of 1. Both dependences

 ( m ) exhibit a well-pronounced absolute minimum at m = 300 , 

hich provides an accurate recovery of the discrete delay time 

 = 

τ1 
�t 

= 300 . 

The method efficiency was tested in the presence of noise. The 

ocation of the minimum of D ( m ) allowed us to recover the de-

ay time accurately even when a zero-mean Gaussian white noise 

dded to the system time series had a standard deviation of 30% 

f the standard deviation of the data without noise (the signal-to- 

oise ratio was about 10 dB). Such level of noise greatly exceeds 

he noise level that is allowed for applying most of other meth- 

ds of delay time reconstruction. The method can be extended to 

ime-delay systems (3.1) of high order and with several coexisting 

elays [77] . 

A separate group of methods for the reconstruction of time- 

elay systems is based on the analysis of a system’s response to 

xternal perturbations [79–81] . These methods are especially use- 

ul for the recovery of time-delay system performing periodic os- 

illations, since from periodic time series it is not possible to de- 

ne whether the system is governed by delay-differential equation 

r ordinary differential equation and thus, one cannot recover the 

elay time. To solve the problem of delay time estimation in this 

ase it was proposed to disturb the system by a short-correlated 

oisy signal [79] , a control signal suitably designed to drive the 

ystem to a steady state [80] , or a periodic impulsive signal leading 

o the appearance of a transient process [81] . All these methods 

79–81] require sufficiently large amplitude of perturbations. For 

xample, in [80] the amplitude of the signal of perturbation was 

y order of magnitude greater than the amplitude of unperturbed 

elf-sustained oscillations. However, the use of strong disturbances 
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Fig. 3.3. The cross-correlation function (3.12) for the system (3.5) disturbed by rect- 

angular pulses. 
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f a time-delay system is not always possible because it can re- 

ult in undesirable qualitative change of the system behavior. In 

hese cases, the use of small disturbances for estimating the sys- 

em parameters is preferable. Such technique based on investiga- 

ion of the cross-correlation function of the signals of perturbation 

nd the system response has been proposed in [81] . For extracting 

he response of the system to small periodic signal of disturbance 

e used the method of accumulation [82] . 

Another efficient method for the reconstruction of time-delayed 

eedback systems using small disturbances has been proposed in 

83] . This method is based on the analysis of the system response 

o a weak external disturbance having the form of rectangular 

ulses. To recover the delay time τ 1 , we calculated the cross- 

orrelation function of ẍ (t) and the second derivative of perturba- 

ion ÿ (t) : 

 ( s ) = 

< | ̈y ( t ) | | ̈x ( t + s ) | > √ 

< | ̈y ( t ) | 2 >< | ̈x ( t ) | 2 > 

, (3.12) 

here the angular brackets denote averaging over time [83] . 

Fig. 3.3 shows the method application to the system (3.5) with 

1 = 800 , ε 1 = 20 , f (x ) = λ − x 2 , and λ = 1 disturbed by an exter-

al signal y ( t ) having the form of rectangular pulses with ampli-

ude A = 0 . 01 , period T = 1900 , and duration M = 

T 
2 . At these pa-

ameter values, the system (3.5) performs periodic oscillations in 

he absence of disturbance. The derivatives ẍ (t) and ÿ (t) were es- 

imated from the time series of x ( t ) and y ( t ) using the simplest

ifference method. To construct the plot of C ( s ) [Fig. 3.3] we used

0 0 0 0 points, but the method can be applied to shorter time se-

ies. C ( s ) has a pronounced maximum at s = τ1 . As the length of

he time series decreases, the maximum of C ( s ) at s = τ1 becomes

ess pronounced. For the indicated parameter values it is sufficient 

o take only 3500 points, i.e., the use of two pulses is sufficient for 

he accurate reconstruction of τ 1 . Note that for the accurate recov- 

ry of τ 1 the time series of x ( t ) and y ( t ) should be sampled at least

t 
τ1 

100 . 

Thus, the method allows one to use very short and low- 

mplitude pulses. It can be successfully applied to short time series 

nd data heavily corrupted by noise. 

