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Abstract: A change in the human psychophysiological state, caused by stress in particular, affects
the processes of autonomic control, the activity of which is reflected in infra-slow oscillations of
brain potentials with a frequency of less than 0.5 Hz. We studied the infra-slow oscillations in scalp
electroencephalogram (EEG) signals in the frequency ranges of 0.05–0.15 Hz and 0.15–0.50 Hz that
are associated with the processes of sympathetic and parasympathetic control, respectively, in healthy
subjects at rest and during stress-inducing cognitive tasks. The power spectra of EEG signals, the
phase coherence coefficients, and indices of directional coupling between the infra-slow oscillations
in the signals of different EEG leads were analyzed. We revealed that, compared with the state of rest,
the stress state is characterized by a significant decrease in the power of infra-slow oscillations and
changes in the structure of couplings between infra-slow oscillations in EEG leads. In particular, under
stressful conditions, a decrease in both intrahemispheric and interhemispheric coupling between EEG
leads occurred in the range of 0.05–0.15 Hz, while a decrease in intrahemispheric and an increase in
interhemispheric couplings was observed in the range of 0.15–0.50 Hz.

Keywords: infra-slow oscillations of brain potentials; stroop color word test; mental arithmetic test;
phase coherence; directional couplings; electroencephalogram

1. Introduction

The functioning of the body involves various complex interacting oscillatory processes
that ensure the adjustment of the body’s systems to changing external conditions. These
interacting processes can be observed when analyzing the physiological signals of the
cardiovascular system [1], respiration [2], and electrical activity of the brain [3].

Analysis of the strength and structure of couplings between such processes is a useful
tool for constructing quantitative indices that characterize changing physical and psy-
chophysiological states [4–7]. Methods for detecting the interaction of various body systems
have been successfully applied to the estimation of the biological age [8,9], classification
of sleep stages [10–12], diagnosis of the severity of diseases of the cardiovascular sys-
tem [13–15], and stress diagnosis [5,7,16]. The latter is important for the implementation of
continuous monitoring of the stress level in everyday life and the identification of people
at risk of developing stress-related disorders. It is known that physiological responses
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to stress in humans vary considerably [5,7]. The task of stress diagnosis is complicated
by the complexity and nonstationarity of the electroencephalogram (EEG) signals usually
used to detect a stress state. Therefore, the quantitative assessment of human stress using
biosignals remains a difficult task that requires more detailed study [5,7].

Couplings between different parts of the cerebral cortex and the other parts of the
brain, such as pons, are important for understanding the functioning of the brain under
various conditions, including stress [5,17,18]. For instance, in [17], the authors showed that
the permanently established chemical axotomy of the locus coeruleus (LC) and dorsal raphe
(DR) axon terminals in freely moving rats changed naturally occurring cortico-pontine
theta (4–8 Hz) synchronization phase shift. Similarly, DR or LC chemical axotomy induces a
new mode of coupling between sigma (10–15 Hz in rats) and theta EEG oscillations tight to
non-rapid-eye-movement (NREM) sleep, suggesting that loss of monoaminergic signaling
interferes with NREM sleep consolidation [18].

Methods have been proposed for detecting a stress state based on coherence analy-
sis [19–23], Pearson’s correlation coefficient [24], cross-covariance [25], auto-covariance [24],
mutual information [26–28], partial directed coherence [29,30], generalized partial directed
coherence [31], and directed transfer function [32]. However, among a great number
of known results are mutually contradictory conclusions, depending on the method of
analysis, the type of stress, and the analyzed frequency range [5].

Generally, the study of brain activity during changes in the psycho-emotional state
is carried out in the following frequency ranges: delta (0.5–4 Hz), theta (4–8 Hz), alpha
(8–13 Hz), beta (14–30 Hz), and gamma (30–50 Hz). At the same time, the analysis of
infra-slow oscillations of brain potentials with a frequency of less than 0.5 Hz can provide
important additional information for diagnosing the development of stress. It has been
shown that the infra-slow oscillations of brain potentials are associated with the activity
of autonomic control centers [3,33–35]. Moreover, it is known that the autonomic nervous
system plays an important role in the body’s response to stress, changing the activity of its
elements under stressful conditions [7,16,36]. The infra-slow oscillations in EEG signals
were analyzed in the studies [16,37–39], which dealt with cognitive task-solving. The
infra-slow oscillations of brain potentials correlate with human behavior [40] and change
during sleep [10–12,41–43].

