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Abstract: Here we consider the possibility to characterize the signal complexity of electroencephalo-
grams using calculation of largest Lyapunov exponent explicitly from time series. This would help in
detection of seizures, understanding and modeling epileptic activity. Baseline activity and spike-wave
discharges (SWDs) were considered as regimes. Three channels relevant for absence epilepsy were
studied: the parietal cortex, the ventroposterial medial nucleus of thalamus, and the reticular thalamic
nucleus. Experimental data and two types of models were investigated. The result show that SWDs
often treated as more or less regular oscillations are characterized by large positive Lyapunov expo-
nent, not very different from the value obtained for baseline activity. The mesoscale network model
of epilepsy is mostly able to reproduce this phenomenon, including absolute values. The more simple
neuron mass model exhibits Lyapunov exponent during SWDs twice smaller than in baseline.
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1. Introduction

Pathological states of physiological systems are considered to be different from the normal ones.
The first studies of various biological rhythms using tools of nonlinear dynamics [1] showed that pro-
cesses in the brain are normally characterized by the presence of irregular components with a high
degree of complexity. Such a dynamics gives many functional advantages, since chaotic systems are
capable of operating over a wide range of conditions, and thus easy to adapt to changes. Clearly ex-
pressed periodicity appears in aging and many pathological states is accompanied by a decrease in the
degree of chaos and complexity [2].

In case of absence epilepsy the pathological synchronization of thalamo-cortical system is usually
mentioned [3, 4]. Also, the transition to the synchronous state is usually considered to be a transition to
more regular regime. The spike-wave discharges, which are the main encephalographic manifestation
of absence epilepsy, are often considered as periodic oscillations as well [5, 6]. However, this regularity
is not strict from the point of view of nonlinear dynamics.

The most usual and direct way to estimate, whether the current regime of behavior is regular or
not, is to calculate the first (largest) Lyapunov exponent [7], which characterizes the behavior of the
two initially very close points in a phase space [8, 9]. This was already done for other diseases like
schizophrenia (see [10]) and for different normal physiological conditions (see [11], including sleep
[12]). The distance between nearby trajectories varies exponentially with time, just with the magnitude
of largest Lyapunov exponent. Therefore, if the largest Lyapunov exponent (Λ) is negative, the two
initially close points of the phase space converge over time, which indicates the presence of a periodic
regime. If these points are going apart, then the largest Lyapunov exponent is positive and this means
that the system is in a chaotic regime.

The current work has two main objectives. First, to determine how much the SWDs differ from
the baseline activity in term of regularity of oscillations and, therefore, in terms of predictability. This
would help constructing, using and analyzing results of forecasting empirical models, which a popular
tool both for automatic detection of SWDs and similar phenomena (the review of modern approaches
one can find in [13]), and for coupling analysis (consider, e. g., Granger causality [14] with its adap-
tations to neurophysiological data [15, 16], transfer entropy [17] and partial directed coherence [18]).
Second, to compare experimental data with simulations of SWD models in terms of signal regularity
in order to determine how much these models can reproduce the observed dynamics and and whether
they are suitable as a source of signals for testing time series analysis approaches.

2. Method, models and data

Calculating Lyapunov exponent from equations is not a big problem. Estimating Lyapunov expo-
nents from real data is more sophisticated and risky task. There are a number of known methods. The
original Wolf’s approach [19] was presented to estimate two largest Lyapunov exponents, but demands
a sufficient amount of data (at least 213 data points for Rössler system, with the main timescale being
about 60 points length). The Eckmann’s method [20] is able to estimate the whole Lyapunov spectrum,
but is even more demanding for data amount. It is also known to work better for maps, rather than for
systems with continuous times. The time series of spike-wave discharges are relatively short due to
their average length of about 5–6 s [21]) and nonstationary at the same time, since spectral and cou-
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pling characteristics are changing over time from the seizure onset to its termination [22]. Therefore,
the direct use of Wolf’s and Eckmann’s methods occurs to lead to unsafe estimates. So, we used the
Rosenstein’s et al. algorithm [23], which can be considered as a simplified version of the method [19]
(only one largest Lyapunov exponent can be estimated) because this method requires fewer data, with
being more noise robust.

