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Abstract
In our study, we compare three popular approaches

to directed coupling analysis, in particular transfer en-
tropy and two types of Granger causality, applied to real
data from genetic absence epilepsy rats. We have cho-
sen the channels for which the coupling architecture is
already well known from previous studies. Recordings
from 5 WAG/Rij rats of 8 hours duration with at least 28
spontaneous seizures of length not less than 6 s in each
recording were studied. To test results for significance,
surrogate signals based on series permutation technique
were constructed. Connectivity development in time was
investigated by considering six two-second intervals be-
fore, during and after the seizure. Our outcomes showed
large differences between studied approaches, while all
of them exploit the same general idea. Transfer entropy
demonstrated the smallest number of significant cou-
plings throughout all three considered measures, while
the linear Granger causality showed the largest number
of them. This indicates that transfer entropy is the most
conservative measure and the least sensitive one. Its sen-
sitivity is affected by insufficient series length. The lin-

ear Granger causality is likely to demonstrate insufficient
specificity.

Key words
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1 Introduction
In this paper, we aim to investigate the variability of

coupling estimation results using different directed ap-
proaches in application to brain connectivity study. Most
papers, where new coupling measures were proposed,
also provided some comparison with previous studies.
The applications to EEG data were performed in many
such papers, see e. g. [Baccala and Sameshima, 2001;
Sysoeva et al., 2014; Sommerlade et al., 2015]. In ad-
dition, there is a number of reviews on coupling method
comparison till now, including those which consider pri-
mary neurophysiological applications, see [Pereda et al.,
2005; Gourévitch et al., 2006; Bezruchko et al., 2008].
These comparisons were mostly done based on simu-
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lated data, since such an approach provides full con-
trol, all couplings are reliably known and may be set by
hand. The idea of such an approach is quite clear: first,
to study the method reliability on simulated examples,
and second, to get some new results from experimental
data. Here, we propose a different approach: to use well
studied physiological system for which the couplings are
mostly known based on both anatomy and physiology.
We consider cortico-thalamo-cortical network involved
into absence seizures as such a system.

Absence epilepsy is a widespread form of epilepsy,
providing up to 50% of cases among children and ado-
lescents [Megiddo et al., 2016]. The etiology of this
form is not completely clear, being classified as genetic
by ILAE (International league against epilepsy). The
main manifestation of this epilepsy is partial or complete
loss of consciousness for short time intervals [Coenen
and van Luijtelaar, 2003; Volnova and Lenkov, 2012]
— the duration of the seizure is, as a rule, about 5–10
s [Holmes et al., 1987; Bosnyakova et al., 2007; Ak-
man et al., 2010]. Spike-wave discharges (SWDs) are
the main manifestation of absence epilepsy on the elec-
troencephalogram (EEG), including both scalp EEGs
and recordings of local field potentials (LFPs) from cor-
tex and thalamus.

Due to the fact that children do not have clinical indi-
cations for intracranial surgery, and due to the fact that
the skull works as a filter for brain signals surface elec-
troencephalograms (EEG) do not carry enough informa-
tion about the activity of the involved brain structures.
This applies primarily to the thalamus, which is respon-
sible for the epileptic seizure generation according to
the modern concepts [Meeren et al., 2005]. Therefore,
the main results in the investigation of absence epilepsy
were obtained on genetic models — mainly rats, because
access to the deep brain structures (primarily the tha-
lamus) is necessary to study mechanisms of generation
and maintenance of absences [Russo et al., 2016]. The
works [Meeren et al., 2002; Lüttjohann and van Luijte-
laar, 2012; Sysoeva et al., 2016a; van Rijn et al., 2010]
used a very large data sets: at least 16 animals in each ex-
periment and several hundred seizures in total (usually
not less than 10 seizures per animal). Different meth-
ods were applied to study the problem, including linear
and nonlinear correlation analysis [Meeren et al., 2002;
Lüttjohann and van Luijtelaar, 2012], mutual informa-
tion function [Grishchenko et al., 2017], synchronization
measures [Maksimenko et al., 2017], linear [Sitnikova
et al., 2008] and nonlinear Granger causality [Sysoeva
et al., 2014; Sysoeva et al., 2016a]. So, the connectiv-
ity in cortico-thalamo-cortical circuit at absence epilepsy
seems to be very well understood.