Thus, the infra-slow oscillations of brain potentials may reflect a change in the psy-
chophysiological state of a subject and the development of stress. The aim of this study was
to identify biomarkers of the psychophysiological state during stress-inducing cognitive
tasks. We analyzed the power spectra of infra-slow oscillations in EEG signals. Addi-
tionally, we studied the phase coherence coefficients and indices of directional coupling
between infra-slow oscillations in the signals of different EEG leads. We revealed that the
analysis of individual and collective dynamics of infra-slow oscillations of brain potentials
is promising for the detection of stress.

2. Materials and Methods
2.1. Design of the Study and the Experimental Data

We analyzed the records of 63 healthy men aged 21 ± 3 years (mean ± standard
deviation) with an average level of physical activity. The exclusion criteria from the
experimental group were the presence of neurological and mental disorders in volunteers
and diseases of the cardiorespiratory system. As a cognitive task, we used the Stroop Color
Word Test (SCWT) [44] and the mental arithmetic test (MAT) [45], which are standard tests
for inducing moderate levels of stress. The subjects performed the stress-inducing cognitive
tasks for the first time and had no experience in participating in such experiments.

The study protocol included four successive stages: 6-min rest (R1), 6-min SCWT (S1),
6-min rest (R2), and 6-min MAT (S2) (Figure 1a). At the R1 and R2 stages, volunteers were
asked to relax. During the SCWT, the subject was presented with a sequence of colored
words—names of colors for which the color of the letters did not match the color denoted
by the word. There were 360 combinations in total, presented in random order at an interval
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of 1 s. The volunteer had to mentally pronounce the color of the letters (Figure 1b). During
the MAT, the volunteer was presented with three-digit numbers and had to sum the digits.
If the number obtained as a result of summation contained two digits, they had to sum
these up again, continuing this cycle until the final resulting number was a single digit.
After obtaining a single-digit number, the subject was asked to decide whether this number
was even or odd and press the corresponding button (Figure 1c). In total, each volunteer
was presented with a set of 72 numbers. The numbers changed every 5 s.
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Figure 1. (a) Protocol for the stress test. (b) Stroop Color Word Test. (c) Mental arithmetic test.

During the testing, EEG signals were recorded using the 8–3 system for electrode
placement. The signals were recorded using a standard certified digital electrocardiograph
Encefalan_EEGP-19/26 [46] with a sampling frequency of 250 Hz and a bandpass filter of
0.016–70 Hz.

2.2. Data Analysis

EEG analysis was carried out separately for each stage of the experiment, namely
R1, S1, R2, and S2. The successive stages of rest and stress test were compared: R1 and
S1, and R2 and S2. EEG signals were analyzed in the frequency range from 0.05 to 18 Hz.
Particular attention was paid to the δ1-range (0.05–0.15 Hz), which is associated mainly with
the processes of sympathetic control, and the δ2-range (0.15–0.50 Hz), which is associated
mainly with the processes of parasympathetic control and respiratory influences [1]. We also
analyzed δ (0.5–3.0 Hz), θ (4.0–7.0 Hz), α (11.0–12.0 Hz), and β (15.0–18.0 Hz) rhythms. The
frequency components in the corresponding ranges were extracted using a bandpass filter.

For each EEG signal, the periodogram was evaluated in 6-min windows using the fast
Fourier transform [47]. Then, the average powers of EEG oscillations were calculated in
the corresponding frequency ranges. The obtained indices are denoted in the paper by the
word “activity”: δ1-activity, δ2-activity, and α-activity. The ratio of average powers in β- and
α-ranges was also calculated and denoted as β/α-activity. For each EEG lead, the individual
values of the spectral indices were averaged over the ensemble of all subjects and presented
as topographic maps of values linearly interpolated around the EEG leads. The median
values of the spectral indices for each EEG lead were marked in color on the maps.
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To compare the stages of the experiment, the difference between the spectral indices
at stages S1 and R1, and stages S2 and R2 was calculated for each subject and normalized
to the value of the spectral index at R1 or R2, respectively. The obtained relative values of
index differences were denoted by the symbol ∆: ∆δ1-activity, ∆δ2-activity, ∆α-activity, and
∆β/α-activity.

