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The dynamics of a non-autonomous oscillator in which the phase and frequency of the external force 

depend on the dynamical variable is studied. Such a control of the phase and frequency of the external 

force leads to the appearance of complex chaotic dynamics in the behavior of oscillator. A hierarchy of 

various periodic and chaotic oscillations is observed. The structure of the space of control parameters 

is studied. It is shown there are oscillatory modes similar to those of a non-autonomous oscillator with 

a potential in the form of a periodic function in the system dynamics, but there are also significant 

differences. Physical experiments of such systems are implemented. 
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. Introduction 

Many systems, including radiophysical, biological, and others,

xhibit oscillatory processes in which one the system acts on an-

ther with a periodic signal, but when the operating conditions

hange, the frequency of forcing changes. For example, in infor-

ation transmission systems to ensure high stability, the so-called

hase-locked loop is used [1–4] . The system of cardiovascular reg-

lation of living organisms with a change in load increases or de-

reases the heart rate [5–9] . Such property for neurons can explain

lasticity and memory [10–13] . In some assumption such phenom-

na can be called and interpreted as adaptation. In such interac-

ions, the dependence of the phase or frequency on the dynamic

ariable can lead to the appearance of complex dynamics in the

ystem. The control process in this case is challenge task, its re-

earch and modeling encounters a number of difficulties. One of

he ways in the study of such systems and processes is the con-

ideration of simpler objects in which the excitation of oscillations

nd frequency control are rather easily modeled. As such a system,

t is convenient to use the classical model of the theory of oscilla-

ions. 

A simple object for studying adaptation properties can be sim-

le self-oscillating model, such as a harmonic oscillator, which is a

aradigmatic model that characterizes a wide range of systems in
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ngineering and natural sciences [14–15] . A dissipative linear os-

illator with external force (non-autonomous) in the simplest case

emonstrates self-oscillations or a stable equilibrium state as an

ttractor. The complication of the dynamics of such a system is

raditionally observed with the addition of nonlinear terms. For

xample, adding cubic nonlinearity will result in the well-known

uffing oscillator [16–21] . In [22–24] were presented modifications

f Duffing oscillator describing a mechanical system with friction,

hich can demonstrate chaotic behavior. These results were veri-

ed by numerical simulations and theoretical approaches [ 20 , 22–

4 ]. Another modified non-autonomous Duffing oscillator allows to

escribe complex bursting dynamics [25] . By adding exponential

onlinearity, we get a Toda oscillator [26–27] , whose equation re-

roduces the dynamics of the RL -diode circuit [28–31] . When such

ystems interact, they exhibit complex dynamic behavior, includ-

ng chaos, quasiperiodic oscillations, multistability, nonlinear res-

nance, etc. [32–40] . Another interesting option is oscillator with

onlinearity of the sine type. It is one of the reference models of

onlinear dynamics [15] . It describes the oscillations of a mathe-

atical and physical pendulum, and also appears in other applied

roblems, for example, when considering Josephson contact [41–

4] , when studying self-induced transparency in nonlinear optics,

hen analyzing the bending of an elastic beam. Also such kind

f models can occur in electromechanical systems [45] . Dynamical

ystems of this type have very rich dynamics [46–50] . The richness

f the dynamics of such oscillators is related to the form of the

otential function, which is periodic and has an infinite number of
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maxima and minima. In the case of a symmetric potential func-

tion, dynamics is observed, accompanied by a transition from one

well to another. In addition to the well-known scenarios of transi-

tion to chaos and types of bifurcations, so-called metastable chaos

takes place in such systems. In the case of asymmetry of the po-

tential function, the so-called particle drift in the periodic potential

is observed. 

In the frame of this work, we consider the features of the sys-

tem when the external signal is complicated, i.e. taking into ac-

count the dependence of the phase and frequency of external in-

fluence on the dynamic variable. The accounting of adaptive prop-

erties in such a model can lead to the appearance of complex os-

cillatory regimes. A study of the dynamics of a non-autonomous

oscillator with a controlled phase and frequency of external force

is presented. The structure of the space of control parameters is

investigated. The role of parameters is determined. The work is

structured as follows. In Section 2 we describe the object of study:

a linear oscillator with an external periodic force, the external force

of which has a phase dependent on a dynamical variable, which

leads to the appearance of nonlinearity in the system. We discuss

in detail the dynamics of the oscillator, the phase of which de-

pends on the dynamical variable. In Section 3 we presents a model

of harmonic oscillator with frequency depending on the state of

oscillator and the numerical study of this model. In Section 4 we

present implementation of proposed model in physical experiment

and compare numerical and experimental results. 