. Coupled phase oscillators 

In order to detect and characterize couplings between oscilla- 

ory systems, one often relies on phases of oscillations (e.g. [84- 

06] ) because of sensitivity of the phase as a dynamical variable 

o weak influences on a system (e.g. [ 85 , 88 ]). In particular, one

s interested in detection of coupling in general, detection of cou- 

ling in a given direction, quantifying coupling “strength”, and es- 

imation of coupling time delays. These questions were considered 
7 
y many authors (e.g. [84-106] ), while our team addressed them 

107-127] with an accent on assessment of statistical significance 

f conclusions. 

.1. Detection of coupling between oscillators 

To detect coupling from oscillation phases ϕ 1 (t) and ϕ 2 (t) , 

ne uses different indices of phase synchronization [85] , the 

ost widely known among them being mean phase coherence 

87] < ρ = | e i (ϕ 1 (t) −ϕ 2 (t)) | > where angle brackets denote expecta- 

ion. Nonzero estimate of ρ is a sign of coupling presence, while 

tatistical significance is checked with the use of surrogate data 

r analytic formulas [ 93 , 95 ] assuming that oscillators do not pos- 

ess individual phase nonlinearity and phase noises are white. In 

 122 , 123 ], we have suggested a more generally applicable approach 

ased on correlation of phase increments r = 

< (�ϕ 1 −w 1 )(�ϕ 2 −w 2 ) > 
σ�ϕ 1 

σ�ϕ 2 

here �ϕ k (t) = ϕ k (t + τ ) − ϕ k (t) are increments over an interval 

, w 1 , 2 = < �ϕ 1 , 2 > are expectations, and σ�ϕ 1 
, σ�ϕ 2 

are standard 

eviations of those increments. An estimator of r from a time se- 

ies is suggested [ 122 , 123 ] to be the sample correlation coefficient 

ˆ  . For a long enough time series, the estimator ˆ r is normally dis- 

ributed with expectation r and variance given by Bartlett’s for- 

ula [128] . Having that estimate of variance ˆ σ 2 
ˆ r 

, one gets 95% con- 

dence band for r as ˆ r ± 1 . 96 · ˆ σˆ r : A positive conclusion (i.e. that 

bout coupling presence) is made from a given time series at a 

ignificance level of 0.05 if | ̂ r | > 1 . 96 · ˆ σˆ r . 

For numerical illustration, phase oscillators are used in Refs. 

122] in the form 

d ϕ 1 
dt 

= ω 1 + b sin ϕ 1 + k d, 1 sin ( ϕ 2 − ϕ 1 ) + k m 

sin ϕ 2 + ξ1 ( t ) , 
d ϕ 2 
dt 

= ω 2 + b sin ϕ 2 + k d, 2 sin ( ϕ 1 − ϕ 2 ) + k m 

sin ϕ 1 + ξ2 ( t ) , 
(4.1) 

here ω 1 and ω 2 are angular frequencies, b is phase nonlinear- 

ty parameter, k d, 1 , k d, 2 are coefficients of “difference coupling”, k m 

s coefficient of “modulating coupling”, phase noises ξ1 and ξ2 

re mutually independent with covariance functions ξk (t) ξk ( t 
′ ) = 

 k δ( t − t ′ ) , k = 1 , 2 , where δ is Dirac delta function, D 1 and D 2 

re noise intensities. Pure difference ( k m 

= 0 ) and pure modulat- 

ng ( k d, 1 = k d, 2 = 0 ) coupling have been considered. The difference 

oupling has been considered with b = 0 in “symmetric” ( k d, 1 = 

 d, 2 = k d ) and “anti-symmetric” ( k d, 1 = −k d, 2 = k d ) form. In the for- 

er case, coupling is synchronizing (for zero noises and small fre- 

uency mismatch, phase synchronization regime 1:1 gets stable for 

 d > | ω 1 − ω 2 | / 2 ). In the latter case, coupling is non-synchronizing. 