For each pair of EEG leads, the phase coherence coefficient γ [48] was calculated:

γ =

√
〈cos ∆ϕ(t)〉2 + 〈sin ∆ϕ(t)〉2, (1)

where ∆φ(t) is the difference in instantaneous phases of oscillations in the signals of
analyzed EEG leads and angular brackets denote averaging over time. The instantaneous
phases of oscillations in the analyzed frequency ranges were calculated using the Hilbert
transform [49]. The obtained indices are denoted in the paper by the word “coherence”:
δ1-coherence, δ2-coherence, δ-coherence, and θ-coherence. If the phases of the analyzed
signals are coherent, the phase difference ∆φ(t) will remain constant and its distribution
density will be delta peak, resulting in γ = 1. Otherwise, γ is close to 0. When analyzing
experimental signals, noise, non-stationarity, and the finite length of realizations affect the
value of γ, thus it takes intermediate values between 0 and 1.

For each EEG lead, the values of its coherence coefficients with the other leads were
averaged over the leads and presented as topographic maps of values interpolated around
the EEG leads. For each lead, the median values of the coherence coefficients calculated
over the ensemble of all subjects were shown on the maps in color.

To compare the stages of the experiment, the difference between the coherence co-
efficients at stages S1 and R1, and stages S2 and R2 was calculated for each subject and
normalized to the value of the coherence coefficient at R1 or R2, respectively. The obtained
relative values of coefficient differences were denoted by the symbol ∆: ∆δ1-coherence,
∆δ2-coherence, ∆δ-coherence, and ∆θ-coherence. These differences in coherence coefficients
were averaged over the ensemble of all subjects and presented as topographic maps. On
these maps, the median values of the obtained differences were marked in color.

The value of the phase coherence coefficient can quantitatively characterize the non-
directional interaction of the systems that generated the analyzed signals. To analyze the
structure of directional couplings, we used the phase dynamics modeling method [50]. This
approach involves approximation of the increments in the instantaneous phases φ1(t) and
φ2(t) of two analyzed processes:

ϕ1,2(t + τ)− ϕ1,2(t) = F1,2(ϕ1,2(t), ϕ2,1(t− d), a1,2) + ε1,2(t), (2)

where τ is the phase increment interval, F1,2(t) are trigonometric polynomials of the third
order, a1,2 are vectors of their coefficients, d is a trial delay taking into account the time
delay in couplings, and ε1,2(t) are model residuals.

The parameter τ in (2) was equated to one characteristic period of oscillations in the
corresponding frequency range, which was calculated as the reciprocal of the frequency
corresponding to the center of the analyzed frequency range: 10.0, 4.0, 0.6, and 0.2 s for
δ1-, δ2-, δ-, and θ-ranges, respectively. The coefficients a1,2 were estimated from time series
φ1(t) and φ2(t) using the least squares method. The trial delay d was varied within one
characteristic oscillation period.

Based on [50], the indices of directional coupling were calculated as follows:

c2
1,2(d) =

1
2π2

∫ 2π

0

∫ 2π

0
(∂F1,2(ϕ1,2(t), ϕ2,1(t− d), a1,2)/∂ϕ2,1)

2

dϕ1dϕ2. (3)

These indices characterize the influence of the phase of the first signal on the phase of
the second signal. For each pair of EEG lead signals, the indices (3) were calculated in δ1-,
δ2-, δ-, and θ-ranges. For further analysis, we used the maximum values of these indices
under variation of d.
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The absolute values of the directional coupling indices depend on the individual char-
acteristics of the signals, and their quantitative interpretation is not trivial [50]. Therefore,
we used the indices (3) to analyze the qualitative changes in couplings between EEG leads
at different stages of the experiment.

For each pair of EEG leads, we compared the distributions of directional coupling
indices at stages S1 and R1, and stages S2 and R2 using the records of all subjects. If
these distributions were significantly different at the stages of stress and rest based on
the Mann–Whitney U-test (p < 0.05) [51], then the distribution of individual differences
between the directional coupling indices was calculated. Further, a conclusion was made
about the sign of the median of this distribution, indicating an increase or decrease in the
coupling during stress-inducing cognitive tasks. The results of this analysis were presented
in the form of an EEG lead map.