2. Harmonic oscillator under external periodic force with a 

controlled phase 

As the simplest object of study, we will choose the classical

model of the theory of oscillations [ 14 , 15 ] – RLC - circuit, excited

by an external signal, which is written in the following form 

1 : 

ẍ + α ˙ x + x = A Sin (pτ + φ) , (1)

where x, ˙ x are dimensionless dynamic variables, α is dissipation

coefficient, A and φ are amplitude and phase of the external force,

p = ω / ω 0 is normalized frequency of external force, this coef-

ficient characterizes ration of natural circuit frequency and fre-

quency of external force. Eq. (1) describes the behavior of a lin-

ear non-autonomous oscillator, the dynamics of which well known:

the external force in such a system excites periodic self-oscillations

[ 14 , 15 ]. 

The first proposed modification of the model corresponds to the

case when the phase of external force depends on the variable. The

dependence of the phase on the variable is the simplest one, i.e.

through a linear function: 

φ(x ) = kx, (2)

where k is a constant coefficient. After the transition Eq. (1) takes

the form: 

ẍ + α ˙ x + x = A Sin (pτ + kx ) . (3)

As result of modification, the Eq. (1) becomes non-linear and

Eq. (3) contains a nonlinearity of type Sin( kx ). 

Thus, by controlling the phase of the external force, the lin-

ear equation describing the forced oscillations of the linear oscilla-

tor is also converted into a nonlinear one with nonlinearity of the

Sin( kx )-type. 

The analysis of the nature of the forced oscillations in the work

was carried out on the basis of an assessment of the spectrum of

Lyapunov exponents [51] , which was calculated with Benettin al-

gorithm [52] , as well as on the analysis of phase portraits in the
1 Transformation of equations from non-autonomous RLC -circuit to dimensionless 

form presented in Appendix 

F  

v

 

f  
troboscopic section. The amplitude A , normalized frequency p , and

hase control coefficient k were used as control parameters. For

tability analysis, Eq. (3) was transformed into a system of three

rst-order differential equations: 

˙ 
 = y, 
˙ 
 = −αy − x + A Sin (z) , 

˙ 
 = p + ky. 

(4)

We study the characteristic structure of various parameter

lanes in this case. 

Fig. 1 presents a charts of the dynamic regimes of system (4) on

he plane of parameters ( k, A ) for three different values of the fre-

uency of forcing p . Different colors denote the domains of pe-

iodic regimes with different periods, domains of chaotic oscilla-

ions, when the largest Lyapunov exponent is positive are depicted

y gray color; the corresponding color palette is presented in the

ottom of Fig. 1 . Fig. 1 a illustrates the structure of the parameter

lane ( k, A ) at p = 0.25. In the dynamics of system (4) , a sequence

f period doubling bifurcations is observed, ending with a transi-

ion to chaos. In the region of the existence of chaos, its develop-

ent is observed, associated with a decrease in the connectivity

f the chaotic attractor, alternating with the appearance of zones

f periodic oscillations. Fig. 1 b illustrates the structure of the pa-

ameter plane ( k, A ) at p = 1. The structure of the parameter plane

emains qualitatively unchanged, only the bifurcation values of the

arameters A and k change. Fig. 1 c illustrates the structure of the

arameter plane ( k, A ) at p = 5. In general, the plane structure also

epresents an alternation of zones of periodic and chaotic oscilla-

ions. However, bands of periodic regimes corresponding to higher

esonances appear. As can be seen from Fig. 1 , an increase in the

arameters A and k leads to a qualitatively identical change in the

ynamics of the system. 