2.1. Rosenstein’s algorithm in brief

We used the method proposed in [23]. This method is easy to implement and fast because it uses a
simple measure of exponential divergence that circumvents the need to approximate the tangent map.
Furthermore, the method is accurate for small data sets because it takes advantage of all available
data. The first step of this method involves reconstructing dynamics on the attractor from a scalar time
series. For this purpose we used the method of time delays with lag chosen equal to the first minimum
of the autocorrelation function or a quarter of the characteristic oscillation period [24] and dimension
estimated with false nearest neighbor algorithm [25].

Trajectory, as reconstructed by the method of delays, can be represented as a matrix in which each
row is a state vector in a phase space, that is,

X̂ = (x1, x2, . . . , xM)T , (2.1)

where xn is a state of the system at time moment n. Using the original time series {xn}
N
n=1 measured

with sampling step ∆t, the method of delays provides xn =
(
xn, xn−l, . . . , xn−(D−1)l

)
, where D is an

embedding dimension and l is time lag. Thus, X̂ is the M × D matrix, where M = N − (D − 1)l.
After the reconstruction of the phase space it is necessary to find the nearest neighbor for each point
of the trajectory. We assume that the nearest neighbor to a vector xn is another vector x j, for which the
Euclidean distance between them dn, j is minimal at the additional assumption that these two vectors
are not close in time, i. e. | j − n| > l in order not to consider consequent vectors as neighbors.

Then, the largest Lyapunov exponent can be estimated as a function of the average difference be-
tween the nearest neighbours. Following the definition of Lyapunov exponent the following formula
describes the evolution of distance between vectors xn and x j:

dn+θ, j+θ ≈ dn, j exp(Λθ∆t), (2.2)
Λθ∆t ≈ log(dn+θ, j+θ) − log(dn, j), (2.3)

where θ is the discrete time corresponding to the real time of trajectory evolution θ∆t.
Theoretically, the equation (2.3) determines a set of approximately parallel lines, the slope of which

is proportional to Λ. To obtain the robust estimate for Λ, let us average (2.3) over all possible n and
consider the left side of the averaged equation (2.3) as a function of the discrete time θ:

ϕ(θ) =
1
∆t

〈
log(dn+θ, j+θ) − log(dn, j)

〉
n

=
1
∆t

〈
log(dn+θ, j+θ)

〉
n
−

1
∆t

〈
log(dn, j)

〉
n
. (2.4)

The slope of ϕ(θ), if it is proposed to be a linear function, is Λ. Therefore, the approach is to fit ϕ(θ) to
experimental data numerically. Note, that one can omit the second term in the equation (2.4) without
any consequences since this term is constant and does not affect the slope.

Dependencies ϕ(θ) are evaluated for different embedding dimensions D (see Figure 1(a)) and, if it
is possible to find linear parallel sites for nearby dimension values (see Figure 1(b)), the slope of the
approximating line is an estimate of the largest Lyapunov exponent.
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(a) (b)

Figure 1. Typical dependencies of ϕ(θ) on discrete time for the Lorenz attractor — (a) for
different embedding dimensions D, — (b) with illustration of getting a correct slope from
linear region.