he modulating coupling has been considered for “linear” ( b = 0 ) 

nd “nonlinear” ( b � = 0 ) oscillators. Fig. 4.1 provides estimation re- 

ults for ensembles consisting of M = 100 pairs of time series with 

pproximately 20 data points over basic period and of the length 

bout 100 basic periods: frequency of positives f is shown along 

ith ensemble-averaged values < ̂ r > for ω 1 = 1 . 1 , ω 2 = 0 . 9 , D 1 =
 . 04 , D 2 = 0 . 01 . These results evidence that the method works

roperly, since the frequency of false positives is no greater than 

.05 (the dashed lines for k d = 0 and k m 

= 0 ). Besides, the method 

s quite sensitive to the difference synchronizing coupling: f gets 

arge for small (as compared to ( ω 1 − ω 2 ) / 2 = 0 . 1 ) values of k d 
nd rises with k d ( Fig. 4.1 ,a). Even faster rise of f occurs for the dif-

erence anti-symmetric coupling ( Fig. 4.1 ,b). Sensitivity to the mod- 

lating coupling is also high enough ( Fig. 4.1 ,c,d), especially in the 

resence of phase nonlinearity ( Fig. 4.1 ,d). 

Mean phase coherence ρ is not sensitive to modulating and 

ifference anti-symmetric couplings [ 122 , 123 ]. For difference syn- 

hronizing coupling, absolute values of r and ρ increase with k 

pproximately at the same rate. Only unidirectional synchroniz- 

ng coupling exhibits a clear advantage of ρ in terms of sensitiv- 

ty. Thus, the suggested method based on r is simple in its im- 

lementation, does not require large amount of computations (as 
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Fig. 4.1. Mean values < ̂ r > (solid lines) and frequencies of positives f (dashed lines): a) difference coupling with k d, 1 = k d, 2 = k d , b) difference coupling with k d, 1 = −k d, 2 = k d , 

c) modulating coupling at b = 0 , d) modulating coupling at b = 0 . 7 . 
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ompared to surrogate data-based one), and widely applicable (as 

ompared to ρ with analytic formulas for significance [ 93 , 95 ]). 

.2. Detection of coupling in a given direction 

In nonlinear dynamics, one of the pioneering works on empiri- 

al estimation of directional couplings was that of Rosenblum and 

ikovsky [89] . Its basic idea is to find out how strongly future evo-

ution of one phase depends on another phase given the current 

alue of the former phase. To implement this idea, one constructs 

 mathematical model from a time series of phases of two oscilla- 

ory systems in the form [ 89 , 107 ] 

ϕ k ( t ) = F k ( ϕ 1 ( t ) , ϕ 2 ( t ) , a k ) + ε k ( t ) , k = 1 , 2 , (4.2) 

here �ϕ k (t) ≡ ϕ k ( t + τ ) − ϕ k (t) , τ is a certain finite interval, 

 k (t) are zero-mean noises, F k are trigonometric polynomials and 

 k are vectors of their coefficients. Its underpinning is a univer- 

al model of phase dynamics in the form of stochastic differential 

quations [ 85 , 86 ] 

 ϕ k /dt = ω k + G k ( ϕ 1 , ϕ 2 ) + ξk ( t ) , k = 1 , 2 , (4.3) 

here ω k govern angular frequencies of oscillations, ξk (t) are 

hite noises. To construct a model (4.2), one specifies τ , often 

qual to a basic period of oscillations [89] , and orders of the poly-

omials F k . In many works of our team (e.g. [107-115] ), polynomi- 

ls of the third order are used following Ref. [89] . Estimates of co-

fficients ˆ a k are obtained via the least-square technique, i.e. via 

2 
ϕ,k = 

1 

N − τ

N−τ∑ 

i =1 

( �ϕ k ( t i ) 

− F k ( ϕ 1 ( t i ) , ϕ 2 ( t i ) , a k ) ) 
2 → min , k = 1 , 2 . (4.4) 

stimates of the influences of oscillators on each other are ob- 

ained from the estimates ˆ a k . 