Fig. 2 shows two-dimensional projections of phase portraits il-

ustrating the appearance of a chaotic attractor as a result of a cas-

ade of period doubling bifurcations, stroboscopic section of phase

ortrait is depicted by blue points. Fig. 2 a shows the limit cycle

or small values of the parameters of the amplitude of the exter-

al signal and coefficient k . With an increase in the amplitude of

he external force, the limit cycle increases in size ( Fig. 2 b). As the

oefficient k increases, the shape of the limit cycle changes, addi-

ional loops appear ( Fig. 2 c), however, in the stroboscopic section,

his attractor still corresponds to a single fixed point. Fig. 1 d shows

n example of a more complex attractor for large values of the pa-

ameters A and k . On the basis of such a limit cycle, a cascade of

eriod doubling bifurcations occurs in the system. In Fig. 2 e, an ex-

mple of a double limit cycle is shown, and then the chaos devel-

ps, presented in Fig. 2 e. Inside the chaos region with a further in-

rease in the parameters on the parameter plane, periodicity win-

ows are observed, inside which a cascade of period doubling bi-

urcations also occurs and chaos also appears. For all cases shown

n Fig. 2 , the dynamics of the system develops in the vicinity of

ne of the potential wells located on one side of the unstable zero

quilibrium state. In this case, the phase trajectory can also enter

he region of the second symmetric potential well, but then re-

urns. This is clearly seen in the stroboscopic sections, which are

ocated in the negative region of the dynamical variable x . 

A similar scenario is observed with increasing frequency param-

ter p . However, with increasing frequency, attractor grows in size

nd begins to visit other potential wells that are more distant from

he zero equilibrium state. At the same time, dynamic chaos devel-

ping at various frequencies has its own characteristic features. To

nalyze the features, stroboscopic sections of phase portraits and

ourier spectra for chaotic attractors were constructed for various

alues of the parameter p , which are presented in Fig. 3 . 

For small values of the parameter p , which is responsible for the

requency of the external force ( p = 0.25), the oscillator dynam-
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Fig. 1. Charts of dynamical modes of harmonic oscillator under external periodic force with a controlled phase (4) for α = 0.1, a) p = 0.25, b) p = 1, c) p = 5. 

Fig. 2. Two-dimensional projections of phase portraits (red lines) and cross-sectional stroboscopic sections (blue dots) of harmonic oscillator under external periodic force 

with a controlled phase (4) for various points of the parameter plane ( k, A ) at p = 0.25. a) k = 0.1, A = 0.5; b) k = 0.3, A = 0.5; c) k = 0.3, A = 0.75; d) k = 0.32, A = 2.67; 

e) k = 0.36, A = 3.07; f) k = 0.62, A = 5.85. 
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Table 1 

Values of the Lyapunov exponents spectrum of harmonic os- 

cillator under external periodic force with a controlled phase 

(4) for different chaotic attractors. 

Parameters �1 �2 �3 

p = 0.25, k = 0.85, A = 8.18 0.018 0.0 −0.118 

p = 1, k = 0.57, A = 5.35 0.092 0.0 −0.192 

p = 5, k = 3.03, A = 11.1 0.230 0.0 −0.330 

 

p  

c  

f  

c  

p  
cs mainly develops in one of the potential wells close to the zero

quilibrium point. The peak corresponding to the base frequency of

he limit cycle from which this chaotic attractor was born is clearly

isible in the Fourier spectrum. With an increase in the frequency

f external force p ( p = 1), the attractor becomes more developed

nd jumps are observed in dynamics from one potential well to

nother. The Fourier spectrum of such a regime is broadband and

oes not contain individual peaks, as it was for the previous case.

t p = 5, the phase portrait looks even more developed; the phase

rajectory visits about 7 potential wells. The Fourier spectrum is

lso broadband, but in this case a certain higher-amplitude band

ppears at low frequencies, which corresponds to filtering the sig-

al by the circuit at the resonant frequency. In Table 1 values of

he Lyapunov exponents for considered chaotic attractors are pre-

ented. The largest Lyapunov exponent for more developed chaotic

ttractor has the biggest value. 

p  
Now we turn to the study of the characteristics of the plane of

arameters corresponding to the most classical in terms of syn-

hronization: frequency - amplitude of the external signal. As a

requency parameter, we will use the parameter p . Fig. 4 presents

harts of the modes of oscillations of system (4) on the plane of

arameters ( p, A ) for various values of the parameter k ; the color

alette is similar to Fig. 1 . Fig. 4 a illustrates the structure of the
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Fig. 3. Stroboscopic cross sections and Fourier spectra for various chaotic modes of harmonic oscillator under external periodic force with a controlled phase (4) . a) p = 0.25, 

k = 0.85, A = 8.18; b) p = 1, k = 0.57, A = 5.35; c) p = 5, k = 3.03, A = 11.1. 