Here, three popular measures of directed coupling de-
tection are considered: linear Granger causality (LGC,
[Granger, 1969] in the application to the study of ab-
sence epilepsy, see e. g. [Sitnikova et al., 2008]), nonlin-
ear adapted Granger causality (NGC) using polynomial
functions as proposed by [Chen et al., 2004], with pa-

rameters adjusted following [Kornilov et al., 2016], ap-
plied previously to absence epilepsy study in [Sysoeva
et al., 2016a; Sysoeva et al., 2016b], and transfer en-
tropy [Schreiber, 2000] (TE), for epilepsy application,
see [Chávez et al., 2003]. All of them are now widely
used to analyze neurophysiological data.

Since we aim to track coupling changes over time
to follow the processes in coupling leading to devel-
opment of SWDs, the short time series have to be
used. This actually means that lack of data prevents
the use of multivariate approaches, such as conditioned
Granger causality of partial directed coherence [Bac-
cala and Sameshima, 2001], as well as methods based
on phase dynamics modeling [Rosenblum and Pikovsky,
2001; Smirnov and Andrzejak, 2005; Navrotskaya et al.,
2019] which usually demand at least 30–50 character-
istic periods in order to obtain reliable results [Smirnov
and Bezruchko, 2003]. Therefore, here we focused on
pairwise approaches resting the consideration of multi-
channel techniques for future.

2 Data and Methods
2.1 Experimental Data

All experiments were approved by the Radboud Ethics
Committee of the University of Nijmegen (RUDEC
2006-064). Animals were operated on under isoflurane
anesthesia. The electrodes were installed in accordance
with the atlas [Paxinos and Watson, 2006] with the fol-
lowing coordinates: frontal cortex (FC) [AP +3.5; L3],
parietal cortex (PC) [AP −1.6; L4], and occipital cortex
(OC) [AP −6; L −3.5] and inserted in the hippocampus
(HP) [AP −3.5; L2; depth: 3.5]. The reference elec-
trode was placed in the cerebellum. Histological investi-
gation of electrode position was performed and only an-
imals with verified and correct electrode positions were
included in the data analyses. After the electrodes were
installed, the animals were placed in separate cuvettes,
they received enough water and food, and were rehabili-
tated for at least 14 days before the data were collected.
These channels were chosen following the goal of our
study. When the study of efficiency of different tech-
niques is performed on simulated data, usually unidirec-
tionally coupled, bidirectionally coupled and uncoupled
channel pairs have to be considered to answer the ques-
tions: 1) whether the studied technique is able to detect
the actual coupling, 2) whether it considers the absent
coupling as insignificant or weak, 3) if it is able to distin-
guish between unidirectional and bidirectional coupling.
In real world applications we cannot be completely sure,
but based on known results [Sysoeva et al., 2016b] hip-
pocampus is not involved into SWDs, PC and FC are
coupled bidirectionally and OC is mostly passively in-
volved in seizures, obtaining inputs from PC and FC.

The 130-minute recordings of intracranial EEG (sig-
nals of local field potentials, LFPs) from 5 male
WAG/Rij rats were collected. All animals had at least
28 spontaneous seizures of length not lesser than 6 s in
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each recording, with all electroencephalographic chan-
nels demonstrating fine signal amplitude along whole
recording.

The data were digitized with sampling frequency of
512 Hz and recorded with 16-bit analog-digital converter
with hardware-based filtering in the range 1–99 Hz, in-
cluding suppression of 50 Hz. The same data was pre-
viously partially used in a pharmacological experiment
[van Rijn et al., 2010] as a control group. The analysis of
mutual information between channels in a moving win-
dow was carried out in the work [Sysoeva et al., 2016a;
Sysoeva et al., 2016b], but only animal-averaged curves
were analyzed.
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Figure 1. The time series of local field potentials from the parietal
(somatosensory) cortex (signal of rat No. 1 is used). The colored back-
ground indicates the intervals studied in the work: red [−5;−3] s
before the seizure onset (background activity); yellow [−2; 0] s be-
fore the seizure onset (preictal activity); green [0; 2] s after the seizure
onset (decoupling); blue [2; 4] s after the seizure onset (seizure main-
tenance); dark purple [T−2;T ] s before the seizure termination; pur-
ple [T ;T +2] s after the seizure termination (postictal stage). White
color is for not analyzed fragments: a fragment between background
and preictal due to nonstationarity ([−3;−2] s) and a fragment in the
middle of SWD ([4; 7.5] s) due to averaging (such fragments were
cut to make all seizures of the same length).