For a priori known equations of phase dynamics, the strength 

f influence of the second system on the first one с 1 was defined 

s steepness of the dependence of F 1 on ϕ 2 [ 89 , 107 ], so 

 

2 
1 , 2 = 

1 

4 π2 

∫ 2 π ∫ 2 π

( ∂ F 1 , 2 ( ϕ 1 , ϕ 2 , a 1 , 2 ) /∂ ϕ 2 , 1 ) 
2 
d ϕ 1 d ϕ 2 . (4.5) 
0 0 

8 
o obtain estimates of с 1 and с 2 from a time series, one can just 

ubstitute ˆ a k for the true values a k into the formula (4.5). How- 

ver, such estimates ˆ c 1 , 2 may often be strongly biased, even for 

oderately long time series of hundreds of basic periods as shown 

n [107] . In Ref. [107] , we have suggested alternative time series- 

ased estimators ˆ γ1 , 2 for the quantities c 2 1 , 2 and obtained formulas 

or their 95% confidence bands as [ ̂  γk − 1 . 6 ̂  σ ˆ γk 
, ˆ γk + 1 . 8 ̂  σ ˆ γk 

] , where 

ˆ ˆ γk 
are computed from the same time series. The estimators ˆ γ1 , 2 

re unbiased under sufficiently general conditions and the con- 

dence bands assure the frequency of false positives not greater 

han 0.05 for time series not shorter than 50 basic periods [107] . 

pplicability of the estimators is often retained for shorter periods 

own to the length of 20 basic periods, if the sample mean phase 

oherence ˆ ρ does not exceed 0.4 [109] . More detailed and rigor- 

us conditions of applicability are obtained in Ref. [113] . Different 

umerical examples are given in Refs. [ 107 , 109 , 113 ]. 

.3. Quantifying coupling strength 

Apart from detection of coupling presence, it is often desirable 

o have more vivid and conceptually interpreted characteristics of 

coupling strength”. Refs. [ 117 , 119 ] are devoted to obtaining such 

uantifiers. As indicated above, phase dynamics of weakly cou- 

led self-oscillatory systems is described accurately enough with 

q.s (4.2) , if contributions of the noises and couplings to phase in- 

rements �ϕ k (t) = ϕ k ( t + τ ) − ϕ k (t) are small in comparison with 

he “linear increment” ω k τ . Then, the strength of the influence of 

he j- th oscillator on the k- th one ( j → k ) is defined in [ 117 , 119 ]

ithout derivatives, in a simpler form. In the simplest case of 

rst-order coupling F k = αk sin ( ϕ j − ϕ k ) + βk cos ( ϕ j − ϕ k ) , consider 

tatistical properties of the phase increment �ϕ k in the equation 

 С 2). Its expectation is < �ϕ k > = w k ≈ ω k τ . Due to noise and cou-

ling from another oscillator, the quantity �ϕ k fluctuates about 

ts expectation, representing modulation of the oscillation period. 

nder weak enough coupling, stationary probability distribution of 

rapped phases ( ϕ 1 mod 2 π, ϕ 2 mod 2 π) is almost uniform over 

he square [ 0 , 2 π) × [ 0 , 2 π) . The functional terms entering F k are 

utually orthogonal over that domain. So, averaging both squared 

ides of the Eq. (4.2) shows that the variance of �ϕ k is a sum 

2 
�ϕ = c j→ k + σ 2 

ε , (4.6) 
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here σ 2 
ε k 

= σ 2 
ξk 

τ is the variance of the noise ε k (t) and the quan- 

ity 

 j→ k = 

1 

2 

(
α2 

k + β2 
k 

)
(4.7) 

an be called “strength” of the influence j → k . Such decomposi- 

ion of phase increment fluctuation intensity provides the coupling 

trength c j→ k with a clear “oscillatory” sense. Having the least- 

quares estimates ˆ w k , ˆ αk , 
ˆ βk of the coefficients of the model (4.2), 

ne estimates c j→ k as ˆ c j→ k = 

1 
2 ( ̂  α

2 
k 

+ 

ˆ β2 
k 
) . Under the hypothesis of 

ero coupling ( c j→ k = 0 ), the random quantities ˆ αk and 

ˆ βk are mu- 

ually independent and identically normally distributed with zero 

ean and some variance σ 2 
ˆ αk 

, so the quantity χ2 
j→ k 

= 

ˆ α2 
k 
+ ̂ β2 

k 

σ 2 
ˆ αk 

is dis- 

ributed via the chi-square law with two degrees of freedom. De- 

ote (1- p )-percentile of this distribution as ˆ χ2 
2 , 1 −p 

, which is such 

umber that �2 ( ̂  χ2 
2 , 1 −p ) = 1 − p. If one gets χ2 

j→ k 
> ˆ χ2 

2 , 1 −p , then 

he hypothesis of zero coupling can be rejected at the significance 

evel p . The value of σ 2 
ˆ αk 

can be replaced with its estimate derived 

n Ref. [107] under the assumption that covariance function of the 

oise ε k decreases linearly down to zero over the interval [ 0 , τ ] . 