3. Results

At first, we analyzed the EEG power spectra at all four stages of the experiment. For
stages R1, S1, R2, and S2, Figure 2a–d show the median values of the EEG δ1-activity,
δ2-activity, α-activity [7,52–58], and β/α-activity [59], respectively, averaged over the en-
tire ensemble of subjects. To compare stages S1 and R1, and stages S2 and R2, we plot
Figure 2e–h, which shows the normalized differences in spectral indices presented in
Figure 2a–d.
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Figure 2. (a–d) Maps of the median values of the power of EEG signals averaged over all subjects
at R1, S1, R2, and S2 stages of the experiment: (a) δ1-activity; (b) δ2-activity; (c) α-activity; (d) β/α-
activity. Dots indicate the EEG leads. (e–h) Normalized differences in the median values of spectral
indices at stages S1 and R1, and stages S2 and R2: (e) ∆δ1-activity; (f) ∆δ2-activity; (g) ∆α-activity;
(h) ∆β/α-activity. Circles indicate the EEG leads that demonstrated statistically significant differences
between the stages of rest and stress, while crosses indicate the EEG leads in which these differences
were not statistically significant.
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As can be seen in Figure 2a–c, δ1-activity and δ2-activity have higher values than
α-activity at all stages of the experiment. The spectral indices of δ1- activity and δ2-activity
show qualitatively similar maps (Figure 2a,b). In particular, at the stages of rest, δ1-activity
and δ2-activity are maximal in the frontal EEG leads. In all leads, δ1-activity is statistically
significantly less by 55 (34; 71)% (median value with the first and third quartiles) at stress
stage S1 than at rest stage R1, and by 54 (42; 71)% at stress stage S2 than at rest stage R2
(Figure 2e). δ2-activity is statistically significantly less by 73 (51; 80)% at stress stage S1 than
at rest stage R1, and by 58 (43; 76)% at stress stage S2 than at rest stage R2 (Figure 2f).

Figure 2d demonstrates the predominance of α-activity compared to β-activity at all
stages of the experiment. At stress stages S1 and S2, a decrease in α-activity (Figure 2c)
and an increase in β/α-activity (Figure 2d) is observed. At the stages of rest, α-activity is
maximal in parietal EEG leads (Figure 2c). α-activity statistically significantly decreased in
all leads by 22 (10; 39)% at stage S1 and by 28 (12; 45)% at stage S2 compared with stages
R1 and R2, respectively (Figure 2g). β/α-activity statistically significantly increased by 26
(−6; 83)% in occipital leads at stage S1 and by 32 (6; 73)% in occipital and parietal leads at
stage S2 compared with stages R1 and R2, respectively (Figure 2h).

It should be noted that in the δ1- and δ2-ranges, the differences in spectral indices
between the stages of stress and rest are significant and more pronounced in all EEG leads,
while in the α- and β-ranges, these differences are less pronounced and statistically signif-
icant only in several leads. Thus, the spectral analysis of infra-slow oscillations of brain
potentials demonstrates the sensitivity of their dynamics to changes in the psychophysio-
logical state caused by stress-inducing cognitive tasks.

Second, we analyzed the couplings between the signals of EEG leads in low-frequency
ranges. Figure 3 presents the results of calculating the phase coherence coefficient (1)
between EEG oscillations in the δ1-, δ2-, δ-, and θ-ranges.

Figure 3a–d shows the medians of distributions in the ensemble of mean values of the
coherence (1) of a given EEG lead and other leads. At all stages of the experiment, in all
frequency ranges in Figure 3, higher coherence values were found in the frontal, central,
and parietal EEG leads compared with the occipital leads.