Each animal was considered individually. The length
of the selected seizures was at least 6 s, and it was taken
five seconds before and after the seizure (no SWDs oc-
curred in these 5 s intervals). From each seizure, six
2-seconds time intervals were selected (including base-
line, preictal and postictal activity epochs), and the cou-
pling measures were calculated for which epoch sepa-
rately. For convenience, the seizure onset was taken as
0 and the seizure termination was taken as T . Then, the
studied intervals, selected in accordance with the results
of the work [Sysoeva et al., 2016a], can be designated as
follows (see Fig. 1 for visualization):

1. [−5;−3] s before the seizure onset (background ac-
tivity);

2. [−2; 0] s before the seizure onset (preictal activ-
ity); at this time, as a rule, changes in connectiv-
ity leading to seizure initiation are detected already
[Sysoeva et al., 2014; Lüttjohann and van Luijtelaar,
2012];

3. [0; 2] s after the seizure onset (decoupling); this in-
terval corresponds mainly to the moment of decou-
pling found in [Sysoeva et al., 2016a];

4. [2; 4] s after the seizure onset (seizure maintenance);
5. [T − 2;T ] s before the seizure termination;
6. [T ;T + 2] s after the seizure termination (postictal

stage).

The time series of recording intracranial EEG for the
parietal cortex is shown in Fig. 1 and the spectra for all
6 segments averaged over all 28 seizures are depicted in
Fig. 2. In Fig. 1, interval [0; 9] s after the seizure on-
set has a larger amplitude compared to the background
[−5; 0] and [9; 12] s. This behavior is typical for absence
epilepsy [Lüttjohann and van Luijtelaar, 2015].
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Figure 2. Amplitude spectra averaged over 28 seizures for all six in-
tervals on the example of rat No. 1. Line colors are the same as for the
background of the corresponding part of the series at Fig. 1: red is for
background activity; yellow is for the preictal activity; green is for the
seizure beginning [0; 2] s after onset; blue is for the seizure mainte-
nance stage [2; 4] s after onset; dark purple is for seizure ending and
purple is for the postictal stage.

2.2 Coupling Analysis Methods
Data ware analyzed by three different methods:

1. the linear Granger causality method [Granger,
1969],

2. the nonlinear adapted Granger causality method
[Granger, 1969; Chen et al., 2004; Kornilov et al.,
2016],

3. entropy transfer method [Schreiber, 2000] using es-
timator proposed in [Kraskov et al., 2004] and fast
numerical algorithm proposed in [Sysoev, 2016].

2.2.1 Granger Causality The idea of the Granger
causality method is as follows. Let there be two ob-
jects: an object X , from which the time series is derived
{xn}Nn=1, and an object Y , from which the time series
is derived {yn}Nn=1. Studying the causal interactions be-
tween X and Y using Granger causality involves three
steps. First, a univariate predictive model is constructed
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based on the data from only one series {xn}Nn=1, the ef-
fect on which is estimated:

x′n+τ = f
(
xn, xn−l, . . . , xn−(Ds−1)l

)
, (1)

where x′n is the predicted value corresponding to
the measured value xn; f is an approximating func-
tion, in our case it is a polynomial with order
P from Ds variables [Chen et al., 2004]; ~xn =(
xn, xn−l, . . . , xn−(Ds−1)l

)
is a state vector as defined

by means of the method of delays [Packard et al., 1980;
Kugiumtzis, 1996]. The method of delays is a classical
approach to expand time series in phase space, i. e. to
obtain the high-dimensional state vector {~xn}N−(Ds−1)ln=1

from the scalar time series {xn}Nn=1 by shifting the se-
ries back in time (Ds − 1) times with the delay (lag) l.
N ′ is the efficient length of time series {xn}Nn=1, calcu-
lated as N ′ = N − ((Ds − 1)l + τ); τ is the length
of prediction interval (prediction length), i. e. the time
lag between the last point used for vector reconstruction
and the predicted point. Model coefficients are estimated
using the least squares method [Silverman, 1986], i. e.,
minimizing the square error of the prediction ε2s, which
measures the difference between the predicted and ob-
served values x′n and xn correspondingly.