Everything is analogous for higher-order polynomials F with 

 k = ( w k , { αk,m,n , βk,m,n } ( m,n ) ∈ �k 
) where �k is the summation 

ange, i.e. the set of integers m and n determining which terms 

nter the polynomial. The strongest influence on dynamics of 

he k th oscillator is exerted by the resonance terms, i.e. those 

ith m/n ≈ ω j / ω k . Still, non-resonant terms can also be important 

129] . Strength of coupling j → k is defined in Ref. [119] in analogy

o (4.7) based on the equation 

 ( �ϕ k ) 
2 

> = w 

2 
k + 

1 

2 

∑ 

( m,n ) ∈ �k 

(
α2 

k,m,n + β2 
k,m,n 

)
+ σ 2 

ε k 
. (4.8) 

he terms in ( С 8) with n � = 0 specify the influence j → k . Their

um can be called its strength: 

 j→ k = 

1 

2 

∑ 

( m,n ) ∈ �k , n � =0 

(
α2 

k,m,n + β2 
k,m,n 

)
. (4.9) 

he remaining terms specify individual nonlinearity of the phase 

ynamics b k : 

 k = 

1 

2 

∑ 

( m,n ) ∈ �k , n =0 

(
α2 

k,m,n + β2 
k,m,n 

)
. (4.10) 

ince < �ϕ k > = w k , the variance of the phase increment σ 2 
�ϕ k 

= <

�ϕ k ) 
2 

> −< �ϕ k > 

2 reads 

2 
�ϕ k 

= b k + c j→ k + σ 2 
ε k 

. (4.11) 

he quantity c j→ k can be further normalized in different ways 

119] to have different interpretations, e.g. c j→ k /w 

2 
k 

shows inten- 

ity of oscillation period modulation due to the influence j → k 

nd c j→ k /σ
2 
�ϕ k 

provides “percentage” of intensity of the phase in- 

rement fluctuations determined by the influence j → k . Such cou- 

ling strength depends on the selected time scale τ and relative 

oles of the noise and coupling differ with the time scale. It ap- 

ears practically reasonable to select τ to be about the basic os- 

illation period T [107] . Estimator of that coupling strength reads 

ˆ 
 j→ k = 

1 

2 

∑ 

( m,n ) ∈ �k , n � =0 

(
ˆ α2 

k,m,n + 

ˆ β2 
k,m,n 

)
. (4.12) 

ecall that the sum of squares of M independent quantities nor- 

ally distributed with zero mean and unit variance is distributed 

s chi-square with M degrees of freedom. So, the quantity χ2 
j→ k 

= 

 

m,n ( n � =0 ) 

ˆ α2 
k,m,n 

+ ̂ β2 
k,m,n 

σ 2 
ˆ αk,m,n 

is distributed as chi-square with M k degrees 

f freedom where M is the number of terms in the right-hand 
k 

9 
ide of (4.12). The value of χ2 
j→ k 

can be computed from a time se- 

ies if the variance σ 2 
ˆ αk,m,n 

is replaced with its estimate derived in 

ef. [107] . These estimates of coupling strengths and assessment of 

heir confidence apply under some conditions such as well-defined 

hases and low mean phase coherence of the respective order, etc 

119] . 

Applicability of the suggested estimates for moderate lengths 

f time series is shown in numerical experiments with exemplary 

scillators with different properties of phase dynamics [119] . Gen- 

ralization of the approach to larger ensembles of oscillators is 

traightforward and has been accomplished in Ref. [117] with suc- 

essful results for ensembles consisting of 10 exemplary oscillators 

nd even for a discrete scheme for a continuously distributed sys- 

em. 