2.2. Experimental data

Data were obtained from a previously used and published data set [26] in which male WAG/Rij rats
(6–9 months) were used as experimental subjects. The Ethical Committee on Animal Experimentation
of Radboud University Nijmegen (RU-DEC) approved the experiment. Local field potentials (LFPs)
were recorded with a self-constructed electrode system for multi-site LFP recording at specified and
verified brain locations. Stainless steel electrodes insulated with poliamide (� = 127µm) were fixated
in a Teflon block, which contained small holes located at the relative A/P & M/L coordinates of the
multiple electrode target structures as determined by the rat brain atlas of Paxinos and Watson [27].
Twelve electrode wires including those from reference and ground were glued to the teflon-block and
fixed at the top-site to a connector pin, which was entered into an electrode pedestal suitable for the
connection to a multi-lead electrode cable, which was connected to a swivel allowing long term record-
ing in freely moving and well-adapted rats. LFP signals were amplified with a physiological amplifier
(TD 90087, Radboud University Nijmegen, Electronic Research Group), filtered by a band pass filter
in the range [1; 100] Hz with 50 Hz reduction by means of a Notch filter, and digitalised with a con-
stant sample rate of 2048 Hz by WINDAQ-recording-system (DATAQ-Instruments). EEG of each rat
was recorded for a period of 4 hours during the dark phase. In this work we studied recordings from
the perioral region of the somatosensory cortex, layer 6 and two thalamic nuclei (the ventroposterial
medial nucleus and the caudal part of the reticular thalamic nucleus) from 10 rats. Time series of 10
SWD fragments of 4 s length, taken starting immediately from the onset of SWD, were analyzed for
each rat.
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2.3. Mathematical models of SWDs

2.3.1. Neural mass model

The neural mass models are the most popular type of SWD models. Here, we consider one of the
most recent of them [28], which is a simplification of previously published [29] model. In neural mass
models each population is modelled as a lumped oscillatory system described by several differential
equations. Four ordinary differential equations (ODEs) were used in the considered model (2.5): one
for thalamic reticular cells (RE), one for cortical interneurons (IN), one for cortical pyramidal cells
(PY) and one for thalamo-cortical cells (TC).

dPY
dt

= τPY
(
hPY − PY + C1 f (PY) −C3 f (IN) + C9 f (TC)

)
,

dIN
dt

= τIN
(
hIN − IN + C2 f (PY)

)
, (2.5)

dTC
dt

= τTC
(
hTC − TC + C7 f (PY)

)
−C6s(RE),

dRE
dt

= τRE
(
hRE − RE + C8 f (PY)

)
−C4s(RE) + C5s(TC),

f (u) =
1

1 + ε−u ,

s(u) = au + b.

In this study the model is placed in a bistable state and was implemented using a neural population
version of the Amari neural field equations [30]. The parameters were as follows τPY = 26, τIN = 32.5,
τTC = 2.6, τRE = 2.6, hPY = −0.35, hIN = −3.4, hTC = −2, hRE = −5, C1 = 1.8, C3 = 1.5, C9 = 1,
C2 = 4, C7 = 1.5, C6 = 0.6, C8 = 3, C4 = 10.5, C5 = 0.2, ε = 2 · 105, a = 2.8, b = 0.5. The equations
were solved numerically with Euler method using constant time step 2−11.

2.3.2. Neural network model

The neural network model we used is a mesoscale model [31] which is a development of the previ-
ously published model [32]. Each neuron in the model actually represents a group of nearby neurons,
which are divided into four populations. The populations are the same as in the model (2.5): PY, TC,
IN and RE. Also, each population was split into 2 parts denoted as focal and surrounding. There were
200 of PY neurons, 120 of TC and RE neurons, and 50 of IN neurons in the used version of the model.
Model neurons of each type were presented by the FitzHugh–Nagumo equations [33, 34]. Connections
between neurons were set using the scheme, plotted in the Figure 2, which mostly follow the work by
Suffczynski et al. [29].

Communication matrices were generated as follows. First, matrices of size NPY = 40, NIN = 10,
NTC = 40, NRE = 40 were found, which demonstrated the appearance of high-amplitude generation in
response to an attempt to initiate and subsequently maintain a discharge (a short-term gradual increase
in the internal connections between neurons of the PY population, and then between neurons PY and
RE). Such matrices were taken as a pathological subnetwork responsible for the appearance of spike-
wave discharges in the model. Then, a matrix responsible for the normal dynamics of the system (i. e.,
not able to respond by generating high-amplitude oscillations to an attempt to cause them) was selected
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IN PYRE
... ......

TC
...