Fig. 4. Charts of dynamical modes of harmonic oscillator under external periodic force with a controlled phase (4) with α = 0.1, a) k = 0.5, b) k = 1, c) k = 2. 
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parameter plane ( p, A ) at k = 0.5. Here it is possible to distinguish

separate zones of complex behavior associated with the so-called

resonances at higher harmonics. At low frequencies on the param-

eter plane, there is a sequence of period doubling bifurcations is

observed in the dynamics of the system ending with a transition to

chaos. The lines of bifurcations of period doubling have the charac-

teristic form of tongues with a certain threshold in the parameter

k . So, for the first line of period doubling (at the maximum fre-

quency of the external signal p ), the minimum of bifurcation line

is located at the doubled resonant frequency, it is typical for the

structure of the space of control parameters of a non-autonomous

nonlinear oscillator [9–12] . With a decrease in the frequency of

forcing, similar lines of period doubling are observed at frequen-

cies corresponding to subresonances. As the frequency decreases,

the threshold for bifurcation of the doubling period increases. With

an increase in the parameter k , chaos develops due to a decrease

in the connectivity of the chaotic attractor, alternating with the ap-

pearance of zones of periodic oscillations. On the whole, the struc-

ture of the plane of control parameters ( Fig. 4 a) is similar to that

for a non-autonomous nonlinear oscillator [ 18 , 19 ]: it is possible to

distinguish separate zones of complex behavior associated with the

so-called resonances at higher harmonics. 

o  
An increase in the parameter k ( Fig. 4 b and Fig. 4 c) leads to an

ncrease in the range of variation of the phase of the forcing, and

s a result to an increase in the regions of complex behavior and

he complication of their structure. 

Fig. 5 presents charts of dynamic modes on the plane of param-

ters ( p, k ) for two values of parameter A : A = 1 and A = 10. Quali-

atively, the structure of the parameter plane repeats the analogous

ne presented in Fig. 4 . Which also confirms that a change in the

arameters A and k qualitatively leads to the same result. Fig. 5 il-

ustrates the diversity of the zones of existence of various modes

f oscillation. 

. Harmonic oscillator under external periodic force with a 

ontrolled frequency 

The second modification of the model is harmonic oscillator,

he frequency of which depends on the dynamical variable. The

quation of non-autonomous oscillator in this case has the form 

¨
 + α ˙ x + x = A Sin (p(x ) τ + φ) , (5)

here p ( x ) is the frequency of external force. As in the previ-

us case, we assume that the dependence of the frequency of the
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Fig. 5. Charts of dynamical modes of harmonic oscillator under external periodic force with a controlled phase (4) with α = 0.1, a) A = 1, b) A = 10. 

Fig. 6. Charts of the dynamic modes of harmonic oscillator under external periodic force with a controlled frequency (9) for α = 0.1, (a) p 0 = 0.25, (b) p 0 = 1. 
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xternal force on the dynamic variable is linear: 

p(x ) = p 0 + kx (t) . (6)

Then Eq. (5) takes the form: 

¨
 + α ˙ x + x = A Sin [ ( p 0 + kx ) τ + φ] , . (7)

Setting ϕ = 0, we obtain an equation of the form 

¨
 + α ˙ x + x = A Sin [ ( p 0 + kx ) τ ] , . (8)

In the case of frequency control, the dynamics does not change

ualitatively; the main difference in the system behavior is the

tructure of the space of control parameters. A change in the fre-

uency of forcing, which is a consequence of its dependence on

 dynamical variable, leads to the fact that the instantaneous fre-

uency of the oscillations changes and the nature of the oscilla-

ions is more complex than when controlling the phase. The sys-

em of first-order equations in this case has the form: 

˙ 
 = y, 
˙ 
 = −αy − x + A Sin (z) , 

˙ 
 = ( p 0 + kx ) + kyτ. 

(9) 

It should also be noted here that, unlike the system of equa-

ions (8) in (9) , the variable z clearly depends on the time τ . 