ε2s =
1

N ′σ2
s

N−τ∑
n=(Ds−1)l

(
x′n+τ − xn+τ

)
→ min, (2)

where σ2
s is the empirical variance of the time series

{xn}Nn=1.
At the second stage, the bivariate model (3) is built on

the basis of both time series {xn}Nn=1 and {yn}Nn=1:

x′′n+τ = g
(
xn, xn−l, . . . , xn−(Ds−1)l,

yn, . . . , yn−(Da−1)l
)
, (3)

where Da is the dimension of the additional part of
the state vector ~yn =

(
yn, yn−l, . . . , yn−(Da−1)l

)
con-

structed from a scalar time series {yn}Nn=1, and x′′n is the
value predicted with the bivariate model and correspond-
ing to x′n. Thus, the dimension of the bivariate model can
be calculated asDj = Ds+Da, and the prediction error
is denoted as ε2j and calculated analogously to (2).

At the third stage, the PI prediction improvement
value is calculated using (4), considered as the main
characteristic of the Granger causality

PI = 1− ε2j
/
ε2s (4)

The situation when εs = εj suggests that the data from
the time series {yn}Nn=1 do not improve prediction of
{xn}Nn=1. In other words, Y does not drive X . The situ-
ation, when εs > 0 and εj → 0, PI → 1, suggests that
the data of the second time series {yn}Nn=1 significantly
improves prediction of the first one {xn}Nn=1, leading to
the outcome that Y drives X .

The results of the Granger causality depend on the pa-
rameters of the model [Papana et al., 2013], for example,
on the type of basis function [Kornilov et al., 2016; Mari-
nazzo et al., 2006], the polynomial order for polynomial
functions [Chen et al., 2004], lag l used for state vector
reconstruction and prediction length τ [Sysoeva et al.,
2012]. Ultimately, the choice of approximating nonlin-
ear functions in the model and its parameters are crucial
for the quality of prediction and practical application of
the Granger causality method, this should be considered
to achieve reliable results. Univariate model, bivariate
model and their parameters should be finely tuned to
avoid misleading results.

When testing for causality using Granger’s approach,
standard linear type models (5) are most often used,
as proposed by [Granger, 1969] and considered by
[Gourévitch et al., 2006].

x′n+1 = cs0 +

Ds∑
i=1

csixn−(i−1),

x′′n+1 = cj0 +

Ds∑
i=1

cjixn−(i−1) +

Ds+Da∑
i=Ds+1

cjiyn−(i−Ds−1),

(5)
where csi and cji are coefficients for univariate and bi-
variate models correspondingly usually fitted with least-
squares routine.

Nonlinear models can provide significantly better sen-
sitivity, as it was multiply shown [Chen et al., 2004;
Marinazzo et al., 2006; Sysoev and Sysoeva, 2015].
However, its specificity could be insufficient, providing
a lot of false positive outcomes. Therefore, we used the
model specially designed in [Sysoeva and Sysoev, 2012]
using nonuniform embedding to reduce the number of
coefficients csi and cji and Bayesian information criterion
by [Schwarz, 1978].

x′n+τ =

P∑
k=0

CkDs+k∑
q=1

csi

Ds∏
m=1

x
wsk,m
n−(m−1)l + cZs+1xn−lT ,

∀k = 0, . . . , P

Ds∑
m=1

wsk,m = k

x′′n+τ =

P∑
k=0

CkDs+Da+k∑
q=1

cji

Ds∏
m=1

x
wjk,m
n−(m−1)l × (6)

Da∏
m=1

y
wj
k,(m+Ds)

n−(m−1)l + cZj+1xn−lT + cZj+2yn−lT

k =

Ds+Da∑
m=1

wjk,m,∀k = 0, . . . , P,

where Zs = (P + Ds)!/(P !Ds!) is the number of co-
efficients in the univariate model, Zj = (P + Ds +
Da)!/(P !(Ds + Da)!) is the number of coefficients in
the bivariate model, lT is the additional lag that takes
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Figure 3. Results of nonlinear Granger causality method applica-
tion for investigation of coupling from frontal cortex to parietal one
(FC→PC). Part (a) shows the PI values in blue (minimal, maximal
as bottom and top of errorbars) and average (circles connected with
lines) averaged over 28 seizures for animal No. 1 for all 6 considered
epochs. Red triangles indicate the 95% surrogate confidence level. Part
(b) shows number L of significant PIs for each epoch, i. e. number
of PIs from all 28 PIs calculated for different seizures which are
higher than the surrogate level.

into account the value of the experimental data delayed
from the predicted time point with a characteristic pe-
riod T (since there is a well pronounced main time scale
for absence seizures, [Sysoeva and Sysoev, 2012]). The
value of τ was selected following [Sysoeva et al., 2012],
the value of l — following [Grishchenko et al., 2020]
and the value of P and Ds — following [Kornilov et al.,
2016]. A typical view of the dependence of the predic-
tion improvement on time constructed for the six consid-
ered time intervals is shown in Fig. 3(a).