N. trigeminus

Figure 2. Diagram of couplings between populations of neurons in the network model.
Excitatory couplings are shown with solid arrows and inhibitory ones are shown with dashed
arrows. Nervus trigeminus (“N. trigenimus” at the plot) represents a sensory input in [29].

(a) (b) (c)

Figure 3. Typical dependencies of ϕ(θ) versus discrete time θ for LFP signal during absence
seizure: (a) with a conventional lag, (b) with a proposed lag, and during baseline activity —
(c) with a proposed lag.

for each of the pathological matrix. The size of these matrices was NPY = 160, NIN = 40, NTC = 80,
NRE = 80.

The integrated signal of neurons in the PY and IN populations is an analogue of the LFP signal of
the neocortex, TC is a collection of cells from the VPM, and RE is from the RTN. The equations of the
model were solved numerically by the Euler method with a step of 0.5.

3. Results

3.1. Largest Lyapunov exponent for experimental data

Consideration of series simulated from classical nonlinear systems showed the efficiency of the
described method to be mainly determined by the embedding dimension D and the lag l [23]. When
one selects these parameters by the above-mentioned methods, the curve for evaluation of the largest
Lyapunov exponent should look like Figure 1 (a). However, processing experimental LFP signals
showed that it is not the case, see Figure 3 (a).
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Figure 4. The estimates of the largest Lyapunov exponent for three different channels (the
parietal cortex, the ventroposterial medial nucleus of thalamus and the reticular thalamic nu-
cleus) (a) baseline activity and spike-wave discharges averaged over all 10 rats with standard
errors of the mean (SEMs), (b) for baseline activity and SWDs, achieved from the neuron
mass model (2.5), averaged over 20 epochs with standard errors of the mean (SEMs), (c) for
baseline activity and SWDs averaged over all 10 matrices of the network model with standard
errors of the mean (SEMs). “**” indicates p-value p < 0.001 and “*” — p < 0.05 obtained
from Mann–Whitney U test.

It was found that a linear region (though not so long as for classical nonlinear systems) of the curves
can be achieved (see Figure 3 (b)) between θ = 60 and θ = 100 (i. e. for θ∆t ∈ [30; 50] ms) for D > 5, if
lag is chosen in the following way. Let l′ be a lag, which is used for reconstruction of the phase space,
and l is used for nearest neighbour search. Then, it is possible to achieve dependence ϕ(θ) as illustrated
in Figure 3 (b), if l is equal to first minimum of mutual information, and l′ is significantly smaller, e. g.
l′ = l/7. This can be explained by the fact that the signal has a number of independent time scales,
some of which are much smaller than the main timescale — detailed spectra of LFPs can be found in
many papers, see e. g. [21] or [35], where averaged spectra of both ictal and preictal activities were
plotted in the same scale for different channels.

In total, we processed 300 four-second segments of LFP recordings at the beginning of SWD onsets:
10 time series from each of the 10 selected rats from 3 channels for absence activity and 10 time
series from each of the 10 selected rats from 3 channels for baseline activity. Estimates of the largest
Lyapunov exponent were averaged first over all discharges for each rat separately, and then over all
rats. The average values of estimates for the largest Lyapunov exponent and their standard errors of
the mean for all considered channels are shown in Figure 4 (a). The achieved values do not vary a lot
across different animals: SEMs are small in comparison with the absolute values.

The first look at Figure 4 shows that baseline and SWDs are not much different, while Λ for baseline
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are always a little bit larger. If we consider the distribution of Λ estimates to be close to normal, we
have to decide that the difference in Λ is significant (errorbars do not overlap) only for cortex for
p-value p < 0.05.

3.2. Largest Lyapunov exponent for the neural mass model

The model (2.5) allows to simulate both a background signal and SWDs at the same set of pa-
rameters due to switching between two coexistent attractors, but there is no possibility to simulate
different animals, since different parameters of the model correspond to different severity of epilepsy.
This limitation is general for neural mass models. Therefore, we generated 20 four-second epochs cor-
responding to normal activity and 20 epochs corresponding to epileptiform one from different initial
conditions. The average values of estimates for the largest Lyapunov exponent and their standard errors
of the mean for all considered channels are shown in Figure 4 (b). The parameters of the Rosenstein’s
method were chosen in the same way as for the experimental data, but separately.