The study of model (9) will be carried out similarly to a con-

rolled phase system. To analyze the dynamics when varying the

arameters, we again use the charts of dynamic mode, based on

he analyzing the spectrum of Lyapunov exponents. 
Fig. 6 shows the charts of the modes of oscillations of system

9) on the plane of parameters ( k, A ) for various values of the pa-

ameter p 0 and the dissipation parameter α = 0.1. The color palette

sed was the same as for Fig. 1 . Fig. 6 a illustrates the structure of

he parameter plane ( k, A ) at p 0 = 0.25. The overall picture remains

he same which was for harmonic oscillator under external peri-

dic force with a controlled phase: on the parameter plane, self-

scillation bands with a period of 1 in the stroboscopic section are

bserved. With basic limit cycles, a cascade of period doubling bi-

urcations occurs and a chaotic attractor arises. The difference from

he case of the dependence of the phase on the variable is that

hese structures are observed only at small values of the parame-

ers A and k . For large parameter values, the periodicity windows

ecome very narrow and the chaotic dynamics mode dominates.

ig. 6 b illustrates the structure of the parameter plane ( k, A ) with

 0 = 1. The structure of the parameter plane remains qualitatively

nchanged, bands of periodic regimes are observed, from which

haotic oscillations arise through a cascade of period doubling bi-

urcations. However, for this choice of parameters, the regions of

he limit cycle become more pronounced. With a further increase

n the parameter p 0 , the chaos regions disappear and only periodic

scillations are realized in the system. This effect is due to the fact

hat with an increase in p 0 the amplitude of the forced oscilla-

ions decreases, and, accordingly, the amplitude of the change in

he forcing frequency. 

Fig. 7 shows examples of projections of phase portraits and

heir stroboscopic sections for the case p 0 = 0.25. The phase por-

rait for the limit cycle of the period-1 is a multi-turn cycle, which
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Fig. 7. Two-dimensional projections of phase portraits (red lines) and stroboscopic sections (blue dots) of harmonic oscillator under external periodic force with a controlled 

frequency (9) for various points of the parameter plane ( k, A ) at p 0 = 0.25. (a) k = 0.02, A = 0.167; (b) k = 0.03, A = 0.2; (c) k = 0.045, A = 0.417; (d) k = 0.085, A = 0.733; 

(e) k = 0.11, A = 0.9; (f) k = 0.168, A = 1.35; g) k = 0.283, A = 2.267. 

Fig. 8. Stroboscopic cross sections and Fourier spectra of harmonic oscillator under 

external periodic force with a controlled frequency (9) for various chaotic modes. 

(a) p = 0.25, k = 0.168, A = 1.35; (b) p = 1, k = 0.39, A = 2.77. 
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corresponds to one point in the stroboscopic section ( Fig. 7 a). On

its basis, a cascade of period-doubling bifurcations occurs. The

phase portrait in Fig. 7 b corresponds to a double limit cycle; in

Fig. 7 c, an example of a chaotic attractor is presented. For small

values of the parameters A and k , the oscillations occur inside

two potential wells of the oscillator, the phase trajectory visits the

vicinity of each of the wells. With increasing parameters A and k ,

a larger number of potential wells are involved in the dynamics of

the system. Fig. 7 d shows an example of the limit cycle for such

a case. The stroboscopic sections shown in Figs. 7 e and e clearly

show the gradual involvement of more potential wells in the dy-

namics. 

An increase in the frequency parameter p 0 also affects the spec-

tral characteristics of the dynamic mode. Fig. 8 shows examples

of phase portraits in the stroboscopic section and Fourier spec-
ra for chaotic attractors at two different values of the frequency

arameters p 0 . It is clearly seen in phase portraits that with in-

reasing frequency the attractor becomes more developed and the

hase trajectory moves on the basis of a larger number of poten-

ial wells. For both cases, the spectrum is broadband, but there is a

ronounced component corresponding to the base oscillation fre-

uency. In the case of the regime shown in Fig. 8 a, a relatively

igh uniformity of the spectrum should be noted. Perhaps by the

election of control parameters it can realized chaotic modes with

 uniform spectrum. 

Next, we consider the structure of other parameter planes for

 non-autonomous oscillator, the frequency of which depends on

he dynamic variable (9) . In Fig. 9 charts of the dynamic regimes

f system (9) on the plane of the coefficient of base frequen-

ies ratio vs amplitude parameter of the external force ( p 0 , A )