.4. Estimation of the coupling delay time 

To determine time delay of the coupling from the j th oscillator 

o the k th one, it was suggested in [130] to build a model in the

orm 

 k ( t + τ ) − ϕ k ( t ) = F 
(
ϕ k ( t ) , ϕ j ( t − �) 

)
+ ε k ( t ) , (4.13) 

here the trial delay � is a free parameter too. Coeffi- 

ients of F are estimated via minimization of the mean- 

quared error S(�) = ˆ ε 2 
k 
( t i ) where ˆ ε k ( t i ) = ϕ k ( t i + τ ) − ϕ k ( t i ) −

 k ( ϕ k ( t i ) , ϕ j ( t i − �) ) , and then S is minimized over �. In our 

orks, to account for possible biases and random errors of statisti- 

al estimation, this approach was further elaborated [121] . First, a 

oint estimate of the coupling delay unbiased under general condi- 

ions is derived to be ˆ � = �min + τ/ 2 where �min = arg min 

�
S(�) . 

he variance of ˆ � under the assumption of linear decrease of the 

ovariance function of ε k down to zero over an interval of lags 

0, τ ] is estimated as 

ˆ 2 � = 

2 ̂  σ 2 
ε 

N 

′ 

( 

d 2 S ( �) 

d �2 

∣∣∣∣
�= �min 

) −1 

, (4.14) 

here N 

′ = N�t/τ is the number of non-overlapping intervals of 

he length τ inside a time series, ˆ σ 2 
ε k 

= min 

�
S(�) is an estimate of 

he variance of ε k . To estimate the second derivative in (4.14), the 

ependence S(�) is approximated in the vicinity of the minimum 

oint �min with a quadratic parabola. An interval estimator of the 

oupling delay (its 95% confidence band) is ˆ � ± 1 . 96 ̂  σ�. Efficiency 

f the method was shown for phase oscillators and Van der Pol 

scillators driven by white noise [121] . Further refinements were 

eveloped in Ref. [ 124 , 125 ] for other properties of noise, namely 

or noises with longer correlations such as those in the phase os- 

illators of the form 

 ϕ 1 (t) / dt = ω 1 + ξ1 (t) , 
 ξ1 (t) / dt = −α1 ξ1 (t) + η1 (t) , 
 ϕ 2 (t) / dt = ω 2 + k sin ( ϕ 1 (t − �0 ) − ϕ 2 (t)) + ξ2 (t) , 
 ξ2 (t) / dt = −α2 ξ2 (t) + η2 (t) , 

(4.15) 

here ω 1 , 2 are individual angular frequencies, k is a coupling co- 

fficient, �0 is a coupling delay (for the influence 1 → 2 ), η1 , 2 

re mutually independent white noises with covariance functions 

k (t) ηk ( t 
′ ) = D k δ( t − t ′ ) , and so ξ1 , 2 are colored noises which can 

e called “frequency noises”. The variance of ξk is expressed via 

he white noise ηk intensity as σ 2 
ξk 

= D k / ( 2 αk ) . In Refs. [ 124 , 125 ] it

s shown that for ω 1 = 1 . 05 , ω 2 = 0 . 95 , k = 0 . 1 , �0 = 12 (40 data

oints), σξ2 
= 0 . 06 , α1 = 0 . 11 , and α2 = 0 . 09 , the rate of false con-

lusions about the time delay value gets large (greater than 0.05, 

nd even than 0.1) at σξ1 
< 0 . 17 . To diagnose that situation, one

an use the sample autocorrelation function of the noise ε which 
2 
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Fig. 4.2. Illustration for the rough estimator of the coupling delay. 
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iminishes for time lags much larger than τ . Such properties of 

he phase dynamics are encountered also for low-dimensional non- 

inear oscillators in a deterministically chaotic regime where the 

se of Eq. (4.13) without explicitly included amplitude dynamics 

s not rigorously justified but often appears a good approximation 

ith the properties of phase noise determined by the influence of 

lowly varying chaotic amplitudes. 