Figure 3e–h shows the differences between the coherence coefficients at stages S1 and
R1, and stages S2 and R2. In all leads, the coherence between δ1-oscillations in EEG is
statistically significantly less by 14 (−1; 29)% at the stress stage S1 than at the rest stage R1
and is significantly less by 17 (0; 27)% at the stress stage S2 than at the rest stage R2 in all
leads except O1 (Figure 3e). The coherence between δ2-oscillations in EEG is statistically
significantly less by 10 (−2; 24)% at the stress stage S1 than at the rest stage R1 in frontal,
central, and occipital EEG leads (Figure 2f). At the same time, there was no significant
change in coherence between δ2-oscillations in EEG at stage S2 in comparison with stage
R2 (Figure 2f). The coherence coefficients of δ-oscillations in EEG showed a significant
increase of 7 (−2; 17)% at stage S1 and of 10 (2; 19)% at stage S2 only for central and parietal
leads (Figure 2g). The coefficients of coherence between θ-oscillations in EEG were not so
sensitive to stress. Significant changes in these coefficients were found only for a few leads
during stage S2 (Figure 3h).
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Figure 3. (a–d) Medians of distributions in the ensemble of mean values of the coherence between
EEG leads in (a) δ1-range, (b) δ2-range, (c) δ-range, (d) θ-range at R1, S1, R2, and S2 stages of the
experiment. (e–h) Differences in coherence coefficients at stages S1 and R1, and stages S2 and R2 in:
(e) δ1-range, (f) δ2-range, (g) δ-range, (h) θ-range. Circles indicate the EEG leads that demonstrated
statistically significant differences between the stages of rest and stress, while crosses indicate the
EEG leads in which these differences were not statistically significant.

Figure 4a–d shows statistically significant changes in coherence between pairs of EEG
leads. In δ1-range, the stress stages S1 and S2 are characterized by a decrease in intrahemi-
spheric coherence compared with the R1 and R2 stages of rest, respectively (Figure 4a).
At stage S2, a decrease in interhemispheric coherence between the frontal, central, and
parietal leads is observed in the δ1-range. Additionally, an increase in coherence between
the occipital leads takes place (Figure 4a). In the δ2-range, a decrease in intrahemispheric
coherence is also observed during stress-inducing stages S1 and S2 (Figure 4b). However,
stage S1 is characterized by a decrease in interhemispheric coherence between the frontal
leads and an increase in the occipital, parietal, and central leads. In stage S2, an increase in
all interhemispheric coherence coefficients is observed (Figure 4b).

In the δ-range of EEG, a decrease in intrahemispheric coherence during stress is less
pronounced than in the δ1-range and the δ2-range (Figure 4c). Interhemispheric coherence
increases in the δ-range during both stress stages S1 and S2 (Figure 4c). In the θ-range,
an increase in interhemispheric coherence is seen in response to the stress at stage S2
(Figure 4d).

Table 1 presents the medians and the first and third quartiles of individual differences
in interhemispheric and intrahemispheric coherence coefficients at stages S1 and R1, and
stages S2 and R2. A negative median value indicates a decrease in coherence at the stress
stage and a positive median value indicates an increase in coherence during stress.
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Figure 4. (a–d) Changes in coherence between the pairs of EEG leads at stages S1 and R1, and stages
S2 and R2 in (a) δ1-range, (b) δ2-range, (c) δ-range, (d) θ-range. The blue lines indicate a statistically
significant decrease in coherence and red lines indicate an increase in coherence. (e–h) Changes in
directional coupling indices in (e) δ1-range, (f) δ2-range, (g) δ-range, (h) θ-range. The thick lines
indicate statistically significant couplings in both directions and thin arrows indicate coupling in only
one direction.

The results of the analysis of the structure of directional couplings between EEG leads
are presented in Figure 4e–h. It can be seen that in general, the changes in directional cou-
pling indices during the stages of stress agree well with the changes observed in the phase
coherence coefficients in Figure 4a–d. The general trend is a decrease in intrahemispheric
couplings and an increase in interhemispheric couplings between EEG leads during stress.
Most of the identified significant changes in couplings between pairs of EEG leads are
observed in both directions (Figure 4e–h).
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Table 1. Medians and the first and third quartiles of distributions of individual differences between
the coefficients of interhemispheric and intrahemispheric coherence of EEG leads at the stages of
stress and rest.