2.2.2 Transfer Entropy The transfer entropy pro-
posed by [Schreiber, 2000] is used to determine the
directional connectivity of oscillatory systems by their
time series. The idea is similar to Granger causality; but
instead of construction of predictive models like (5) and
(6) one estimates conditional distribution functions. It
was shown by [Barnett et al., 2009] that for some very
simple cases transfer entropy and Granger causality can
be equivalent. However, in most cases of interest such
equivalence cannot be shown or it is not the case.

Estimating transfer entropy means actually estimating
multidimensional probability densities. Therefore, many
approaches designed for calculation of mutual informa-
tion function can be used to calculate transfer entropy.
The direct “naive” approach based on splitting the space
into polygons or cubes demands a lot of data and has
pure properties for nonuniform distributions providing
large errors. Therefore a number of advanced meth-
ods were proposed by [Kraskov et al., 2004; Silverman,
1986; Moddemeijer, 1989; Lee et al., 2012; Darbellay
and I., 1999; Kugiumtzis, 2012; Jizba et al., 2012].

The method of calculating the transfer entropy used in
this work was described in the article [Sysoev, 2016] and
is based on the nearest neighbors approach for calcula-
tion of mutual information by [Kraskov et al., 2004], as
one of the simplest and efficient for relatively small sam-
ples (it is quite unbiased for N ≥ 103).

TEY→X = ψ(K) +
〈
ψ(νxn + 1)− ψ(νxn,xn+τ + 1)

− ψ(νxn,yn + 1)〉n=1,N−τ , (7)

where X , y, n, N and τ are of the same meaning as
in (5) and (6), K is the number of the nearest neighbor
used for calculation (we used K = 6 due to short series
did not allow us to use larger values as recommended in
[Vlachos and Kugiumtzis, 2010; Faes et al., 2015]), ψ is
a digamma function. To explain the meaning of ν let us
consider ε(n) — the distance in the 3-dimensional state
(Xn, Xn+τ , YN ), which is calculated following eq. 8.

ε(n) = 2 max
j=1,...,N,j 6=n

(|xn − xj |,

|xn+τ − xj+τ |, |yn − yj |) (8)

So, νxn is number of elements in series {xn}Nn=1, which
distance to a point xn strictly less than ε(n)/2, νxn,yn is
number of points from two-dimensional space (Xn, Yn),
similar to νxn and νxn,xn+τ is number of points from the
two-dimensional space (Xn, Xn+τ )) being in the neigh-
borhood of the point (xn, xn+τ )).

The estimation of the transfer entropy by the experi-
mental series using τ = 1, as proposed in [Kraskov et al.,
2004], did not reveal the directional relationship, there-
fore the value τ = 6 was used similar to the adapted
nonlinear approach with τ 6= 1.

2.3 Statistical Analysis
The estimates of all three considered measures (TE,

linear and nonlinear Granger causality) varied largely for
different episodes, as it is shown in Fig. 3(a) for PI cal-
culated using nonlinear model (5). Therefore, we per-
formed the statistical analysis to be able to compare dif-
ferent measures and different epochs.

To test the results of coupling analysis for significance,
surrogate time series for each animal were built sepa-
rately by realization permutation since the classical ap-
proach which uses phase randomization [Theiler et al.,
1992] occurred to be suboptimal for data of considered
type as it was shown based on simulated seizures in
[Sysoev and Sysoeva, 2015]. There were 27 · 28 = 756
surrogate pairs, where 28 is the number of seizures con-
sidered for each animal. It is combinations of all possible
episodes for a channel pairs, except when they are from
the same episode. This number of surrogates allows one
to get a high confidence level of 99.87% (p-value is equal
to 1/(27 · 28 + 1) ≈ 0.0013), what is important because
there is a lot of multiple testing. Further, the number of
significant findings for each animal was estimated over
all 28 intervals considered, see Fig. 3(b), and corrected
for multiple testing.

Since we consider 5 rats, 6 time intervals, 12 channel
pairs and 28 seizures for each animal, we have to make
a Bonferroni or another correction to be sure that signif-
icance of results was not corrupted due to multiple test-
ing. The number of significant results k per animal per
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channel pair per episode is distributed following bino-
mial law FL,p(k) with parameters L = 28 (total number
of seizures) and p ≈ 0.0013. If we set the final (after
multiple testing correction) desired confidence level to
be p′ ≤ 0.001, four or more significant values of any
measure (TE, LGC or NGC) are enough to treat the re-
sult significant due to high confidence level p.