In Ref. [ 124 , 125 ] it is suggested to use the sample autocorrela-

ion function of ε k estimated from the model residual errors and 

etermine its decay time T as the time lag at which it decreases 

own to a small value, e.g. empirically selected value of 0.2 suf- 

ces for time series of the length about 100 basic periods. Esti- 

ating the number of independent values of ε k in a time series 

rom below as N 

′′ = N�t/L where L = max [ T , τ ] , an estimator of

he variance of ˆ � takes the form 

ˆ 2 � = 

2 ̂  σ 2 
ε 

N 

′′ 

( 

∂ 2 S ( �) 

∂ �2 

∣∣∣∣
�= ̂ �min 

) −1 

, (4.16) 

hich gives a wider interval than Eq. (4.13) for T > τ . This idea

ppears efficient, e.g. the noise variance in the driving oscillator 
2 
ξ1 

for a system (4.15) was varied in a wide range via changing D 1 

t other fixed parameters in Ref. [ 124 , 125 ], in particular for α1 =
 . 11 , α2 = 0 . 09 (long correlations) and α1 = 11 , α2 = 9 (quickly de-

aying correlations, i.e. almost white phase noise). The rate of false 

onclusions about the delay value with the estimate (4.14) is large 

t σξ2 
= 0 . 06 , α1 = 0 . 11 , α2 = 0 . 09 and sufficiently small σξ1 

< 0.2.

n elaborated estimator (4.16) allows one to reduce the errors rate 

own to the fixed small value of 0.05. Still, for α1 = 11 , α2 = 9 and

mall σξ1 
, even Eq. (4.16) does not work since S appears to be too

eakly sensitive to the trial delay � and so random fluctuations 

trongly shift the location of the minimum of S(�) . Diagnosis of 

his problematic situation can be done on the basis of the plot 

(�) which does not possess a single main minimum as distinct 

rom a “good” situation of clear minimum. Analogous results were 

btained for Van der Pol oscillators with the phases determined 

ia the Hilbert transform [125] . 

An example of coupled low-dimensional nonlinear systems 

ith possible periodic and chaotic dynamics with well-defined 

hase is given by the Roessler systems: 

˙ 
 1 (t) = −ω 1 y 1 (t) − z 1 (t) + ξ1 , 

˙ 
 1 (t) = ω 1 x 1 (t) + a y 1 (t) , 

˙ 
 1 (t) = b − z 1 (t )(r − x 1 (t )) , 
˙ 
 2 (t) = −ω 2 y 2 (t) − z 2 (t) + K( x 1 (t − �0 ) − x 2 (t) ) + ξ2 , 

˙ 
 2 (t) = ω 2 x 2 (t) + a y 2 (t) , 

˙ 
 2 (t) = b − z 2 (t )(r − x 2 (t )) , 

(4.17) 

here ω 1 = 1 . 015 , ω 2 = 0 . 985 are angular frequencies, a = 0 . 1 , b =
 . 1 , and parameter r is varied in a wide range providing different

ynamical regimes in Ref. [ 126 , 127 ] from a cycle of period one via

eriod-doubling cascade to chaos, ξ1 , 2 are white noises with in- 

ensities D 1 . 2 , coupling delay is �0 = 12 , K is coupling coefficient. 

hase dynamics of an individual system is described with a suffi- 

iently cumbersome equation demonstrating that even for nonzero 

oises one must in general introduce into the phase dynamics 

odel (4.13) additional “noise terms” representing the influence 

f “the amplitude on the plane x - y ” and of the third coordinate 

 . Such terms are sometimes called “efficient noises” and proper- 

ies of such “noises” for low-dimensional chaotic systems may be 

ather non-trivial leading to difficulties in applying an asymptotic 

stimator (4.16). At nonzero D 1 . 2 in the system (4.17), noises in the 

hase models (4.13) approximate a combined influence of random 

rocesses ξ1 , 2 and unaccounted dynamical variables of the origi- 

al system. Estimation in numerical experiments was performed 

n Refs. [ 126 , 127 ] at K = 0 . 05 for “individually” periodic ( r = 4)

nd chaotic ( r = 10) regimes. “Good” situations (with the errors 
10 
ate less than 0.1) include a perturbed periodic regime at D 1 > 0 . 5

nd perturbed chaotic regime at D 1 > 0 . 35 . At lower noise levels,

he error rate exceeds 0.1. Seemingly, a nonzero bias of the de- 

ay estimator is determined by peculiarities of interaction between 

he phase and other variables unaccounted in the model (4.13) that 

eads to inadequacy of the phase description with independent ex- 

ernal phase noises (4.13). Such situations differ from the case of 

he original system (4.3) with white noises by the following cir- 

umstance: Even if the plot s 2 
2 
( �1 → 2 ) exhibits a clear main mini- 

um, its shape is not close to a quadratic parabola or sufficiently 

eep local minima arise apart from the global one. These features 

re seemingly determined by an individual character of the con- 

rete system nonlinearity. 