Coefficients SCWT MAT

Intrahemispheric
∆δ1-coherence −23 (−40; −6) −19 (−35; −4)
∆δ2-coherence −21 (−33; −8) −10 (−20; 1)
∆δ-coherence −7 (−17; 2) −4 (−11; 2)
∆θ-coherence −2 (−10; 2) 2 (−3; 7)

Interhemispheric
∆δ1-coherence −6 (−30; 32) −9 (−32; 27)
∆δ2-coherence 7 (−26; 57) 29 (0; 81)
∆δ-coherence 26 (8; 55) 30 (11; 70)
∆θ-coherence 6 (−3; 16) 13 (4; 26)

4. Discussion

In this paper, we studied in detail the influence of stress-inducing cognitive tasks on
the infra-slow oscillations of brain potentials. We previously obtained indirect evidence of
the influence of stress on the power spectral density of EEG signals in the low-frequency
range [16]. However, the present study revealed, for the first time, statistically significant
changes in the power of infra-slow oscillations in EEG signals in response to the devel-
opment of moderate stress. The results of oscillations in the α-range and β-range of EEG
signals obtained in this study agree with the results of other studies [52–57,59,60]. For
example, it was shown that β-activity in the frontal and temporal areas was significantly
higher in the non-stress group than in the stress group under emotionally unpleasant
stimuli [60]. However, the spectral indices of δ1- activity and δ2-activity showed a much
higher sensitivity to stress (Figure 2). Thus, analysis of the power of infra-slow oscillations
of brain potentials for the diagnostics of stress is promising.

Power distribution by EEG leads qualitatively differs in different frequency ranges,
which indicates that different mechanisms cause the identified changes. Oscillations in
the δ1- and δ2-ranges have maximal power in the frontal EEG leads (Figure 2a,b), which
is probably due to their location above the prefrontal cortex, which is associated with the
activity of the sympathetic and parasympathetic nervous systems [60,61]. α-oscillations
have maximal power in parietal EEG leads (Figure 2c) that can be explained by a change in
the activity of the corresponding cortical structures when focusing attention [62]. The β/α
ratio is maximal in the occipital EEG leads (Figure 2d) that is often interpreted as activation
of the cortical structures responsible for processing cognitive information [63].

The results of the analysis of couplings between EEG leads in the frequency range
<0.5 Hz are also of interest. It was reported that the development of stress is accompa-
nied by a decrease in intrahemispheric couplings and an increase in interhemispheric
couplings in the δ- and θ-ranges [20,22,64]. Our results are consistent with these findings
(Figure 4c,d,g,h). Moreover, analysis of the connectivity of infra-slow oscillations of brain
potentials, performed for the first time in this study, also demonstrated a significant de-
crease in intrahemispheric couplings under stress (Figure 4a,b,e,f). The interhemispheric
couplings between EEG leads also increased during stress in the δ2-range as well as in
the δ- and θ-ranges. However, in the δ1-range, the interhemispheric couplings decreased
under stress (Figure 4a,e). This can probably be explained by the nature of oscillations
in the δ1-range associated with the processes of sympathetic control that respond to the
development of stress [1,7,33–35].

Comparison of changes in couplings of EEG leads indicates that the decrease in
intrahemispheric couplings in response to stress is most pronounced in the δ1- and δ2-
ranges (Figure 4a,b,e,f) and least pronounced in the θ-range (Figure 4d,h). During the
SCWT (stage S1), the changes in interhemispheric couplings are most pronounced in the
δ-range (Figure 4c,g) and least pronounced in the δ1-range (Figure 4a,e). During the MAT
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(stage S2), the changes in interhemispheric couplings are more pronounced in the δ2-, δ-,
and θ-ranges than in the δ1-range. In general, it can be seen that changes in interhemispheric
couplings are more pronounced across all frequency ranges during the MAT than during
the SCWT; these can be explained by the greater cognitive load on volunteers during SCWT.

An increase or decrease in the coherence between a pair of EEG leads at different
stages of the experiment was, in most cases, accompanied by a similar dynamic in the
indices of directional coupling (Figure 4). For example, a decrease in intrahemispheric
coherence between EEG leads in the δ1-range (Figure 4a) and the δ2-range (Figure 4b)
during the SCWT correlates with a decrease in directional coupling from the frontal, central,
and parietal leads to occipital leads within the same hemisphere (Figure 4e,f). A decrease
in interhemispheric coherence in the δ1-range during the MAT (Figure 4a) correlates with a
decrease in directional coupling between the frontal, central, and parietal EEG leads of the
left and right hemispheres (Figure 4e). An increase in intrahemispheric coherence between
EEG leads in the δ2-range during the MAT correlates with an increase in unidirectional
coupling from the leads of the right hemisphere to the leads of the left hemisphere. Good
agreement between the results of the coupling analysis obtained using the methods based
on estimation of phase coherence coefficients and directional coupling indices increases the
reliability of our results due to the qualitative difference between these methods.