To be able to compare different number of significant
results for equivalence, e. g. 14 in one case, and 22 in
another, the Mann–Whitney U-test was be used. This
is possible since the number of investigated cases is 28,
which usually is considered to be enough.

We use commonly acceptable ideas of method sensi-
tivity and specificity when comparing results of different
techniques. We assume that the specificity is an avoid-
ance of false positive results, i. e. ability not to detect
the absent link as valid (the highest specificity means no
false positives), and the sensitivity is an ability to detect
really existing couplings as frequently as it is possible
(the highest sensitivity corresponds to detection in 100%
cases).

3 Results
Fig. 5 shows that in the background (the first points

on the plot at −5 s) all considered measures cannot de-
tect statistically significant couplings. This behavior is
also observed for coupling 2 seconds before the seizure
onset (the second points on the plot at−2 s), and for cou-
pling in the final stage at the seizure termination (the last
points on the plot at 6 s), except that TE indicates some
couplings still present in FC ↔ PC and OC → FC
pairs.

3.1 Cortico-hippocampal Interactions
All three measures indicated that none of the animals

had significant couplings between the hippocampus and
frontal cortex during seizures. Only a single rat (No. 5)
had significant connections in the pair HP→PC during
normal activity (before and after the seizure). Two ani-
mals (No. 3 and No. 5) showed the coupling in the pair
Hp→OC ictally. These connections were found using
linear and nonlinear Granger causalities; transfer entropy
did not indicate them as significant. All these connec-
tions were not very strong, see Fig. 4). The hippocam-
pus is a part of the limbic system, which is tradition-
ally considered to be not involved in absence seizures
[Lüttjohann and van Luijtelaar, 2015]. The known ev-
idence of its partial involvement is in another animal
model of absences [Arcaro et al., 2016]. The occipital
cortex is strongly anatomically connected to entorhinal
cortex, another part of the limbic system. Therefore, the
coupling detected between Hp and OC is not surprising.
Thus, we can conclude that all methods agree that the
hippocampus is practically not involved in the seizure,
as it was suspected initially.

3.2 Intracortical Interactions
In Fig. 5, the calculation results of all three coupling

measures are shown for a single animal: red color in-
dicates the transfer entropy, blue color shows the lin-
ear Granger causality, and gray color shows the nonlin-
ear Granger causality. This animal was plotted since
it demonstrated more significant couplings than oth-
ers. The studied intervals are shown along the X-axis.
The total number of seizures for which the conclusion
about coupling at a considered interval was significant is
shown on the Y-axis on the left. The same number, but
as a percentage of the total number of seizures (28 for all
considered cases) is shown on the right. For all rats, the
channel pairs for which a significant coupling is detected
at the appropriate time interval are summarized in the ta-
ble 1. The results are based on the statistical corrections
described above. Numbers of all considered recordings
are placed in the table horizontally. Six studied time in-
tervals are placed vertically. The results are given for all
three connectivity measures sequentially.

All three measures showed an increase in coupling dur-
ing the ictal epochs (time points 0, 2 and 4) in the chan-
nel pairs FC↔PC and FC→OC. This effect differed in
different animals (see table1); sometimes the linear and
nonlinear GC demonstrated the same results, sometimes
the linear GC is closer to the TE rather than to the non-
linear GC. Also, different measures showed an increase
at different time points. PC→OC coupling was detected
only using Granger causality, while the TE showed no
significant results.

The nonlinear GC and TE did not detect significant
coupling when the effects of the occipital cortex on the
parietal and frontal cortex were investigated, while lin-
ear GC detected some coupling. Theoretically, OC is in-
volved into the seizures only passively [Lüttjohann and
van Luijtelaar, 2015]. So, we can conclude that the linear
GC was likely to show the results in a wrong direction
(not enough specificity), as it was shown in [Sysoev and
Sysoeva, 2015] for linear GC.

At the seizure onset (marked 0 s on the plot and in the
table 1), a statistically significant coupling is observed
from the frontal and parietal cortex, and this relation-
ship is often the most significant one (diagnosed for the
largest number of seizures) all over the studied intervals.
Similar behavior was observed for all investigated ani-
mals (see table 1 for details).

Generally, it can be noted that the transfer entropy
showed the least number of significant coupling in com-
parison to two other measures, and the linear Granger
causality showed the largest number. Fig. 5 shows that
the transfer entropy is not sufficiently sensitive, although
in some cases it also reveals a coupling.