or various values of the frequency tuning parameter k and the

issipation parameter r = 0.1 are presented. Fig. 9 a illustrates

he structure of the parameter plane ( p 0 , A ) for k = 1. In the

tructure of the parameter plane, there is some similarity with

ig. 4 a, in the case of controlling the phase of external force, how-

ver, there are significant differences. The domain of chaotic dy-

amics, as well as for the model with phase adjustment, is lim-

ted by twice the resonant frequency. In the parameter plane,

he structure within which a cascade of period doubling bifur-

ations with the formation of a chaotic attractor, which is lo-

ated between the resonant and doubled resonant frequencies, is

learly pronounced. The period doubling bifurcation line has a

inimum near the doubled resonant frequency. At a frequency

f external force of a lower resonance frequency, at small ampli-

udes of the impact, periodic self-oscillations are destroyed and a

haotic attractor appears, and there is no set of cascades of pe-

iod doubling bifurcations corresponding to subresonances, as was

n the case with a phase-adapted system. With an increase in the

requency tuning parameter k ( k = 1, Fig. 9 b), the threshold for

he appearance of bifurcation of period doubling near the doubled

requency becomes smaller, the region of chaotic oscillations ex-

ands to the domain of high frequencies of external force. More-

ver, in the region of more than twice the resonant frequency, new

ascades of period doubling are formed at multiple resonant fre-

uencies, but with a large threshold in amplitude. With a further
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Fig. 9. Charts of dynamical modes of harmonic oscillator under external periodic force with a controlled frequency (9) with α = 0.1, (a) k = 0.5, (b) k = 1, (c) k = 2. 

Fig. 10. Charts of dynamical modes of harmonic oscillator under external periodic force with a controlled frequency (9) with α = 0.1, (a) A = 1, (b) A = 10. 
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p  
ncrease in the frequency tuning parameter k ( k = 2, Fig. 9 c), the

ascade of period doubling bifurcations in the vicinity of the dou-

led resonant frequency expands to high frequencies and, when it

rosses the triple frequency, a uniform region of chaos is formed. 

Fig. 10 shows the charts of the dynamic modes of system (9) on

he plane of parameters, the coefficient of base frequencies ratio vs

requency control coefficient ( p 0 , k ) for various values of parame-

er A . Fig. 10 a illustrates the structure of the parameter plane ( p 0 ,

 ) for A = 1. In the structure of the parameter plane, there is some

imilarity with Fig. 9 a, as well as for the case of controlling the

hase of the force. The region of chaotic dynamics is limited by

wice the resonant frequency. On the parameter plane, the struc-

ure within which a cascade of period doubling bifurcations with

he formation of a chaotic attractor, which is located between the

esonant and doubled resonant frequencies, is clearly expressed.

t a frequency of external force of a lower resonance frequency,

or small amplitudes periodic self-oscillations are destroyed and a

haotic attractor appears, and there is no set of cascades of pe-

iod doubling corresponding to subresonances, as was in the case

ith a phase-tuning system. At frequencies greater than twice the

esonant frequency, periodic self-oscillations are observed. With

ncreasing parameter A = 10 ( Fig. 10 b), the structure of the pa-

ameter plane changes significantly. The period doubling bifurca-

ion threshold near the doubled resonant frequency becomes much

maller. In the vicinity of the tripled resonant frequency, one more

eriod doubling line is observed, with an increase in the frequency

uning parameter k over a wide range of external forcing frequen-
ies, a cascade of period doubling bifurcations is observed and

haotic dynamics appear at frequencies doubled. 

. Experimental implementation 

Fig. 11 a shows experimental scheme, in which the case of phase

ontrolled harmonic oscillator is implemented. The scheme in-

ludes RLC circuit, forcing by voltage of the external generator,

hose phase depend from capacitor voltage. In experiment we

sed as generator Adgilent 8115 А, spectrum analyzer N9320A and

scilloscope DSO-X4034A. Resonance frequency of the RLC -circuit

as fixed 330 kHz . 

The control parameter space of the system under study has

 complex structure, but in there dynamics the typical types of

ehavior are observed. Figs. 11 b–e show two-dimensional projec-

ions of phase portraits on the plane ( U, dU/dt ) (upper panel) and

ower spectra (bottom panel) corresponding period doubling rout

o chaos. Also in the dynamics of the system the regimes cor-

esponded to broadband chaos are observed. Fig. 11 f shows two-

imensional projections of phase portraits on the plane ( U, dU/dt )

nd power spectra corresponding to broadband chaos. Form of

hase portraits in physical experiment is similar to the same ob-

ained in numerical simulations. 

Fig. 12 shows experimental scheme, in which the case of fre-

uency control is implemented. The scheme include RLC circuit,

orcing by voltage of the external generator, whose frequency de-

end from capacitor voltage. The control parameter space in this
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Fig. 11. (a) experimental scheme of harmonic oscillator under external periodic force with a controlled phase; (b)–(f) illustrations of formation chaotic dynamics, upper: 

phase portraits of experimental circuit; bottom: power spectrums. 