We can see from the Figure 4 (b) that the Lyapunov exponents calculated for the model (2.5) are
much smaller than for the experiment. Also, Λ values for SWDs are significantly smaller than for
baseline activity. It is interesting that for the cortex this difference is mostly at the same level p = 0.05
as for experimental data, but for the thalamic nuclei this difference is much more significant (at the
level p = 0.001) in contrary to experiment, where there is no significant difference between baseline
and SWDs for both considered thalamic nuclei.

3.3. Largest Lyapunov exponent for the network model

In the network model the dynamics is determined not only by the parameters of individual elements,
but also by the communication matrices. There could be many matrices suitable for modeling, as
shown in [32]. So, we can say that different matrices are models of individual animals. Therefore, the
approach used for the network model is the same as we used for the experimental data: first we averaged
the estimates of the largest Lyapunov exponent over all SWDs and background activity episodes for
each matrix separately, and then we averaged over all matrices, calculating SEMs. The parameters of
the Rosenstein’s method were chosen in the same way as for the experimental data, but separately.

We can see from the Figure 4 (c) that Λ estimates obtained for the network model are smaller than
for the experimental data, but there is no so large gap between Λ for SWDs and for baseline episodes
as in neural mass model. In all cases SWDs are more predictable than baseline.

4. Discussion and conclusions

The estimation of the largest Lyapunov exponent from the time series of both experimental data
and the two considered numerical models turned out to be positive and rather large. In all cases Λ

was larger for SWDs than for baseline activity, but for the experiment and for the network model this
difference was rather small. High Λ for SWDs means that the signal during absence seizures is not so
regular as usually considered. This additional complexity can appear due to the existence of another,
more fast time scales in the signal, not related to the main one, which behave irregular [36].

High values of Λ for the baseline activity means that long range prediction of SWDs by means
of any deterministic approaches is not possible. The Λ ∼ 16 corresponds to the Lyapunov time of
0.0625 s. If we consider that the measurement errors are at the level of discretization which is usually
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16 or 24 bits in modern devices, the initial small perturbation can grow exponentially to the whole
dynamical range at less than 1 s. However, this is not likely, since such a growth would take place
only for small perturbations, as it is determined by the definition of Lyapunov exponent, and then
larger and more regular time scales would start to dominate, providing lesser growth of perturbation.
However, the predictability of SWDs is still very limited. The similar results were recently achieved by
analyzing Shannon entropy, the prediction horizon was found to be not larger than 4 s [37]. In [16, 22]
the changes in couplings were found to occur not earlier than 3.3 s before SWD onset.

Our analysis has shown Lyapunov exponents to be very close for all three considered channels,
including both thalamic nuclei and somatosensory cortex. This is not surprizing, since the whole
cortico-thalamo-cortical circuit is responsible for SWD generation. The same result can be achieved
from the network model, with absolute values being smaller. But the neural mass model provides very
different estimates for RTN and VPM during baseline. It also shows the significant difference between
the cortex and the VPM during SWDs. The reason of this discrepancy is hard to understand in detail,
but in general we can hypothesize that this would be a general, “genetic” problem of all neural mass
models. All such models consider each type of cells as one solid oscillator. This means that the direct
links between neurons, existing both in experiment and in network models, are replaced by coupling via
mean field. These mean field couplings, however, cannot provide the same flexibility and connectivity
as many individual direct links. Therefore, each oscillator occurs to be more independent and self-
sustained in its dynamics than an ensemble of real or model neurons in the experiment or network
models. There is also the problem of comparison between neural mass models and experimental data,
since there is no direct possibility to provide a “population of models” similar to the population of
rats in the experiment. In network models this problem can be solved via using different connectivity
matrices.
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