We analyzed all animals including all channel pairs.
The complete analysis of all channel pairs was summa-
rized in the table 1, where all detected significant con-
nections were listed for all six epochs. However, let us
consider first the connections most relevant for absence
epilepsy, which are between FC and PC. Common was
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Figure 4. Estimates of coupling between the hippocampal and three cortical channels using the Granger nonlinear causality method for all
animals. The number of cases L where the coupling was detected to be significant (left Y-axis), and its percentage (right Y-axis) are plotted.
Different subplots correspond to different channels: (a) – coupling between the hippocampal and frontal cortex (HP-FC), (b) – coupling between
the hippocampal and parietal cortex (HP-PC), (c) – coupling between the hippocampal and occipital cortex (HP-OC), (d) – coupling between the
frontal cortex and hippocampal (FC-HP), (e) – coupling between the parietal cortex and hippocampal (PC-HP), (f) – coupling between the occipital
cortex and hippocampal (OC-HP).

that all measures in most animals demonstrated a sig-
nificant increase denoted to a start of SWD and then a
coupling reduction during a seizure. Seizure termina-
tion was characterized by coupling return to the base-
line level. The coupling direction difference in the pairs
PC→FC and FC→PC was also visible. In the rats No. 2
and 5, the FC dominated—coupling from FC to PC
started rising earlier and reached larger values compar-
ing with the opposite direction. In the rats No. 1 and 3
PC mostly dominated, and for the rat No. 4 the connec-
tivity in both directions did not differ significantly base
on the Mann–Whitney test. Some animals demonstrated
the highest coupling in the beginning (see, e. g. results
of LCG for rats No. 1, 2 and 3 in the direction PC→FC),

but others showed larger connectivity in the maintenance
stage.

Occipital cortex became active during the maintenance
in the rat No. 3. This result is achieved with all three
methods. But in other animals this was not the case. The
rat No. 5 demonstrated excessive involvement of OC as a
driven structure in the late stages of seizure (maintenance
and termination). This effect was less pronounced in the
rat No. 4 and even lesser in the rats No. 1 and No. 2.

4 Discussion and Conclusion
First of all, let us note that all three considered mea-

sures (as well as some measures not considered here,
like partial directed coherence [Baccala and Sameshima,
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Figure 5. Comparison of all three considered measures for rat No. 5, for all pairs of channels. The number of cases L where the coupling was
detected to be significant (left Y-axis), and its percentage (right Y-axis) are plotted. Transfer entropy is shown in red, linear Granger causality is
shown in blue, non-linear Granger causality is shown in gray. (a) – coupling between the frontal cortex and parietal cortex (FC-PC), (b) – coupling
between the frontal cortex and occipital cortex (FC-OC), (c) – coupling between the parietal cortex and occipital cortex (PC-OC), (d) – coupling
between the parietal cortex and frontal cortex (PC-FC), (e) – coupling between the occipital cortex and frontal cortex (OC-FC), (f) – coupling
between the occipital cortex and parietal cortex (OC-PC).

2001; Baccala et al., 2007]) are based on the same
idea originating from Wiener’s paper [Wiener, 1956].
Since these methods do not consider enough a priori
information about investigated systems [Bezruchko and
Smirnov, 2010], they can measure some effects, but
would never be absolutely robust and precise, being un-
able to reveal mechanisms of coupling [Bezruchko and
Smirnov, 2010; Barrett and Barnett, 2013]. Therefore,
all outcomes in method comparison should be consid-
ered, with keeping properties of the considered data (se-
ries length, spectral characteristics, sampling frequency
and so on) in the mind. Another data properties could
lead to different in some kind results like outcomes of
[Pereda et al., 2005]. Also, method development during

last years including new approaches to coupling mea-
sure calculation provided in [Kraskov et al., 2004] and
in [Marinazzo et al., 2008], and new techniques to fitting
methods to data [Kornilov et al., 2016] depicted some
outcomes of previous studies as not up to date. For in-
stance, by [Gourévitch et al., 2006] the linear Granger
causality was preferred over the nonlinear one due to au-
thors were not able to interpret the results of nonlinear
causality properly. However, the main source of this out-
come could be inappropriate parametrization as it was
shown by [Papana et al., 2013; Kornilov et al., 2016].
Also, the results of linear Granger causality application
to LFP data by [Sitnikova et al., 2008] were reconsid-
ered by [Sysoeva et al., 2014], showing different effects,
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Table 1. Channel pairs for which a significant coupling is observed
in four or more cases.