Fig. 12. a) experimental scheme of harmonic oscillator under external periodic force with a controlled frequency; (b)–(f) illustrations of formation chaotic dynamics, upper: 

phase portraits of experimental circuit; bottom: power spectrums. 
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ase has complex structure too. In there dynamics period doubling

out to chaos is observed. Figs. 12 b–d show two-dimensional pro-

ections of phase portraits on the plane ( U, dU/dt ) (upper panels)

nd power spectra (bottom panels) corresponding period doubling

out to chaos. Figs. 11 e and f show two-dimensional projections

f phase portraits and power spectra (on right) corresponding to

roadband chaos. Fourier spectrum for broadband chaotic attrac-

ors is continuous, but in Fig. 11 e it has a pronounced component

orresponding to the base oscillation frequency. 

. Conclusion 

Thus, the introduction of a linear dependence of the phase and

requency of the external force on the dynamical variable in a non-

utonomous linear oscillator can describe property of adaptation a

imple system. This property significantly complicates the dynam-

cs of such a simple system and leads to the emergence of a hier-

rchy of periodic and chaotic oscillations when the control param-

ters of the external influence are varied. The dynamics of such a

ystem becomes close to a system with multi-well potential. 

In the case of phase dependence on the dynamical variable, a

ierarchy of chaotic attractors is observed resulting from cascades

f period doubling bifurcations, while the lines of period doubling

ifurcations are located at the doubled resonant frequency and

ubresonance frequencies. An increase in the amplitude of the ex-

ernal force leads to the expansion of the domains of existence of

omplex modes of oscillations and in this case these regions are

ot limited to twice the frequency of the external influence, as well

s the appearance of new zones of periodic oscillations in the re-

ion of chaos is observed. In this case, oscillation regimes appear

n the dynamics of the system corresponding to the so-called dy-

amics of a nonlinear oscillator with a periodic potential well. 

In the case of the dependence of the frequency on the dynam-

cal variable, a hierarchy of chaotic regimes is also observed, how-

ver, only the period doubling line remains in the vicinity of the

oubled frequency of the external force. The system of bifurcation

ines of period doubling at subresonance frequencies is destroyed

ith the formation of chaotic dynamics. However, an increase in

he frequency of external force in this case also leads to the forma-

ion of a picture with a cascade of period doubling and the emer-

ence of a hierarchy of chaotic regimes at the so-called superreso-

ant frequencies. 

The chaotic dynamics resulting from the control of the phase

nd frequency of a dynamic variable is characterized by broad-

and spectrum. The widest spectrum is observed in the case of

 phase dependent on a dynamic variable, with the frequency of

he external force near the resonance. For lower frequencies, the

ronounced component of the base periodic signal is retained. For

ower frequencies of external influence, the signal is filtered by the

ircuit and the spectrum has a limited band. In the case of a fre-

uency dependence on a dynamical variable, the signal spectra are

lso broadband, however, the components of the basic limit cycle

re pronounced. The results of experimental and numerical studies

re in good qualitative agreement. 
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ppendix 

Using RLC -circuit presented in Fig. 10 a we can write Kirchhoff’s

oltage law: 

 R + U L + U C = A sin (ωt + φ) , (11)

here U R , U L , U C are voltages on the resistor R , inductance L and

apacitor C , correspondingly, which can be determined by the next

quations: 

 R = Ri, U L = L di / dt , U C = U. (12)

Here U is voltage on the capacitor C , which determine current

n the capacitor i = C dU / dt . Then we can write Kirchhoff’s law in

erm of dynamical variables of voltage and current: 

C 
dU 

dt 
+ LC 

d 2 U 

d t 2 
+ U = A sin (ωt + φ) . (13)

Simple algebraic transformations give new form of equation: 

¨
 + 2 γ ˙ U + ω 

2 
0 U = 

A 

ω 

2 
0 

sin (ωt + φ) , (14)

here 2 γ = 

R 
L , ω 0 = 

1 √ 

LC 
. Then we implement normalization on

he frequency, with substitute: τ = ω 0 t and get: 

¨
 + α ˙ x + x = A sin (pτ + φ) (15)

ith x ( τ ) = U (t), α = 2 γ / ω 0 . 
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