It should be noted that for most pairs of EEG leads, the revealed directional couplings
were bidirectional (lines in Figure 4e–h). In cases where couplings between the leads were
identified as unidirectional (arrows in Figure 4e–h), it is difficult to systematize the structure
of such directional couplings. We assume that the couplings between the pairs of EEG leads
are mainly bidirectional, but the insufficient sensitivity of the method did not allow us in
some cases to identify a statistically significant coupling in the opposite direction.

The obtained results allow us to conclude that the considered methods are efficient for
the detection of stress. Moreover, these methods are able to distinguish the states of stress
caused by pattern recognition (SCWT) and intensive solving of formal tasks (MAT). Note
that during SCWT (stage S1) the phase coherence coefficients decrease in the δ2-range, while
during MAT (stage S2) these coefficients increase in this range (Figure 3b,f). At the same
time, under stress caused by SCWT, an increase in interhemispheric couplings in the δ-range
is observed, while interhemispheric couplings in the δ1-range do not change (Figure 4).
Under stress caused by MAT, a pronounced increase in interhemispheric couplings in the
δ2-, δ- and θ-ranges is observed, while interhemispheric couplings decrease in the δ1-range.

Thus, the changes in the power and coupling of infra-slow oscillations in the signals
of EEG leads during stress-inducing cognitive tasks can be used as sensitive biomarkers of
the type and strength of cognitive load, since they reflect the influence of the processes of
higher nervous activity on the processes of autonomic control, resulting in a change in the
psychophysiological state of the subject.

For many applied problems, the use of a small number of EEG leads is sufficient and
may even have advantages over multielectrode systems. In our study, the main goal was
to identify the changes in the intensity and couplings of oscillations in the signals of EEG
leads in response to a cognitive task, and using a small number of electrodes to solve this
problem turned out to be sufficient.

A limitation of our study is the use of a homogeneous group of healthy subjects, all
of whom were males of nearly the same age. Moreover, all subjects performed stress-
inducing cognitive tasks for the first time. In the future, we plan to study stress in different
groups of subjects who differ in gender, age, and experience in participating in stress-
inducing experiments. In particular, we plan to assess the mental state of the subjects using
questionnaires [65,66].

It is important to compare the obtained results with the results given by the application
of other methods of signal analysis. Therefore, we plan to assess the cross-frequency
coupling between the phase of slower oscillatory activity and the amplitude of faster
oscillatory activity in the brain, as well as to calculate some nonlinear dynamic measures
of complexity [67]. Simultaneous use of various methods of analyzing the interactions
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between EEG oscillations in different frequency ranges can improve the efficiency of stress
detection. It is also valuable to compare the results of electrophysiological studies with the
results of animal studies [17,18].

5. Conclusions

For the first time, we studied in detail the infra-slow oscillations of brain potentials
in the frequency ranges of 0.05–0.15 Hz and 0.15–0.50 Hz, which are associated with the
processes of autonomous control, during the Stroop Color Word Test and mental arithmetic
test that induce moderate stress.

It was shown that, compared with the state of rest, stress is characterized by a sig-
nificant decrease in the power of infra-slow oscillations in the signals of EEG leads. The
changes in the spectral indices of infra-slow oscillations under stress are more pronounced
than the changes in the spectral indices of oscillations in the higher frequency ranges of
EEG signals. Phase coherence coefficients between infra-slow oscillations in different EEG
leads are also more sensitive to stress than coherence between oscillations at higher fre-
quencies. Analysis of phase coherence and directional coupling between pairs of EEG leads
under stress revealed a decrease in both intrahemispheric and interhemispheric couplings
between EEG leads in the range of 0.05–0.15 Hz, and a decrease in intrahemispheric and an
increase in interhemispheric couplings in the range of 0.15–0.50 Hz.

Thus, analysis of changes in the power and coupling of infra-slow oscillations in the
signals of EEG leads during stress-inducing cognitive tasks is promising for detecting stress.
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