t rat No. 1 rat No. 2 rat No. 3 rat No. 4 rat No. 5

Transfer entropy

−5 - - - - -

−2 - - - - -

0 FC↔PC - - PC→FC
OC→PC

FC↔PC
FC→OC

2 FC↔PC
PC→OC

- FC↔PC - FC↔PC

4 PC↔FC - FC↔PC - FC↔PC

6 FC↔PC - PC→FC - FC→PC
OC→FC

Linear Granger causality

−5 - - OC→PC - -

−2 - - - - -

0 PC→FC
FC→OC

PC→FC FC→PC PC↔FC
FC→OC
PC→OC

FC↔PC
FC↔OC
PC→OC

2 PC↔FC PC→FC FC↔PC
OC→PC

FC↔PC FC↔PC
FC→OC

4 PC↔FC PC↔FC FC↔PC PC↔FC
OC↔FC

FC↔PC
FC→OC
PC→OC

6 - - - - -

Noninear Granger causality

−5 - - - - -

−2 - - - - -

0 PC↔FC - FC→PC FC→OC
PC→OC

FC→OC
PC→OC

2 FC↔PC
PC→OC

PC→FC FC↔PC
OC→PC

FC↔PC FC→PC
FC→OC

4 FC↔PC FC→OC - PC↔FC
FC→OC

FC↔PC
FC→OC
PC→OC

6 - - - - -

when nonlinear models were applied correctly.

4.1 Common in Three Investigated Techniques
The common for three considered measures is as fol-

lows. First, all three measures showed very small, usu-
ally insignificant number of interactions during baseline,
preictal and in postictal epochs for all rats between con-
sidered channels. This is interesting because there is al-

ways some connectivity in the brain. And this means that
week couplings which are typical for the normal brain
cannot be reliably detected from time series consisting
of 16–18 oscillations (2 s) and ∼ 103 data points. We
know that during the seizure coupling rises a lot and only
this makes methods to detect it.

Second, the methods did not detect coupling from cor-
tical channels to the hippocampus and mostly in the op-
posite direction. This means that a network node which
does not participate in the considered activity at all, as
hippocampus in our case, is correctly detected as iso-
lated.

Third, all free methods showed mutual increase in cou-
pling between PC and FC. Also, all of them showed that
OC is driven either by FC or by PC (sometimes by both
of them) during the seizure.

4.2 Difference in Three Investigated Techniques
Nonlinear measures showed OC to be involved into

seizures only passively, driven by either PC or FC, that
matches the modern views on absence epilepsy. But the
linear GC showed bidirectional coupling. This indicates
that the linear GC method is not specific enough, being
unable to distinguish between unidirectional or bidirec-
tional connectivity as it was shown before for simulated
series in [Sysoev and Sysoeva, 2015].

For each animal, the transfer entropy revealed the least
number of significant links, and for the rat No. 2 — does
not reveal any link at all. It can be assumed that this
measure has insufficient sensitivity for the used time se-
ries length. This can be explained by the fact that the
method is mainly non-parametric. It relies on estimat-
ing the distribution density in a multidimensional space,
which always requires large amount of data [Schreiber,
2000; Kraskov et al., 2004].

The linear Granger causality method revealed the max-
imum number of significant couplings. This can be ex-
plained due to its lack of specificity, as it was shown ear-
lier [Sysoev and Sysoeva, 2015]. Notably, this method
is the only which diagnoses some couplings even in the
background period.

4.3 Recommendations
The recommendations for usage of various coupling

measures are as follows. For the preliminary analysis of
large amounts of data (one hundred of seizures per pa-
tient/animal or more with large sampling frequency, at
least 2000 Hz), one can use the transfer entropy. This is
a non-parametric method that does not require painstak-
ing selection of parameters, so it can be implemented
faster than parametric ones. If a large amount of data is
used, averaging should reveal the most significant inter-
actions. To identify more subtle effects, it is desirable
to use a nonlinear Granger causality method with care-
fully selected parameters. The linear Granger causality
method, unfortunately, is difficult to recommend because
of its poor specificity.
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Lüttjohann, A. and van Luijtelaar, G. (2015). Dynamics
of networks during absence seizure’s on- and offset in
rodents and man. Frontiers in Physiology, 6, pp. 16.



96 CYBERNETICS AND PHYSICS, VOL. 9, NO. 2, 2020
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