To overcome these problems, Ref. [127] suggests to refuse from 

 local approximation of the plot with a parabola and to use a 

ough estimate of the global minimum width. Namely, one can 

raw a straight line on the plane ( �1 → 2 , s 
2 
2 ) parallel to the abscissa

xis at the ordinate level equal to the middle between the minimal 

nd maximal values of s 2 
2 

in the selected range of trial �1 → 2 . As an

nterval estimator of the coupling delay, one can take an interval 

 �L , �R ] between the leftmost and rightmost cross-section points 

of the drawn line and the plot s 2 
2 
( �1 → 2 ) ) ( Fig. 4.2 ). 

In estimating a coupling delay with the rough interval estima- 

or, the errors rate appears to be less than 0.05 in all above men- 

ioned problematic situations [127] . Exceptions are those cases at 

mall values of D 1 when the plot s 2 
2 
( �1 → 2 ) does not possess a 

ingle clear minimum, but they can be readily diagnosed in prac- 

ice. Higher reliability of the rough estimator is achieved at the ex- 

ense of broadening the confidence band, i.e. reducing sensitivity 

f the estimator as a detector of small nonzero delays. However, 

ven the rough estimator is often sufficiently sensitive and can de- 

ect nonzero delays when an asymptotic estimator (C16) provides 

alse conclusions about the coupling delay. The rough method ap- 

ears efficient even for a number of systems with difficulties in 

efinition of the phase [127] when there is no clear rotation of an 

rbit about a single center on a complex plane, either due to ran- 

om influences and relatively wide power spectrum (e.g. for linear 

tochastic oscillators) or peculiarities chaotic dynamics and large 

hase diffusion (e.g. for Lorenz systems). 

. Conclusions 

Special approaches to reconstruction of dynamics equations 

nvolving prior knowledge about a system under study appear 

romising in practice. Here, we have overviewed some directions 

n this field which include coping with hidden variables, recon- 

truction of time-delay systems, and analysis of couplings between 

scillatory systems based on phase dynamics modeling. We have 

resented a series of results of our team and only briefly men- 
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ioned many contributions of other groups actively working in the 

eld of time series analysis and reconstruction of dynamics. 

To summarize, parameter estimation in fully known model 

tructure under the hidden variables setting is useful to verify con- 

eptual models and make more accurate estimates of their param- 

ters. Such problem setting is quite widespread and interesting in 

ractice, e.g. [ 24 , 25 ]. Our works contribute to making the estima-

ion techniques more efficient and promise some further improve- 

ents [ 27 , 42 , 44 , 45 ]. 

We have proposed several methods for the reconstruction of 

elay times for various classes of time-delayed feedback systems 

rom their time series. The method based on the statistical analysis 

f time intervals between extrema in the time series is very sim- 

le. This method uses only operations of comparing and adding. 

t needs neither ordering of data, nor calculation of approxima- 

ion error or certain measure of complexity of the trajectory and 

herefore, it is quick-operating. The method based on the nearest 

eighbour analysis needs more time of computation. However, it 

emains efficient under very high levels of dynamical and additive 

oise. The method based on the analysis of a time-delay system 

esponse to an external disturbance having the form of rectangular 

ulses is intended for the reconstruction of delay times in the case 

f periodic time series. This method allows one to use very short 

nd low-amplitude pulses. 

Phase dynamics-based methods of coupling analysis represent 

uite universal tool for studying oscillatory systems with pro- 

ounced main rhythms, e.g. [ 89 , 91 , 107 ]. Such phase-dynamical 

ethods developed in the works overviewed here are suitable to 

eveal couplings and their delays from sufficiently short time se- 

ies for oscillatory systems with diverse properties. With the aid of 

hese methods, we have obtained a number of new results from 

limate and neurophysiological data as presented in Refs. [ 109- 

12 , 118 ] (climate) and Refs. [ 115 , 116 , 120 ] (neurophysiology). 
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